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Abstract Missing data imputation is an important issue in

machine learning and data mining. In this paper, we pro-

pose a new and efficient imputation method for a kind of

missing data: semi-parametric data. Our imputation method

aims at making an optimal evaluation about Root Mean

Square Error (RMSE), distribution function and quantile af-

ter missing-data are imputed. We evaluate our approaches

using both simulated data and real data experimentally,

and demonstrate that our stochastic semi-parametric regres-

sion imputation is much better than existing determinis-

tic semi-parametric regression imputation in efficiency and

effectiveness.
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1 Introduction

In machine learning and data mining applications [3, 11, 12],

about 20% of the project effort is spent on data understand-

ing, about 60% on data preparation and about 10% on data

mining and analysis of knowledge [2]. Industrial practice

also indicates that over 80% of the learning (or mining) work

concentrate on data preparation [30, 31].

Indeed, data in real world applications are often miss-

ing values. Missing values may generate bias and affect the

quality of the supervised learning process or the performance

of classification algorithms. However, extant learning algo-

rithms are based on the existence of quality data. In other

words, researchers have been assuming that the input to the

learning algorithms confirms to well-defined data distribu-

tions, containing no missing, inconsistent, or incorrect val-

ues. This leaves a large gap between the available data and

the machinery available to process the data. Accordingly,

this paper describes a kernel-based sem-parametric regres-

sion strategy for missing data imputtion.

A semi-parametric regression model is the form of Yi =
X T

i β + g(Ti ) + εi , where the Yi ’s are i.i.d (independent iden-

tically distributed) scalar response variables, the Xi ’s are i.i.d

d-dimensional random covariate vectors, the Ti ’s are i.i.d

d
∗
-dimensional random covariate vectors, the function g(·)

is unknown, and the model error εi are i.i.d random errors

with mean 0 and unknown finite variance σ 2 (in our paper,

we treat the unknown finite variance as 1).

Consider the sale of ice cream in summer. Generally,

weather, sale place, or some unpredictable reasons can im-

pact the sale of ice cream. Certainly, there is an important
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linear relation between the sale of ice cream and weather.

However, it is difficult to really know the relation between

the sale of ice cream and other factors. This means that we

cannot determine the real relation between the sale of ice

cream and all the factors. In this paper, we construct a kernel-

based stochastic semi-parametric method to handle with this

complex relation. We regard it as a semi-parametric model

which consists of two parts: One part is a parametric model

capturing a linear model such as the relation between the

sale of ice cream and weather in this example; and the other

is a non-parametric model simulating such as the relation

between the sale of ice cream and the other factors.

Our semi-parametric regression imputation aims to sig-

nificantly overcome some shortcomings in linear models

and non-parametric models by making an optimal inference

on: RMSE (Root Mean Square Error), distribution function

(θ = F(y)) and quantile (θq ). The distribution function F(y)

is the probability of Y being smaller than or equal to the given

y (where y is a fixed point in R), θq (the q-th quantile of Y) is

the level of Y that satisfies P(Y ≤ θq ) = q , 0 < q < 1. The

median of Y (the case of q = 1/2) is the most important case

of quantiles. RMSE is the accuracy of prediction.

The rest of this paper is organized as follows. We briefly

outline some work related to semi-parametric imputation in

Section 2. In Section 3, a kernel-based semi-parametric re-

gression imputation is proposed in semi-parametric settings.

We then use the standard statistical methods to evaluate

the performance of our algorithm on RMSE, distribution

function and quantile in Section 4. We summarize this paper

in Section 5.

2 Related work

Missing values can be caused by error, equipment failure,

change of plans, and so on. Missing values in a dataset are

common in real world applications. They may lead to bias

in the data, and affect the quality of learning process or the

performance of knowledge discovery. Generally, methods to

deal with missing data can be classified into two categories

as follows: (a) Case deletion, or Learning without handling

with missing data; and (b) Missing data imputation.

Case deletion, also known as listwise deletion (LD) and

complete-case analysis, is the most common approach that

simply omits those cases with missing values and to run anal-

ysis on only the remains. Although case deletion often results

in a substantial decrease in the sample size available for the

analysis, it does have important advantages. In particular, un-

der the assumption that data are missing completely at ran-

dom (MCAR, which will be introduced below), it leads to

unbiased parameter estimates, and this method is suitable in

the situation when the amount of missing data is small. How-

ever, if missing data are not in MAR, bias will appear which

makes the results non-generalizable to the overall population.

