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1. Introduction. Mechanical approaches to the study of multiphase equilibria in
solids are most often based on the infinitesimal and finite theories of elasticity.1
However:

(i) The infinitesimal theory does not allow for finite transition strains between
phases, and cannot account for the large rotations that generally accompany twinning.

(ii) The finite theory accounts for both large strains and large rotations, but re-
quires a model strain-energy (density) to compute actual material behavior; because
of the difficulties inherent in the characterization of real materials at large strains
and rotations, the development of such models is in its infancy.

In this note we take a completely different approach. While we see the need to
allow for finite strains, we confront the difficulty of obtaining accurate models by
limiting our discussion to behavior in which the strain at any point lies close to a
value corresponding a local minimum of the strain energy, although different points
might correspond to different minima. Nothing is assumed regarding the size of the
rotation or the size of the transition strains between local minima.3

More precisely, we consider a strain energy W(E) with local minima at E = E
{q = 1,2, , Q), and approximate W(E) by a sum of quadratic wells centered at

4

£■= i(V« +V«T + V«TVii), (1.1)

the Eq ; here E is the finite strain measure4
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with u the displacement. Using this ansatz, we arrive at an "approximate" strain
energy

Q
w(e,x) = Y2x<,w<,W> t1-2)

q= I

with
Wq{E) = wq + \{E-E(i).kq[E-Eq), wq = W(Eq). (1.3)

Here:
(i) —a linear transformation from the space of symmetric tensors into itself—

is the second derivative of W(E) at E — Eq and can be determined knowing only
the elasticity tensor appropriate to infinitesimal deformations from a reference con-
figuration at strain Eq .

(ii) X = {Xi > I2' • • • ' Xq) is a Pure phase; that is, one of its entries has value 1,
while all of its other entries vanish. Let X = X(x) and E = E(x). Then, at points x
with xq(x) — 1 the strain energy W(E,%) reduces to the energy Wq(E) appropriate
to behavior near E ; in this sense, for Q. the region of space occupied by the body,

£29 = {*eO:x9(*) = l} (1.4)
represents the region occupied by phase q , with /q its characteristic function.

We limit our discussion to the formal deduction of appropriate variational prob-
lems for the characterization of equilibria; we do not attempt the corresponding
analysis. The simplest such problem is the semi-quadratic variational problem

minimize
ue^s,/e^

[ W(E, x)dv + 0(«), (1.5)
Jq

where is the set of coherent (continuous) displacement fields consistent with
the displacement boundary-conditions and a requirement of rank-one convexity of
the individual wells W{E) (cf. (4.11)), O(w) is the joint potential of the surface
tractions and body force, and Sf is the set of functions % on Q with %(x) a pure
phase at each x e Q..

We also give a generalization of (1.5) that includes interfacial energy, as well as a
regularization of (1.5) in which / is replaced by an order parameter (phase-field),
with surface energy modeled by a dependence of energy on V/ .

In an Appendix we give formal derivations of the Euler-Lagrange equations (bulk
equations and interface conditions) associated with the variational principles under
consideration.

2. General formulation.
a. Kinematics. Throughout this note Q is a body identified with the region of

space it occupies in a fixed reference configuration. A displacement of £2 is then a
vector field u on Q with deformation gradient

F = \ + Vh (2.1)

consistent with det F > 0. The polar decomposition

F = RU (2.2)
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allows a decomposition of F into a pure strain
U = {FTF)l/2, (2.3)

called the stretch, followed by a rotation R. Here we find it convenient to use, in
place of U, the Green strain

E = \(U2 - 1) = ±(fTF - 1) = i(Vw + V«T + V«TVw). (2.4)

When Vh is small, E is approximated by the infinitesimal strain tensor

^(V« + V«T) (2.5)
upon which the linear theory of elasticity is based; here we will not assume that V«
is small, only that E is close to a discrete set consisting of local minima of the strain
energy.

b. Strain energy. We consider an elastic material with strain energy W(E) a
function of E. Its derivative DW(E) with respect to E is then a symmetric tensor,
while its second derivative D2 W(E) is a linear transformation of symmetric tensors
V into symmetric tensors D~W{E)[V]. By (2.4), the (Piola-Kirchhoff) stress S,
which is the derivative of W(E) with respect to F, is given by

