SEMI-PRIMARY QF-3 RINGS
R.R. COLBY and EDGAR A. RUTTER, JR.

A ring R (with identity) is semi-primary if it contains a nilpotent ideal
N with R/N semi-simple with minimum condition. R is called a left QF-3
ring if it contains a faithful projective injective left ideal. If R 1s
semi-primary and left QF-3, then there is a faithful projective injective left
ideal of R which is a direct summand of every faithful left R-module [5],
in agreement with the definition of QF-3 algebra given by R.M. Thrall [6].
Let Q(M) denote the injective envelope of a (left) R-module M. We call R
left QF-3* if Q(R) is projective. J.P. Jans showed that among rings with
minimum condition on left ideals, the classes of QF-3 and QF-3* rings
coincide [5].

In this note we determine the class of semi-primary rings in which
the notions of QF-3 and QF-3" coincide. Next, we show that the
characterization of QF-3* rings given by Wu, Mochizuki, and Jans [7] for
rings with the property that direct products of projective modules are
projective, can be used to characterize semi-primary QF-3 rings. Finally,
we give some results relating the notions of torsionless and torsion-free
modules as defined by H. Bass [1] and A.W. Goldie [3]. In particular we
show that if R is semi-primary, these notions coincide if and only if R is
left QF-3 and has zero left singular ideal.

S. Eilenberg has given the following characterization of projective
modules for semi-primary rings [2].

ProrosttioN 1. If R is semi-primary and P is a projective R-module, then
P= @3 P. where each P, is isomorphic to an indecomposable direct summand of
zR.

ProrosiTioN 2. If R is semi-primary then R is left QF-3* if and only if
R is left QF-3 and the left socle of R is the direct sum of a finite number of simple
left ideals of R.
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Proof. If R is left QF-3*, then Q(R)= @ P. where each P, is an
indecomposable direct summand of R. Since the restriction of this
isomorphism to R is given by multiplication of an element of @ P,, the
image of R is contained in the sum of only finitely many summands.
Since R is essential in Q(R), the sum, @I P,, is a finite sum. Since each
P. is indecomposable and injective, the socle of each P, is simple so the
socle of R is the direct sum of a finite number of simple left ideals. Also,
if Py,---,Ps is one of each isomorphism class of the P, then P, @ - - -
@ P, is a faithful projective injective left ideal of R. Conversely, suppose
R is left QF-3 and the socle of R has the form S, ® ... ® S, with each
S, simple. Then Q(S,)® - -+ ®Q(S:) = Q(R). Let I be a faithful projective
injective left ideal of R.  For eachi, S; I+ (0) so S; is isomorphic to a
submodule of I.  Since I is injective, @Q(S,) 1is isomorphic to a direct
summand of I so is projective. Hence Q(R) is projective.

ExamprLe. Let D and D, be division rings and let M be a (D,D,)-
bimodule such that [M: D]= c. Let

d 0 0
2 d, 0
a m

M. Harada has shown that R is semi-primary and left @F-3 but is not right
QF-3 [4. One computes that the left socle of R consists of all elements

of the form
0 0 0
0 0 0
d’l m dl

and is an infinite direct sum of simple left ideals. Hence R is not left
QF-3*.

An R-module M is torsionless if for every x < M, there exists
f € Hom (M, R) such that f(z)#0 [1]. Denote the class of all torsionless
left R-modules by & and the class of all left R-modules M with
Hom x(M,R)=0 by €  Then & is closed under taking submodules and
direct products and ¢ is closed under taking factors, extensions by elements

d,d’,d" « D, me M, x € Hom ,(M, D)

of ¢, and direct sums. Also, any element of & is isomorphic to a
submodule of a direct product of copies of R.
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TueoreEM 1.  The following are equivalent:

1. 8 is closed under taking essential extensions.
2. a) R s closed under taking extensions by elements of R, and

b) < s closed under taking submodules.

Proof. Assume condition 1 and suppose that B is an extension of A
by C with 4,C & By 1, Q(4), Q(C) € & and since Q(A) is injective we
obtain the following commutative diagram with exact rows and columns:

0 0 0

l ! |

0—> A ————»/B——i——» C —0

[ P |

0—> Q(A) —> Q(A) ® Q(C) —> Q(C)—> 0,
where 2 is given by 2(b) = (#(b),n(b)). Since  is closed under taking direct
products and submodules, B e Q. Next suppose Ac B and 0+ f
€ Hom ,(A4,R). Form the following commutative diagram with exact rows:

0— A—> B

b

0—> R—> Q(R),
where f exists since Q(R) is injective. By 1, Q(R)€ ¢ and so Q(R) is a
submodule of a direct product of copies of R. Hence f+0 implies
Hom ,(B,R)#0. Conversely, assume condition 2, let A& &, and suppose
B is an essential extension of A. Let

K= n Ker f, and K’ = n Ker g.
f€Hom(B, R) geHom(K, R)

Then the sequence
0—> K/K'—> B/K' —> B/K—> 0,

is exact with K/K’, B/IK€ Q. By 2a, B/K’'e g It follows that K'= K
so Ke&. If K+ (0), then since A is essential in B, (0) s KN A & by
2b, contradicting @ N T = (0). Hence K= (0) and Be &

Wu, Mochizuki, and Jans [7] proved that for rings with the property
that direct products of projective modules are projective, R is left QF-3* if
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and only if condition 2 of Theorem 1 holds. In order to prove the
corresponding result for semi-primary rings, one must replace QF-3" by
QF-3.