Case deletion, which gets complete data through decreasing

the original data, will lose a lot of resources and information,

especially, when the rate of missing data is larger or the distri-

bution of missing data is non-random. The method can result

in very serious bias and erroneous conclusion [23]. Learn-

ing with no handling with missing data, such as Bayesian

Networks [16] and Artificial Neural Networks [7], is directly

learning in dataset with missing value. Baysian Networks

perform well when we have a prior acknowledge about the

dataset or the relation among the variables in dataset are

clearly understood. Otherwise, the algorithm complexity will

exponentially increase due to the increasing of variables and

there is an expensive cost for maintenance. Meanwhile, there

are so many variables that need to be estimated, which will

bring in a high variation for the Bayesian system, affecting

its predicting accuracy. Furthermore, there exists the disas-

ter of exponential explode when the dataset contains a high

rate of missing rate. The technique of Artificial Neural Net-

works (ANN) can efficiently deal with missing values, but

the research about its theory must go further.

Missing data imputation is a procedure that replaces the

missing values in a dataset by some plausible values. One

advantage of this approach is that the missing data treatment

is independent of the learning algorithm used. This allows

users to select the most suitable imputation method for their

applications. However, Dempster et al. [4] pointed out: Im-

putation is a general and flexible method for handling with

missing data problems, but is not without its pitfalls. Caution

should be taken when employing imputation methods as they

can generate substantial biased between real and imputed

data.

There exist many techniques to manage data with missing

values, but no one is absolutely better than the others. Dif-

ferent situations require different solutions. Allison [1] said:

“the only really good solution to the missing value problem

is not to have any missing in dataset”. In addition, the ef-

ficiency of the missing data treatment methods depends on

the missing mechanism. Consequently, Little and Rubin [14]

have classified missing data into three categories:

Missing Completely at Random (MCAR): When given the

variables X and Y, the probability of response dependents on

X but not on Y.

Missing at Random (MAR): The probability of response in-

dependence exists between X and Y. MCAR data exhibits a

high level if randomness than does MAR.

Non-ignorable: The probability of response depends on vari-

ables X and possibly on variable Y.

In practice it is usually difficult to meet the MCAR as-

sumption. Most missing data methods are applied upon the

assumption of MAR. And in correspondence to Kim [13],

“Non-ignorable missing data is the hardest condition to deal

with, but unfortunately, the most likely to occur as well”. In
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this paper, our experiments are based on the missing mech-

anisms MAR and MCAR.

Currently, machine learning based methods for imputing

missing values include auto associative neural network [21],

decision tree imputation [24], case-wise deletion [15], lazy

decision tree [6], dynamic path generation [29]. But, these

methods are not completely satisfactory ways to handle miss-

ing value problems because these methods perhaps destroy

the original distribution of dataset during the process of im-

puting. Moreover, some methods in machine learning (such

as C4.5) usually only handle with the discrete value. In these

methods, continuous attributes are discretized before being

processed, which may lose the true characteristic during the

converting process from the continuous values to discretize

ones, and the imputation result of those methods may destroy

the original distribution of dataset.

From the data structure, commonly used imputation meth-

ods for missing values can be classified into parametric and

non-parametric regressions. The parametric regression im-

putation is superior if a dataset can be adequately modeled

parametrically, or if users can correctly specify the paramet-

ric forms for the dataset. If the model is misspecified (in

fact, in real application, it is usually impossible for users to

know the distribution of the real dataset), the estimation of

parametric method may be highly biased, and then optimal

control factor settings may be miscalculated.

Non-parametric imputation offer a nice alternative if

users have no idea on the actual distribution of a dataset.

Non-parametric imputation can provide superior fits by

capturing structure in the dataset (note that a misspecified

parametric model cannot), which is originally developed

for situations with large sample sizes. In practice, however,

non-parametric imputations often suffer from the curse of

dimensionality in high dimensions, and in small sample set-

tings, non-parametric fitting techniques may fit irregularities

if the data are too closely [10].