S{F) = FDW{E). (2.6)

We assume that W(E) has local minima E = Eq (q = 1, 2, ... , Q); then,
writing

A q:=D2W(Eq), (2.7)
we see that

DW(yEq) = 0, A is positive semi-definite. (2.8)
We will refer to q as the phase, even though some ^-values might correspond to
variants of a given phase.

c. Determining from the elasticity tensor Cq for infinitesimal deformations
from phase q . We write Uq for the stretch tensor corresponding to Eq :

Ec = l(Ul ~ !)■ (2-9)
Suppose that we deform the body from the reference configuration by first stretching
it with deformation gradient Uq and then stretching it again, from this deformed
configuration, with stretch G; the total deformation gradient F and stretch U are
then given by

F = GUq, u2 = uqcruq, (2.10)
and

cr = i + v# + vgT + vgTvg (2.ii)
with g the associated displacement.

The strain energy—as a function W {G) of the stretch G from phase q—is given
by _

Wq(G) = W(E), E={(Uq<?Uq-1). (2.12)
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In view of (2.8),
DWq{ 1) = 0, (2.13)

G=l + i(Vg + V^T) + 0(|V^|2), (2.14)
and, since

with Jf(Vg + VgT) the infinitesimal strain from phase q , the linear transformation

Cq:=D2Wq(l) (2.15)

of symmetric tensors into symmetric tensors represents the elasticity tensor for in-
finitesimal deformations from q . If we compute the second derivative of (2.12) with
respect to G at G = 1, by taking G = 1 + aB + ft H , with B and H symmetric
tensors, and then computing d'Wq{G)/dad p at a = ft = 0 , we find that

B ■ Cq[H) = (UqBUq) ■ Aq[UqHUq], (2.16)

and, since B and H are arbitrary

for all H , so that

[H] = Uqhq[UqHUq)Uq (2.17)

for all symmetric tensors M . If we denote the Cartesian components5 of , A(/,
and Vq by CiJk,, Aijkl, and Vk/, then

4jkM, = KMjCM/WsMrs (2-19)
for all symmetric M .

Thus A(/ can be determined knowing only Uq and the elasticity tensor £q for
infinitesimal deformations from phase q .

3. Variational characterization of equilibrium. Our discussion is completely formal:
we will not specify regularity hypotheses other than to note that the displacement is
required to be coherent (continuous and piecewise smooth).

We consider the equilibrium of Q under loading conditions for which the displace-
ment satisfies u = it on a portion S of dQ, and for which the surface tractions
on the remainder of dQ. and the body force b are derived from a potential O(a).
Writing

= {coherent u : u = ii on S, det(l + V») > 0 in Q}, (3.1)
we consider the exact variational problem

minimize/ W{E) dv + O(w). (3.2)
u& Jci

The requirement of coherency yields the standard compatibility condition

[F] = a®« (3.3)

5That is, e.g., T = Cq[M] if and only if Tt] = CijklMk[ (using the standard notation of Cartesian tensor
analysis with summation convention).
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across a surface S? of discontinuity, giving the jump in F in terms of the normal
» to y and a = [F]/i. (Our convention is that [F] is the limit from the region
into which n points minus that from the other region.) The Euler-Lagrange equa-
tions corresponding to the exact variational problem consist of the stress equation of
equilibrium

divS(F) + 6=0 (3.4)
on regions over which the displacement is smooth in conjunction with the jump
conditions

[S(F)i»] = 0, [1F(F)-S(F)-F] = 0 (3.5)
across surfaces of discontinuity (enforcing continuity of the surface traction S{F)n
and Eshelby traction (W(E) 1 - FJS{F))n).