THEOREM 2. Let R be a semi-primary ring. The following are equivalent:

1. 8 is closed under taking essential extensions.
2. R is left QF-3.
3. QR el

Proof. Assume condition 1 and let S be a simple left ideal of R.
Then Q(S)e & Let f e Hom ,(Q(S),R) with f(S)+0. Since Ker fNS=0
and S is essential in Q(S), Ker f = 0. Hence Q(S) is isomorphic to a direct
summand of R and so is projective. It follows that R is left QF-3 with
faithful projective injective left ideal Q(S,)® - - - @ Q(S,) where S,,---,S, is
one of each isomorphism class of simple left ideals of R. Next assume
that R is left QF-3.  The injective envelope of each simple left ideal of
R is projective and hence torsionless. Thus Q(R) is a submodule of a
direct product of torsionless modules so is torsionless. Finally, assume con-
dition 3 and let Ae @  There exists a monomorphism

k:A—> IIR.

If B is an essential extension of A, then B is isomorphic to a submodule
of MQ(R). Since L is closed under taking direct products and submodules,
Be &

If M is a left R-module, Z(M)=Z'(M)={xe M| Ixr=0 {for some
essential left ideal I of R} is the singular submodule of M. Inductively,
Z" (M) ={x € M| Iz c Z*(M) for some essential left ideal I of R}. For any
ring, 74M) = Z¥M) and if Z(R) =0, Z(M)= Z*(M) [3]. Clearly, Z*(M)=0
if and only if Z(M)=0. We define classes & and ¥, by & ={M| Z(M)
=0} and g, ={M|ZM)= M}. ¢, is closed under taking submodules,
direct products, extensions by elements of &, and essential extensions. ¥,
is closed under taking factors, submodules, and direct sums.

PropostTioN 3. If R is semi-primary then Me &, if and only-if the
socle of M is projective.

Proof. Let E denote the left socle of R. Then E is the unique
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minimal essential left ideal of R. Suppose M e & and let C be a simple
submodule of M.  Since EC<+0, there exists a simple left ideal Sc R
with SC#0. Then SC=C so S$*#0 and S=C. Hence S is a direct
summand of R and so is projective. Conversely, suppose the socle of M is
projective. If EC =0 for a simple submodule C of M, then C is not
isomorphic to a direct summand of R and is not projective. Hence EC + 0.
But if Z(M)+ 0, it contains a simple submodule. Thus Z(M) = 0.

CoROLLARY. If R is semi-primary and left QF-3, then & C & and T C I,.

Proof. If M e & then the socle of M is projective by Proposition 3 so
is in & Thus, by Theorem 2, Me & If Me g, then M/Z*(M)e &, c &
so, since ¥ is closed under taking homomorphic images and T N &= (0),
M= Z*}(M). Hence Me g,.

ProrosiTioN 4.  The jfollowing are equivalent.

1. Req.
2. Rcy.
3. g,

Proof. Condition 2 follows from 1 since &, is closed under taking direct
products and submodules and any torsionless R-module is a submodule of
a direct product of copies of R.  Assume condition 2, If Me g, then
since Re 8c g, Z2M)=ZM)=M. If fe Hom(MR) and x € M, let I
be an essential left ideal of R with Ix=0. Then If(z)= f(Iz)=0 so
since Z(R)=10, f(z)=0. Hence Me . Finally, if Z(R)#0 then
Z¥R)#0 and Z*R) € T, but Z*R) & T. Thus 3 implies 1.

THEOREM 3. Let R be a semi-primary ring. The following are equivalent:
1. R is left QF-3 and Z(R) = 0.

2. {=2g.
Ty,

®
Il

Proof. Condition 1 implies conditions 2 and 3 by the Corollary and
Proposition 4. Assume condition 2. Since &, is closed under taking
essential extensions and & =&, R is left QF-3 by Theorem 2 and Z(R)=0
by Proposition 4. Thus 2 implies 1. Assume condition 3. By Proposition
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4, Z(R)=0. Let S be a simple left ideal of R. Since Z(S)=0 and S is
essential in  Q(S), Z(Q(S))=0. Hence Hom z(Q(S),R)#0. Let 0+ fe
Hom ,(Q(S),R). If Ker f+ 0 then Ker f is essential in Q(S) so Q(S)/Ker f
€I, =3F. From this contradiction we conclude that f is a monomorphism
and Q(S) is torsionless. Hence Q(R) € & and R is left QF-3 by Theorem 2.
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