SEMI-PRECONVEX SETS ON PRECONVEXITY SPACES

Won Keun Min

ABSTRACT. In this paper, we introduce the concept of the semi-preconvex set on preconvexity spaces. We study some properties for the semi-preconvex set. Also we introduce the concepts of the sc-convex function and s^*c -convex function. Finally, we characterize sc-convex functions, s^* -convex functions and semi-preconvex sets by using the co-convexity hull and the convexity hull.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set P(X) of a set X and investigated some properties. He showed that a preconvexity on a set yields a convexity space in the same manner as a proximity [4] yields a topological space. The author introduced the concepts of the co-convexity hull and co-convex sets on preconvexity spaces in [3]. In particular, we showed that the complement of a co-convex set is a convex set and the union of co-convex sets is a co-convex set. And we characterized c-convex functions and c-concave functions by using the co-convexity hull and the convexity hull.

In this paper, we introduce the semi-preconvex set defined by the co-convexity hull on a preconvexity space and study some basic properties. And we introduce the concepts of sc-convex functions and s^*c -convex functions which are defined by the semi-preconvex sets. In particular, the sc-convex function is a generalized c-convex function.

Finally, some properties of sc-convex functions, s^*c -convex functions and semi-preconvex sets are discussed.

Received August 4, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 52A01.

Key words and phrases. preconvexity, co-convex sets, convexity, s^*c -convex function, sc-convex function, cosemi-preconvex sets, semi-preconvex sets.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty set. A binary relation σ on P(X) is called a preconvexity on X if the relation satisfies the following properties; we write $x\sigma A$ for $\{x\}\sigma A$:

- (1) If $A \subset B$, then $A \sigma B$.
- (2) If $A \sigma B$ and $B = \emptyset$, then $A = \emptyset$.
- (3) If $A\sigma B$ and $b\sigma C$ for all $b \in B$, then $A\sigma C$.
- (4) If $A \sigma B$ and $x \in A$, then $x \sigma B$.

The pair (X, σ) is called a preconvexity space. Let (X, σ) be a preconvexity space and $A \subset X$. $G(A) = \{x \in X : x\sigma A\}$ is called the convexity hull of a subset A. A is called convex [1] if G(A) = A.

 $I_{\sigma}(A) = \{x \in A : x \not \sigma(X - A)\}$ (simply, I(A)) is called the co-convexity hull [3] of a subset A. And A is called a co-convex set if I(A) = A [3]. Let $\mathcal{I}(X) = \{A \subset X : I(A) = A\}$ and $\mathcal{G}(X) = \{A \subset X : G(A) = A\}$.

Theorem 2.2 ([3]). Let (X, σ) be a preconvexity space and $A \subset X$. Then

- (1) I(A) = X G(X A).
- (2) G(A) = X I(X A).

Theorem 2.3 ([1], [3]). For a preconvexity space (X, σ) ,

- (1) $G(\emptyset) = \emptyset$, I(X) = X.
- (2) $A \subset G(A)$, $I(A) \subset A$ for all $A \subset X$.
- (3) If $A \subset B$, then $G(A) \subset G(B)$, $I(A) \subset I(B)$.
- (4) $G(G(A)) = G(A), I(I(A)) = I(A) \text{ for } A \subset X.$

Theorem 2.4 ([1], [3]). Let σ be a preconvexity on X and $A, B \subset X$. Then

- (1) $A \sigma B$ if and only if $A \subset G(B)$ if and only if $I(X B) \subset X A$.
- (2) $A \sigma B$ if and only if $G(A) \sigma G(B)$ if and only if $I(X B) \sigma I(X A)$.

We recall that the notions of c-convex function and c-concave function: Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be c-concave [2] if for $C, D \subset Y$ whenever $C\mu D$, $f^{-1}(C)\sigma f^{-1}(D)$. A function $f: X \to Y$ is said to be c-convex [1] if $A\sigma B$ implies $f(A)\mu f(B)$. And f is c-convex if and only if for each $U \in \mathcal{I}(Y)$, $f^{-1}(U) \in \mathcal{I}(X)$ [3].