4. Behavior near potential wells. The semi-quadratic variational problem. We
are interested in the behavior of W(E) near its local minima at E — Eq (q =
1,2, , Q). Choosing a particular phase q and expanding W{E) about E = Eq,
we find, using (2.7) and (2.8), that

W{E) = W(Eq) + i(E - Eq) ■ Aq[E - Eq\ + 0(\E - Eq\\ (4.1)

Therefore, to within terms of 0(|F- FJ3), the strain energy is approximated by the
quadratic form

Wq(E) = wQ + \(E - Eq) ■ Aq[E - Eq], wq = W(Eq), (4.2)l
2

which has associated with it the stress

Sq(F) = FDWq(E) = FAq[E-Eq\. (4.3)
We assume that A^, as a linear transformation of symmetric tensors into sym-

metric tensors, is positive definite. Even so, the nonlinear dependence of E on F
generally results in a loss of rank-one convexity for Wq(E) as a function of F. In
fact, a straightforward calculation shows that Wq(E) is strictly rank-one convex as a
function of F if and only if the inequality

(a <g> a) • Aq[E - Eq] + (a <g> Ub) • AJa <8> Ub] > 0 (4.4)
holds for all unit vectors a and b. We note that the set of symmetric tensors
satisfying (4.4) is open, and since kq is positive definite, this set contains Eq . When
A is isotropic with Lame modulus and shear modulus nq , the left-hand side of
(4.4) has a particularly simple form:

y tr(F - Eq) + (a ■ Ub)2} + 2nq{a ■ (E - Eq)a + \\Ub\~ + ±(«■ Ub)2}, (4.5)
so that (4.4) is satisfied provided

Xq\r(F - Eq) + \nq{a ■ (E - Eq)a + ±\Ub\2} > 0. (4.6)
If we denote the least eigenvalue of E-Eq by kq, and the smallest principal stretch
associated with U by h , then (4.6) holds whenever

Xqlr{E - Eq) + 2nqkq + nqh2 > 0. (4.7)
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By choosing a to coincide with the smallest principal stretch and b orthogonal to
Ua, we see that (4.7) is also necessary for (4.6).

We now consider a coherent displacement field and assume that, at any given x e
f2, E(x) is close to exactly one of the natural strains Eq (although the appropriate
natural strain may vary from point to point). Further, for each x , we let x(x) be
the pure phase (defined in Sec. 1) that has Xq(x) — ' when Eq is the appropriate
natural strain at x . Then, to within terms of order

0(pxq\E-Eqfj , (4.8)

we can approximate the strain energy by
Q

W{E,X) = Y.XqWq{E), (4.9)
9=1

with
Q

S(F,x) = J2xqSq(F) (4.10)
<7=1

the corresponding stress. Further, to ensure rank-one convexity we restrict attention
to displacement fields belonging to the set

= {u e %\ at each x e Q, E(x) satisfies (4.4) for some q }. (4.11)

Letting 3? denote the set of sufficiently regular functions x with X(x) a Pure
phase at each x, we are led to the semi-quadratic variational problem:

minimize / W(E, /) dv + O(a). (4.12)
u&s,xe£" Jq

The Euler-Lagrange equations for (4.12) are (3.4)-(3.5) with W(E) and S(F) re-
placed by W{E,x) and S{F, x) ■

Remarks. 1. If, for a solution (a, /) of this problem, the strain E takes on
values corresponding only to the minima Eq of the strain energy, then u will also
be a solution of the exact variational problem (3.2). The extent to which the semi-
quadratic problem approximates the exact problem is an interesting open question.

2. As shown in Sec. 2c, Aq can be determined knowing only Uq and the elasticity
tensor for infinitesimal deformations from phase q. Since is known for a
large class of materials, the strain energy W(E, x) is, in principle, not difficult to
determine.

3. In the variational problem (4.12) the underlying restriction,

|£(x) - Eq\ is small when xq(x) = 1, (4.13)
is to be verified a posteriori. This variational problem is, however, meaningful ir-
respective of (4.13) and might play a role in the study of phase transitions similar
to that played by the linear theory of elasticity in more classical settings. (With
proper interpretation, linear elasticity is successfully used to study phenomena such
as fracture, even though it yields infinite strain at the tip of a sharp crack.)
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Surface energy for interfaces between phases can be defined formally through the
measure

Q
r(V*) = i £ %{|V^| + |V^|-|V(^ + ^)|}, (4.14)

Q,P= 1

where a = apq are constants with aqp > 0 if q ± p and o = 0; a represents
the surface energy (per unit area) of the interface ,9yqp between phases q and p.
r(Vjf) vanishes away from such interfaces, while r(Vjf) = o \Vxq\ on 5^qp (since
lq + Xp is continuous across S?qp and \VxQ\ = \Vxp\ on S"9p).