While much work focuses on modeling data by parametric

and nonparametric approaches, Engle et al. [5] have studied

the semi-parametric model. In this case, data are based on

monthly electricity sales yi for four cities, the monthly price

of electricity x1, income x2, and average daily temperature t.
They modeled the electricity demand y as the sum of a smooth

function g of monthly temperature t, and a linear function of

x1 and x2, as well as 11 monthly dummy variables x3, . . . ,

x13. Their model is

y =
13∑
j=1

β j x j + g(t) = X T β + g(t)

Pin and James [20] have designed a semi-parametric con-

ditional median as a robust alternative to the parametric

conditional mean to estimate the gasoline demand function.

Their approach protects against data and specification errors

and may yield a more reliable basis for public policy deci-

sions that depend on accurate estimates of gasoline demand.

Recently, Millimet et al. [17] has shown with data for US

states that parametric modeling can be rejected in favor of

a semi-parametric estimator, which does not impose any a

priori restriction on the functional form of the relationship.

Pickle et al. [19] compared the parametric and nonparametric

methods, and present a semi-parametric for modeling which

combine parametric and nonparametric function to improve

the quality of both the mean and variance models. The re-

sulting semi-parametric estimates have smaller bias and vari-

ance and result in a better understanding of the process at

hand.

The above methods are based on an assumption that data

are complete. Wang et al. [28] have developed inference tools

in a semi-parametric partially linear regression model with

missing response data. They have used a deterministic semi-

parametric regression imputation with a view to avoid the

curse of dimensionality. Based on the complete data after

imputation, they make inference only for the mean of the re-

sponse variable Y. Using a deterministic semi-parametric re-

gression imputation method, while missing values in a dataset

are replaced with only the mean of all the corresponding

known values in the dataset, Wang and Rao [26] have showed

that the deterministic imputation method performances well

in making inference for the mean of Y.

Different from the above work, at first, we will propose an

efficient random/stochastic semi-parametric regression im-

putation under the missing mechanisms MCAR and MAR.

Then we will make an optimal inference for the response vari-

able Y on RMSE, distribution function, and q-th quantile of

Y. Using a stochastic semi-parametric regression imputation

method, each of missing values in a dataset is replaced with

the mean of all the corresponding known values in the dataset,

plus a random value. Qin and Rao [22] have showed that one

must use random imputation method in making inference

for distribution functions and quantiles of Y. Our experimen-

tal results will demonstrate that stochastic semi-parametric

regression imputation methods are much better than deter-

ministic semi-parametric regression imputation methods on

RMSE, distribution and quantiles.

3 Stochastic semi-parametric regression imputation
method

In this section we present our data preprocessing in

Section 3.1. And then we construct a kernel-based semi-

parametric imputation for missing data in Section 3.2. In

Section 3.3 we talk about the imputed values of Y, and the

choice of bandwidth of kernel method and algorithm analysis

are presented in Section 3.4.
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3.1 Data preprocessing

A central concern is that the unit of an attribute can be very

different from that of another attribute. For example, in a re-

lation database, income of the inhabitants can take up values

anywhere between 500 and 250,000, whereas the ratio of the

employment content ranges from 0 to a maximum of 100%.

Generally, the result is usually prone to the data with bigger

magnitude, i.e., a unit difference in the ratio of the employ-

ment is expected to be more significant than the same unit

difference in income of the inhabitants. To avoid this bias,

the data in a database is transformed and normalized before

data clustering and missing value imputation based on kernel

functions in our paper.

Normalization is particularly useful when using kernel

functions because normalization helps prevent attributes with

initially largely ranges from outweighing attributes with ini-

tially smaller ranges. There are many methods for data nor-

malization, for example, Min-Max normalization, z-score

normalization and normalization by decimal scaling [8].

In this paper we first transform all input attributes to obtain

temporary variables with distribution having zero mean and

standard deviation of 1 using the following formula:

ai j(temp) = [(ai j ) − ā j ]/σ (a j ) (3.1.1)

where ai j represents the value of the jth attribute of the ith
instance, ā j and σ (a j ) represent the mean and standard devia-

tion of the observed values of the jth attribute in the reference

data set. And

ai j(trans) = ai j(temp){MAX[range(a j=1(temp)), . . . ,

range(a j=x(temp))]}/range(a j(temp)) (3.1.2)

where a j(temp) represents the data of the jth attributes normal-

ized using formula (3.1.1); and ai j(trans) represents the final

transformed value of the jth attribute of the ith instance that

is to be used as an input.

3.2 Constructing a semi-parametric regression model

A general semi-parametric regression model is as follows.