3. Semi-preconvex sets

Definition 3.1. Let (X, σ) be a preconvexity space and $A \subset X$. A is called a semi-preconvex set if $A\sigma I(A)$. And A is called a cosemi-preconvex set if the complement of A is a semi-preconvex set.

Let $S_{\sigma}(X)$ (resp., $SC_{\sigma}(X)$) denote the set of all semi-preconvex sets (resp., cosemi-preconvex sets) in a preconvexity space (X, σ) .

From Theorem 2.2 and Theorem 2.4, we get the following theorem.

Theorem 3.2. Let (X, σ) be a preconvexity space and $A \subset X$. Then

- (1) A is a semi-preconvex set if and only if $A \subset G(I(A))$.
- (2) A is a cosemi-preconvex set if and only if $I(G(A)) \subset A$.

Theorem 3.3. Every co-convex set is a semi-preconvex set in a preconvexity space (X, σ) .

Proof. Let A be a co-convex set; then by the concept of co-convex sets, A = I(A). By Definition 2.1, $A\sigma I(A)$.

Theorem 3.4. Every convex set is a cosemi-preconvex set in a preconvexity space (X, σ) .

Proof. Let A be a convex set; then G(A) = A. Thus $IG(A) \subset G(A) = A$. \square

Theorem 3.5. In a preconvexity space (X, σ) , X and \emptyset are both semi-preconvex sets and cosemi-preconvex sets.

Proof. Since X and \emptyset are both co-convex sets and convex sets, we get the result.

Theorem 3.6. In a preconvexity space (X, σ) , the arbitrary union of semi-preconvex sets is a semi-preconvex set.

Proof. Let $\mathbf{A} = \{A_{\alpha} : A_{\alpha} \text{ is a semi-preconvex set}\} \subset \mathbf{S}_{\sigma}(\mathbf{X})$. We show that $\cup \mathbf{A}\sigma I(\cup \mathbf{A})$. For Definition 2.1(3), let $x \in \cup \mathbf{A}$; then there exists a semi-preconvex set A_{α} containing x. Since $A_{\alpha}\sigma I(A_{\alpha})$, from Definition 2.1(4), it follows $x\sigma I(A_{\alpha})$. Since $A_{\alpha} \subset \cup \mathbf{A}$, $I(A_{\alpha}) \subset I(\cup \mathbf{A})$ and the transitive property gives $x\sigma I(\cup \mathbf{A})$. Finally, we get $\cup \mathbf{A}\sigma I(\cup \mathbf{A})$ by Definition 2.1(3).

Theorem 3.7. In a preconvexity space (X, σ) , the arbitrary intersection of cosemi-preconvex sets is a cosemi-preconvex set.

Proof. See Theorem 3.6.

Definition 3.8. Let (X, σ) be a preconvexity space and $A \subset X$.

- (1) $SG(A) = \bigcap \{F : A \subset F, F^c \in S_{\sigma}(X)\}.$
- (2) $SI(A) = \bigcup \{U : U \subset A, U \in S_{\sigma}(X)\}.$

From Theorem 3.3, Theorem 3.6, Theorem 3.7, and Definition 3.8, we get the following theorem:

Theorem 3.9. Let (X, σ) be a preconvexity space and $A, B \subset X$.

- (1) $I(A) \subset SI(A) \subset A$.
- (2) $A \subset SG(A) \subset G(A)$.
- (3) A is semi-preconvex if and only if A = SI(X).
- (4) A is cosemi-preconvex if and only if A = SC(X).

Theorem 3.10. Let (X, σ) be a preconvexity space and $A, B \subset X$.

- (1) SI(X) = X.
- (2) $SI(A) \subset A$.

- (3) If $A \subset B$, then $SI(A) \subset SI(B)$.
- (4) SI(SI(A)) = SI(A).

Proof. (1), (2) and (3) are obvious.