The semi-quadratic variational problem with interfacial energy takes the form:

minimize/" {W(E, x) + T(V/)} dv + <X>(«). (4.15)

The formal Euler-Lagrange equations corresponding to this variational problem
consist of the stress equation of equilibrium (3.4) with S(F) replaced by S{F, /)
in each of the phase regions Qq in conjunction with jump conditions

[S(F,X)a] = 0, [W(E,x)-S(F,x)-F] = -2cjqpK (4.16)

across each interface S?qp , with n the unit normal to dQ.q and K twice the mean
curvature of S^qp (taken as positive whenever the osculating sphere lies in . An
additional interface condition is supplied by the coherency relation (3.3).

5. Regularized theory. We now consider a regularized theory in which the xq act
as phase fractions and interfaces are identified with thin transition zones throughout
which x exhibits large gradients.

More precisely, we no longer require that x be a pure phase, but instead allow /
to take on any value in M(' consistent with the constraints

Q
= Xq € [0, 1] for each q. (5.1)

<7=1

We retain the definitions (4.9) and (4.10) for the strain energy W(E, x) and stress
S(F, x), so that, by (5.1), xq maY be interpreted as the volume fraction of phase
q-

Recognizing that in the current context each well of the potential is generally
operative at each point in Q, we restrict attention to displacement fields that belong
to

%r - {u e at each x e E(x) satisfies (4.4) for all q). (5.2)

We assume that this set is not empty. In the case of Q isotropic phases the require-
ment that be nonempty is

" Eq) + 2^kpi + > 0 (5-3)

for all p and q, where kpq denotes the minimum eigenvalue of Ep - Eq , and hp
is the minimum eigenvalue of U .
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At equilibrium we want x to be near the set of pure phases; with this in mind,
we introduce on

^ = satisfies the constraints (5.1)} (5.4)

an exchange energy /(/) with

fix)
Because of (5.1),

/Of) > 0 for %^x(i,q = l,2,...,q-, /(*,) = 0. (5.5)

Q
EV^ = °- (5-6)
<7=1

Taking this into account, we model interfacial energy using a gradient energy,

Q
*(v*) = i £ <">

i .p= i
where Xqp = A are constants, where

Q
E^ = 0' (5-8)
S=1

and where the matrix with entries A is positive definite on the subspace of vectors
in Ry whose entries sum to zero.

Let 8? denote the set of all sufficiently regular functions x '■ ̂ —> & ■ The regu-
larized variational problem then has the form

minimize
u€.Wr,

[ {W{E, x) + f(x) + g(V/)}dv +<fr(u). (5.9)
J n

The Euler-Lagrange equations corresponding to (5.9) consist of a stress equation of
equilibrium

di\S{F, x) + b = 0 (5.10)
in conjunction with an equation

Q
EV% + 7C« = 0 (5-u)
p= l

for each phase q = 1,2, , Q, where
Q

nq = ~dxf(X) - Wq{E) + (1 /Q) J2 Wp(E), (5.12)
p=\

and where d f represents the " ^-component" of the gradient of / on the hyper-
A q

plane defined by the first of (5.1), so that
Q

£\/U) = °. (5.13)
<7=1 "
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To qualify as a regularization of (4.12) the total energy should be dominated by
contributions from the strain energy in regions of pure phase and by the exchange
and gradient energies between such regions. To achieve this the different terms of the
energy must scale appropriately. Specifically, suppose Q contains a single interface
of dimensionless thickness e that separates two phases. Let / be a characteristic
length associated with Q, and let n, v, and k denote scale factors for W, f,
and g, respectively. Provided these obey n/v = 0(e) and A/(W2) = 0(e2), an
argument used in [35] can be adapted to show that the Euler-Lagrange equations of
(5.9) tend formally, as e —> 0, to those of (4.12). This argument yields, furthermore,
a relationship between the coefficient apq used in the sharp interface theory, and the
exchange and gradient energy terms used in the regularized theory.