Yi = X T
i β + g(Ti ) + εi (3.2.1)

where the Yi ’s are i.i.d (independent identically distributed)

scalar response variables, the Xi ’s are i.i.d d-dimensional

random covariate vectors, the Ti ’s are i.i.d d
∗
-dimensional

random covariate vectors, the function g(·) is unknown, and

the model error εi are i.i.d random errors with mean 0 and

unknown finite variance σ 2 (in our paper, we regard the un-

known finite variance as 1).

We consider the case where some Y values in a sample

size n may be missing, but X and T are observed completely.

That is, we obtain the following incompletely observations:

(Yi , δi , Xi , Ti ), i = 1, 2, . . . , n

from model (3.2.1). Where all the Xi ’s and Ti ’s are observed

and δi = 0 if Yi is missing and δi = 1 otherwise.

We assume that Y is missing at random (MAR). The MAR

assumption implies that δ and Y are conditionally indepen-

dent given X and T. That is,

P(δ = 1|Y, X, T ) = P(δ = 1|X, T )

In practice, the MAR assumption is usually justified in

the nature of experiments, especially when it is speculated

that missing Y mainly depends on X. The MAR has received

most attentions theoretically and practically as it describes

the natural practical case. MCAR is a stronger assumption

than MAR (i.e. MCAR is a special case of MAR). MCAR

implies that the probability of missing a value is the same for

all variables X and T.

Let r = ∑n
i=1 δi , m = n − r Denote the set of respon-

dents and non-respondents as Sr (all data are observed in

this sets) and Sm (there is missing in Y, but all data in X are

observed in Sm), respectively. Let K be a symmetric probabil-

ity density function and let h = hn be a bandwidth sequence

that decreases toward 0 as the sample size n increases toward

+∞. From (3.2.1), we have:

Yi − X T
i β = g(Ti ) + εi . i = 1, . . . , r (3.2.2)

Assuming β is known, we have a kernel estimator ĝ(t) for

g(t) based on the completely observed data:

ĝ(Ti ) =
∑n

j=1 δ j K
(

(Ti −Tj )

h

)
(Y j − X jβ)∑n

j=1 δ j K
(

(Ti −Tj )

h

)
+ n−2

. i = 1, . . . , r

(3.2.3)

where the term n−2 is introduced to avoid the case that the

denominator vanishes; K(·) is called kernel function. There

are some widely used kernel functions in semi-parametric

inference, i.e. the Gaussian kernel (standard normal density

function)

K (·) = 1√
2π

exp

(
− t2

2

)
, t ∼ N (1, 1)
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and a polynomial kernel

K (·) =

⎧⎪⎨⎪⎩
15

16
(1 − t2 + t4), |t | ≤ 1

0, otherwise

In practice, there is not any significant difference using

these kernel functions under the MAR and MCAR assump-

tions. In this paper, we use the polynomial kernel in our

experiments. We will discuss the choosing of bandwidth in

kernel method later in Section 3.4.

Using ĝ(Ti ) to replace g(Ti ) in (3.2.2), we obtain:

Yi − X T
i β ≈

∑n
j=1 δ j K

(
(Ti −Tj )

h

)
(Y j − X jβ)∑n

j=1 δ j K
(

(Ti −Tj )

h

)
+ n−2

, i ∈ sr .

(3.2.4)

Converting (3.2.4), we have

Zi ≈ U T
i β, i ∈ sr (3.2.5)

Where

Zi = Yi −
∑n

j=1 δ j Y j K
(

(Ti −Tj )

h

)
∑n

j=1 δ j K
(

(Ti −Tj )

h

)
+ n−2

,

(3.2.6)

Ui = Xi −
∑n

j=1 δ j X j K
(

(Ti −Tj )

h

)
∑n

j=1 δ j K
(

(Ti −Tj )

h

)
+ n−2

, i ∈ sr .

According to the theory of linear regression model, β is

estimated by (3.2.7):

β̂n =
(

n∑
i=1

δiUiU
T
i

)−1 (
n∑

i=1

δiUi Zi

)
. (3.2.7)

where n is the sample size.

Combining with (3.2.3), the final estimator for g(Ti ) is

given by

ĝn(Ti ) =
∑n

j=1 δ j K
(

(Ti −Tj )

h

)
(Y j − X j β̂n)∑n

j=1 δ j K
(

(Ti −Tj )

h

)
+ n−2

. (3.2.8)

3.3 Imputation missing values in Y

Let Y (D)
i and Y (R)

i , i ∈ sm be the imputed values for the

missing data based on deterministic and random semi-

parametric imputation methods, respectively. Deterministic

semi-parametric imputation [27] uses ĝn(Ti ) as the imputed

value, i.e.