(4) Since $SI(A) \subset A$, $SI(SI(A)) \subset SI(A)$ by (3).

For the converse, let $x \in SI(A)$; then since $x \in SI(A) \subset SI(A)$ and SI(A) is a semi-preconvex set, by Definition 3.8(2), we get $x \in SI(SI(A))$.

From Theorem 3.5, Theorem 3.7, Definition 3.8, and Theorem 3.9, we have the following theorem:

Theorem 3.11. Let (X, σ) be a preconvexity space and $A, B \subseteq X$.

- (1) $SG(\emptyset) = \emptyset$.
- (2) $A \subset SG(A)$.
- (3) If $A \subset B$, then $SG(A) \subset SG(B)$.
- (4) SG(SG(A)) = SG(A).

4. sc-convex functions and s*c-convex functions

Definition 4.1. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be sc-convex if for each $A \in \mathcal{I}(Y)$, $f^{-1}(A) \in \mathcal{S}_{\sigma}(X)$.

Every c-convex function is sc-convex but the converse is not always true as the following example:

Example 4.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. Define $A\sigma B$ to mean $A \subset cl(B)$, the closure of B in X. Then σ is a preconvexity on X. In the preconvexity space (X, σ) , $\mathcal{G}(X) = \{\emptyset, X, \{b, c\}\}$, $\mathcal{I}(X) = \{\emptyset, X, \{a\}\}$ and $\mathcal{S}_{\sigma}(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\}$. Consider a function $f: (X, \sigma) \to (X, \sigma)$ defined as the following: f(a) = a, f(b) = a, f(c) = c. Then f is sc-convex but it is not c-convex because for the co-convex set $\{a\}$, $f^{-1}(\{a\}) = \{a, b\}$ is semi-preconvex but not co-convex.

Theorem 4.3. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then f is sc-convex if and only if for each

$$A \subset Y$$
, $f^{-1}(I_{\mu}(A))\sigma I_{\sigma}(f^{-1}(A))$.

Proof. Let f be sc-convex and $A \subset Y$; then since $I_{\mu}(A) \subset A$, by Theorem 2.3(3), we get $I_{\sigma}(f^{-1}(I_{\mu}(A))) \subset I_{\sigma}(f^{-1}(A))$. Since $I_{\mu}(A) \in \mathcal{I}(Y)$ and f is sc-convex, $f^{-1}(I_{\mu}(A))\sigma I_{\sigma}(f^{-1}(I_{\mu}(A)))$. The transitive property gives $f^{-1}(I_{\mu}(A))\sigma I_{\sigma}(f^{-1}(A))$.

For the converse, let $A \in \mathcal{I}(Y)$; then since $A = I_{\mu}(A)$,

$$f^{-1}(A) = f^{-1}(I_{\mu}(A))\sigma I_{\sigma}(f^{-1}(A)).$$

Thus $f^{-1}(A) \in \mathcal{S}_{\sigma}(X)$.

Theorem 4.4. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

- (1) f is sc-convex.
- (2) $f^{-1}(I_{\mu}(B)) \subset G_{\sigma}(I_{\sigma}(f^{-1}(B)))$ for all $B \subset Y$.
- (3) $I_{\sigma}(G_{\sigma}(f^{-1}(B))) \subset f^{-1}(G_{u}(B))$ for all $B \subset Y$.
- (4) $f(I_{\sigma}(G_{\sigma}(A))) \subset G_{\mu}(f(A))$ for all $A \subset X$.
- (5) For each $U \in \mathcal{G}(Y)$, $f^{-1}(U) \in \mathcal{S}C_{\sigma}(X)$.

Proof. (1) \Leftrightarrow (2) By Theorem 4.3 and Theorem 2.4, we get the result.

(2) \Leftrightarrow (3) Let $B \subset Y$; then $f^{-1}(I_{\mu}(Y - B)) \subset G_{\sigma}(I_{\sigma}(f^{-1}(Y - B)))$. By Theorem 2.2, we get $f^{-1}(I_{\mu}(Y - B)) = X - f^{-1}(G_{\mu}(B))$ and $G_{\sigma}(I_{\sigma}(f^{-1}(Y - B))) = X - I_{\sigma}(G_{\sigma}(f^{-1}(B)))$. Consequently, we get (3).