The problem (5.9) has a simple generalization: in place of W{E, x) + f(x) +
g(V%) we consider an energy W(E, x, V/), that need not be semi-quadratic, in
conjunction with the problem:

minimize / W(E, x , V/) dv + O(u), (5.14)
u&.xeir J a

where % is an appropriate open subset of %. Let pq = and

S = FdEW(E,X, V*),
ni = ~dx,W(E> *' V*)' (5.15)
4q=dpW(E,X,VX),

where d W is the " ^-component" of the partial gradient with respect to / of Wq
on the hyperplane 9°, while d W is defined similarly (with (5.6) as the relevant
constraint), so that the sums over q of nq and of Zq each vanish. We are then led
to the more general Euler-Lagrange equations

div aS1 + A = 0, div^ + nq = 0. (5.16)

Note that
Q

X](div^ + nq) — 0, (5.17)
4=1

so that only Q- 1 of the balances (5.16)^, are independent.

Acknowledgment. This work was supported by the National Science Foundation
and by the Army Research Office.

Appendix. Formal derivation of the Euler-Lagrange equations. For convenience, we
assume that the body force b vanishes, so that the potential <t>(«) depends at most
on the restriction of u to dQ.

a. The exact variational problem (3.2). Let u be a solution and restrict attention
to a sufficiently small closed ball B c (interior Q) such that the surface 5? across
which F jumps divides B into disjoint regions 5, and B,, with unit normal n to
S" outward from 5, . For all sufficiently small t, let u(t) e % with «(0) = u and
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u(t) - u compactly supported in B, and assume that, in B, u(t) jumps across a
surface ^{t) C B that depends smoothly on t, has J^(0) = 5? C\ B, and has unit
normal n(t) with n(0) = n . Let

W{t)=W(E{t)), S(t)=S(F(t)), (Al)

with E(t) and F(t) the strain and deformation gradient corresponding to u(t).
Then

T(t) := ( / W{t)dv\ satisfies 3^(0) = 0, (A2)

where the superscript dot denotes the derivative with respect to t. Let <5?'(/) denote
the normal velocity of S?(t) (t considered as time). Then

•V = - [ [W]P'da + [ S-F'dv+f S-Fdv (A3)
J.P J Bl Jb2

(5,(0 and B2(t) have obvious meanings), and integrating the second and third
terms by parts yields

= _ [ {[W]P'+{S)h-[u]+[S]h-{u')}da-( diwS-u dv-( di\S-u'dv, (A4)
J,9 Jb, Jb2

where (g) denotes the average of the limiting values of g on either side of 5?.
Thus, using the compatibility condition

[«'] = -J?'[F]n (A5)

and the fact that the "variations" u and 5?' are arbitrary, we find—upon setting
T{Q) = 0—(3.4) with 6 = 0, (3.5),, and

\W(E)-S{F)h-Fh\ = 0\ (A6)

but (3.3) and (3.5), yield S(F)n • Fn = S(F) • F , and (3.5)2 follows.
b. The semi-quadratic variational problems (4.12), (4.15). We will establish only

(4.15); (4.12) follows upon formally setting the a's equal to zero.
Let («, /) be a solution of (4.15). Let B c (interior Q) be a sufficiently small

closed ball such that B intersects (only) D.q and , with 5? = c B the
corresponding interface. For all sufficiently small t, let u(t) e % and /(?) e 3?
satisfy «(0) = u and x(0) = x , and suppose that u(t)-u and x(t)~X are compactly
supported in B . Then, using notation analogous to that of the last section,

3^(0 := lJ(W{t) + T(Vx(t)))dv J satisfies 2^(0) = 0. (A7)
Further,

{fr(VX)dv} = %{area (^)i' = ~2aqp j^-^'da, (A8)

so that steps analogous to (A3)-(A6) yield (4.16).
c. The regularized variational problems (5.9), (5.14). We will establish (5.14);

(5.9) is a special case. Let (u, x) be a solution of (5.13). For all sufficiently small
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t, let u(t) e ^ and %(t) e 8? satisfy «(0) = u and 2(0) = and suppose that
u(t)-u and x(t)~x are compactly supported in fi. Then, using notation analogous
to that of the preceding subsections,

-/„{<I \S-F + • iyXq) - nq{Xq)) \ dv, (A9)
q= 1

and integrating S • F and £(/ ■ {VXQ) by parts, we find that

^(0) = £|div5.«'(0)-^(div^ + 7r9)(^)'(0)| dv. (A10)

But 2^(0) = 0. Thus, since w'(0) is arbitrary, while (/ )'(0) must sum to zero, but
is otherwise arbitrary, (5.16) follows.
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