Y (D)
i = X T

i β̂n + ĝn(Ti ), i ∈ sm

In this paper, we construct the random semi-parametric

regression imputation and regard Y (R)
i = X T

i β̂n + ĝn(Ti ) +
ε∗

i = Y (D)
i + ε∗

i (i ∈ sm) as the imputed values, which have

same convergence as the deterministic method, where {ε∗
i }

is randomly obtained from {Yi − X T
i β̂n − ĝn(Ti ), i ∈ sr}.

Denote YD,i = δi Yi + (1 − δi )Y
(D)
i , YR,i = δi Yi + (1 −

δi )Y
(R)
i , i = 1, . . . , n

which are ‘complete’ data based on the above imputations.

Then, we make inference for the response variable Y such

as RMSE (Root Mean Square Error), distribution function

(θ = F(y)) and quantile (θq ) after missing-data are imputed

to present our performance of our algorithm. Based on the

complete data after imputation, the standard estimators for

the parameters can be constructed as follows.

The standard estimators of θ = F(y) under random and

deterministic imputation are given respectively by

FR(y) = 1

n

n∑
i=1

I (YR,i ≤ y)

FD(y) = 1

n

n∑
i=1

I (YD,i ≤ y)

The standard estimators of θq = F−1(q) under random

and deterministic imputation are given respectively by

θ̂ (R)
q = infu{FR(u) ≥ q} = F−1

R (q)

θ̂ (D)
q = infu{FD(u) ≥ q} = F−1

D (q)

As well, we design the other experiment to evaluate the

performance of our algorithm, i.e. the accuracy of prediction

was measured using the Root Mean Square Error (RMSE) to

present the performance between our presented imputation

method and the existed methods, the RMSE is as follows:

RMSE =
√√√√ 1

m

m∑
i=1

(ei − ẽi )2. (3.3.1)

where ei is the original value; ẽi is the estimated value, and

m is the total number of predictions. The RMSE is more, the

least the prediction accuracy is.

3.4 Bandwidth choosing and algorithm analysis

Kernel method can be decomposed into two parts: one for the

calculation of the kernel and another for bandwidth choice.
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Silverman [25] stated that one important factor in reducing

the computer time is the choice of a kernel that can be cal-

culated very quickly. Having chosen a kernel that is efficient

to compute, one must then choose the bandwidth. Silverman

[25] pointed out that the choice of bandwidth is much more

important than the choice of kernel function.

Generally, a small value of bandwidth h can make the es-

timate look ‘wiggly’ and show spurious features, whereas a

big value of h will lead to an estimate that is too smooth, in the

sense, that it is too biased and may not reveal structural fea-

tures. There is no generally accepted method for choosing the

bandwidths. Methods currently available include ‘subjective

choice’ and automatic methods such as the “plug-in”, ‘cross-

validation’ (CV), and ‘penalizing function’ approaches. In

this paper, we use the method of cross-validation to mini-

mize the approximate mean integrated square error (AMISE)

of ĝ(Ti ) for a given sample of data.

Define the CV function as

CV =
n∑

i=1

(Yi − Xi β̂n − ĝ−i (Ti ))
2

where ĝ−i (Ti ) denotes the ‘leave-one-out’ kernel estimator

of g(Ti ), i. e.

ĝ−i (Ti ) =
∑

j �=i K
(

(Ti −Tj )

h

)
(Y j − X j β̂n)∑

j �=i K
(

(Ti −Tj )

h

)
+ n−2

While the complexity of the kernel method is O(mn2),

where n is the number of instances of the dataset, m is the

number of attributes, so the algorithm complexity of our

method is O(kmn2) (k is the number of missing values).

4 Experimental results

Our methodology consists of two phases: (1) filling up miss-

ing values in a dataset based on stochastic semi-parametric

regression imputation method in Section 3; (2) evaluating the

quality of the imputed datasets, where we compare the perfor-

mance of our stochastic semi-parametric regression imputa-

tion with the deterministic method in terms of the imputation

in Section 4.1, and present the performance of our algorithm

in real dataset in Section 4.2. We conduct our experiments

using a DELL Workstation PWS650 with 2G main memory,

2.6G CPU, and WINDOWS 2000.