Similarly, we get the converse relation.

 $(3) \Leftrightarrow (4)$ Let $A \subset X$; then since $f(A) \subset Y$, (4) is obtained by (3).

The converse is obvious.

 $(5) \Leftrightarrow (1)$ It is obvious.

From Theorem 3.9 and Theorem 4.4, we get the following:

Corollary 4.5. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

- (1) f is sc-convex.
- (2) $f^{-1}(I_{\mu}(B)) \subset SI(f^{-1}(B))$ for all $B \subset Y$.
- (3) $SC(f^{-1}(B)) \subset f^{-1}(G_{\mu}(B))$ for all $B \subset Y$.
- (4) $f(SC(A)) \subset G_u(f(A))$ for all $A \subset X$.

Definition 4.6. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be s^*c -convex if for each $A \in \mathcal{S}_{\mu}(Y)$, $f^{-1}(A) \in \mathcal{S}_{\sigma}(X)$.

Every s^*c -convex function is sc-convex but the converse is not always true as the following example:

Example 4.7. In Example 4.2, consider a function $f:(X,\sigma)\to (X,\sigma)$ defined as the following: f(a)=c, f(b)=b, f(c)=c. Then f is sc-convex but it is not s^*c -convex because for a semi-preconvex set $\{a,b\}, f^{-1}(\{a,b\})=\{b\}$ is not semi-preconvex.

Theorem 4.8. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is s^*c -convex if and only if for $A \subset Y$ whenever $A\mu I_{\mu}(A)$, $f^{-1}(A)\sigma I_{\sigma}(f^{-1}(A))$.

Proof. From Theorem 3.2, it is obvious.

Theorem 4.9. Let a function $f: X \to Y$ be c-concave on two preconvexity spaces (X, σ) and (Y, μ) . Then if f is sc-convex, then it is s^*c -convex.

Proof. Suppose f is c-concave and sc-convex. Let $A \in \mathcal{S}_{\mu}(Y)$; then $A\mu I_{\mu}(A)$. By hypothesis and Theorem 4.3, $f^{-1}(A)\sigma f^{-1}(I_{\mu}(A))\sigma I_{\sigma}(f^{-1}(A))$. Thus from Theorem 4.8, f is s^*c -convex.

From Theorem 4.4 and Corollary 4.5, we get the following results:

Theorem 4.10. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

- (1) f is s^*c -convex
- (2) $f(SC(A)) \subset SC(f(A))$ for all $A \subset X$.
- (3) $SC(f^{-1}(B)) \subset f^{-1}(SC(B))$ for all $B \subset Y$.
- (4) $f^{-1}(SI(B)) \subset SI(f^{-1}(B))$ for all $B \subset Y$.
- (5) For each $U \in \mathcal{S}C_{\mu}(Y)$, $f^{-1}(U) \in \mathcal{S}C_{\sigma}(X)$.

We get the following implications:

$$c - \text{convex} \Rightarrow sc - \text{convex} \Leftarrow s^*c - \text{convex}$$

References

- [1] M. D. Guay, An introduction to preconvexity spaces, Acta Math. Hungar. 105 (2004), no. 3, 241-248.
- [2] W. K. Min, Some results on preconvexity spaces, Bull. Korean Math. Soc. **45** (2008), no. 1, 39–44.
- [3] _____, A note on preconvexity spaces, Honam Math. J. 29 (2007), no. 4, 589-595.
- [4] S. A. Naimpally and B. D. Warrack, *Proximity spaces*, Cambridge University Press (1970).

DEPARTMENT OF MATHEMATICS

KANGWON NATIONAL UNIVERSITY

CHUNCHEON 200-701, KOREA

E-mail address: wkmin@kangwon.ac.kr