4.1 Simulation model

We conducted a series of simulation studies on the finite

sample performance of the deterministic and random impu-

tations in distribution function θ = F(y) for fixed y, quan-

tile θq = F−1(q) and RMSE. The performance is measured

in terms of the mean squared errors (MSE) of estimators,

i.e. the average squared errors over repeated time of simula-

tions. For this purpose, we took K as the polynomial density

function.

According to (3.2.1), we used model:

β = 1.5,

and

g(t) = 3.2t2 − 1 if t ∈ [0, 1], g(t) = 0, otherwise.

We generated Xi s from the normal distribution N(1, 1)

and εi s from the standard normal distribution N(0, 1), and

the following two cases of response probabilities under the

MAR and MCAR assumptions from [26]:

Case 1 (MAR):

P1(x, t) = P(δ = 1|X = x) = 0.8 + 0.2(|x − 1 +
|t − 0.5|), if |x − 1| + |t − 0.5| ≤ 1, and =0.95,

elsewhere.

Case 2 (MCAR):

P(δ = 1|X = x, T = t) = 0.6, for all x and t.

For each of the two cases, we generated 1,000 (repeated

time) random samples of incomplete data {Xi , Yi , δi , i =
1, . . . , n} for n = 100 from the models and specified re-

sponse probability function.

Figure 1 presents the performance of two imputation

methods for MSE of distribution function with missing rate

5%, 10%, 20% and 40% under MCAR and Fig. 2 presents

the results under MAR. Figure 3 presents the performance of

two imputation methods for quantile with missing rate 5%,

10%, 20% and 40% under MCAR and Fig. 4 presents the

results under MAR. Stochastic refers to the stochastic semi-

parametric regression imputation method and deterministic

denotes the deterministic semi-parametric regression impu-

tation method from Figs. 1–4. Figure 5 presents the result

of RMSE for two imputation methods with missing rate 5%,

10%, 20%, and 40% under MCAR and Fig. 6 presents the

results under MAR

Figures 1–6 reveal the following facts:

1. About the performance of the distribution function,

stochastic semi-parametric regression imputation is uni-

formly better than the deterministic semi-parametric re-

gression imputation for various missing rate as shown in

Figs. 1 and 2 under the missing mechanism of MACR

or MAR; Stochastic imputation is almost uniformly bet-

ter than the deterministic imputation in making inference
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on the quantile of Y for different response rates as shown

in Figs. 3 and 4. Stochastic semi-parametric imputation

method is also significantly better than the deterministic

method about the accuracy of prediction from the perfor-

mance of RMSE.

2. Comparing to missing rate, we can see that the perfor-

mance is better when the response rate is higher about the

distribution function, quantile and RMSE.

4.2 Real dataset

We considered the real data set given in [9, 18]. The data give

the normal average January minimum temperature in degrees

Fahrenheit (Denoted as JanTemp) with the latitude (Lat) and

longitude (Long) of 56 U.S. cities. For each year from 1931

to 1960, the daily minimum temperatures in January were

added together and divided by 31. Then, the averages for

each year were averaged over the 30 years. The data set is

also available on:

http://lib.stat.cmu.edu/DASL/Datafiles/USTemperatures.

html.

We suppose the dependent variable (Y) is JanTemp and the

independent variable (X) is Lat. Our experiment present that

the value of significant probability of the correlation between
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the JanTemp and Lat is 0 in software SPSS, after removing

the effects of Lat, we get the value of significant probability

of the correlation between the JanTemp and Long is 0.861,

these result show there is an evidently linear relationship

between JanTemp and Lat, the linear relationship between

the JanTemp and Long is not clearly. To apply our method

to these real data, we denote the variables for JanTemp, Lat
and Long to be Y, X and T respectively. We suppose that Y,

X and T satisfy the semi-parametric model (3.2.1).

Note that the original data set given by Peixoto [18] is com-

plete. Inference on the distribution function of Y or quantile

of Y with the complete data set doesn’t depend on the model

assumption and covariables X and T (as the data for Y is

complete and the standard statistical procedures can by ap-

plied directly to make inference for the parameters of Y).

This just provides us a standard to compare our methods

with other methods to handle missing data. In this section,

we also compare our stochastic semi-parametric regression

imputation with the deterministic semi-parametric regression

imputation, the non-parametric kernel regression imputation

methods and linear regression methods.

We used all the 56 data and random deleted 6, 14 or

23 Y values (Missing Rate is almost 10%, 20% or 40%

respectively) and the repeated times are 1000. The dele-

tion mechanisms are designed to be MAR and MCAR same

as the Section 4.1. We make inference on the distribution

function θ = F(y) for fixed y, quantile θq = F−1(q) and

RMSE comparing our stochastic semi-parametric regression

imputation estimator with deterministic semi-parametric

regression imputation, non-parametric model and linear

model.

When making inference based on nonparametric kernel

regression imputation estimator, the kernel function K (t)
and the deletion mechanism were taken to the same as in

Section 4.1. For calculation of ĝn(X, T ) (which is the es-

timator of g(X, T ) in the nonparametric regression model

Y = g(X, T ) + ε) based on [34], it was taken to be

ĝn(X, T ) =
∑n

i=1 δi Yi K1

( X−Xi )
h

)
K2

( T −Ti
h

)∑n
i=1 δi K1

( X−Xi )
h

)
K2

( T −Ti
h

) + n−2

where K1(·), K2(·) are the same as K in the simulation

study, here the selection of bandwidth h is same as that in

Section 3.4.

Due to the evidently linear relationship between Jan-
Temp and Lat, we assume the linear multiple-regression

among JanTemp, Lat and Long, and then we construct

an experiment about multiple linear regression imputation

comparing with the non-parametric and semi-parametric

model.

Figure 7 present the performance of four imputation meth-

ods for distribution function with missing rates 10%, 20%

and 40% under MCAR, and Fig. 8 is under the missing

mechanism of MAR. Figures 9 present the performance

of four imputation methods for quantile with missing rates

10%, 20% and 40% under MCAR, and Fig. 10 is un-

der the missing mechanism of MAR. Figure 11 present

the performance of four imputation methods for RMSE

with missing rates 10%, 20% and 40% under MCAR,

and Fig. 12 is under the missing mechanism of MAR.

The ‘Semi4Sto’, ‘Semi4Deter’, ‘Non’, ‘Linear’ refer to

as the imputation method stochastic semi-parametric re-

gression imputation method, deterministic semi-parametric

regression imputation method, non-parametric regres-

sion imputation method and linear regression method

respectively.

Figures 7–12 reveal the following facts:

1. From Figs. 7–12, we can see that the performances of

two imputation methods based on semi-parametric mod-

els are similar with the simulations results shown before.

The stochastic imputation method is basically better than

the deterministic imputation method in making inference

on the distribution function, quantile and RMSE of the

response variable.

2. The performances based on the two semi-parametric mod-

els are significantly better than the nonparametric model

and linear model as there is some linear relation between

the covariates and the response variable because the semi-

parametric model is capable to take this information into

account.

3. Comparing to missing rate, we can see that the perfor-

mance of our stochastic semi-parametric regression im-

putation method is better when the response rate is higher

about the distribution function, quantile and RMSE under

the missing mechanism of MCAR or MAR, and the result

show the performance of the three methods besides our

stochastic semi-parametric imputation method fluctuate

when the missing rate is increase from Figs. 7–12, such

as, the linear model is worst.

4. We get the result from the performance that the best effi-

cient method is our stochastic semi-parametric regression

imputation method, then the better is deterministic and

non-parametric, and the worst is linear method based on

the real data. We also get a conclusion: we had better use

semi-parametric regression imputation method to patch

up the missing value when we have a little information

about the missing attribute variables and the observed at-

tributes variable, such as we know the linear relationship

between the dependent variable and one of the indepen-

dent variables.
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5 Conclusions and future work

In many practical situations, either parametric models, or

non-parametric models are not capable enough to capture

the underlying relation between the response variable and

its associated covariates when we have a little priori knowl-

edge about the real dataset. In this case, we have argued to

use a semi-parametric model when having priori knowledge

during handling with missing values. In this semi-parametric

regression setting, we have shown that the stochastic/random

regression imputation works well in making inference on all

the response variables. It has also illustrated that the deter-

ministic regression imputation is not well for the distribu-

tion function, quantiles of Y and RMSE than the stochastic

method. That is, when we need to make inference on the dis-

tribution function, quantiles of Y or RMSE, we recommend

users to use random imputation.
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