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(Received August 19, 2002, revised August 4, 2003)

Abstract. We classify semi-Riemannian submersions with connected totally geodesic
fibres from a real pseudo-hyperbolic space onto a semi-Riemannian manifold under the as-
sumption that the dimension of the fibres is less than or equal to three. Also, we obtain the
classification of semi-Riemannian submersions with connected complex totally geodesic fi-
bres from a complex pseudo-hyperbolic space onto a semi-Riemannian manifold under the
assumption that the dimension of the fibres is less than or equal to two. We prove that there
are no semi-Riemannian submersions with connected quaternionic fibres from a quaternionic
pseudo-hyperbolic space onto a Riemannian manifold.

1. Introduction and main results. Riemannian submersions, introduced by O’Neill
[One1] and Gray [Gra], have been used by many authors to construct specific Riemannian
metrics. A systematic exposition can be found in Besse’s book [Bes]. In this paper, we obtain
classification results for semi-Riemannian submersions with totally geodesic fibres.

We first recall briefly some related work on the classification problem of semi-Rieman-
nian submersions. Escobales [Esc1, Esc2] and Ranjan [Ran1] classified Riemannian submer-
sions with connected totally geodesic fibres from an n-sphere Sn, and with connected com-
plex totally geodesic fibres from a complex projective n-space CP n, respectively. Ucci [Ucc]
showed that there are no Riemannian submersions with fibres CP 3 from the complex projec-
tive space CP 7 onto S8(4), and with fibres HP 1 from the quaternionic projective space HP 3

onto S8(4). In [Ran2], Ranjan obtained a classification theorem for Riemannian submersions
with connected totally geodesic fibres from a compact simple Lie group. Gromoll and Grove
obtained in [G-G1] that, up to equivalence, the only Riemannian submersions of spheres (with
connected fibres) are the Hopf fibrations, except possibly for fibrations of the 15-sphere by
homotopy 7-spheres. This classification was invoked in the proof of the Diameter Rigidity
Theorem (see [G-G2]) and of the Radius Rigidity Theorem (see [Wil]). Using an approach
different from Gromoll and Grove [G-G1], Wilking [Wilk] proved that a Riemannian sub-
mersion π : Sm → Bb is metrically equivalent to the Hopf fibration for (m, b) = (15, 8)

and obtained an improved version of the Diameter Rigidity Theorem as a consequence of his
classification theorem.
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In comparison, there are few classification results for semi-Riemannian submersions, and
the consequences seem to be at least as important as those for Riemannian submersions. In
[Mag], Magid proved that the only semi-Riemannian submersions with totally geodesic fibres
from an anti-de Sitter space onto a Riemannian manifold are the canonical semi-Riemannian
submersions H 2m+1

1 → CHm. In [Ba-Ia], the present author and Stere Ianuş classified semi-
Riemannian submersions with connected totally geodesic fibres from a pseudo-hyperbolic
space onto a Riemannian manifold, and with connected complex totally geodesic fibres from
a complex pseudo-hyperbolic space onto a Riemannian manifold.

The aim of this work is to prove new classification results in the theory of semi-Rieman-
nian submersions analogous to those in Riemannian geometry. It is my pleasure to thank
Professor Stere Ianuş for useful discussions on this subject.

Now, we list the main results proved in this paper.

THEOREM 1.1. Let π : H n+r
s+r ′ → Bn

s be a semi-Riemannian submersion with con-

nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-

fold. If the dimension of the fibres is less than or equal to 3, then π is equivalent to one of the

following canonical semi-Riemannian submersions:

(a) H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m.

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

THEOREM 1.2. Let π : H n+r
s+r ′ → Bn

s be a semi-Riemannian submersion with con-

nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-

fold. Assume that one of the following conditions is satisfied :

(A) B is an isotropic semi-Riemannian manifold, which means that for any x ∈ Bn
s

and any real number t, the group of isometries I(Bn
s , g ′) preserving x acts transitively on the

set of all nonzero tangent vectors X at x for which g
′(X,X) = t, or

(B) index(B) ∈ {0, dim B}.

Then π is equivalent to one of the following canonical semi-Riemannian submersions :

(a) H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m.

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

(c) H 15
7+8t → H 8

8t(−4), t ∈ {0, 1}.

THEOREM 1.3. Let π : CH n
s → B be a semi-Riemannian submersion from a com-

plex pseudo-hyperbolic space onto a semi-Riemannian manifold. Assume that the fibres are

connected complex totally geodesic submanifolds, and one of the following conditions is sat-

isfied :

(A) The real dimension of the fibres is r ≤ 2, or

(B) B is an isotropic semi-Riemannian manifold, or

(C) index(B) ∈ {0, dim B}.

Then π is equivalent to the canonical semi-Riemannian submersion

CH 2m+1
2t+1 → HHm

t , 0 ≤ t ≤ m.
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THEOREM 1.4. There exist no semi-Riemannian submersions π : HH n
s → B with

connected quaternionic fibres from a quaternionic pseudo-hyperbolic space onto an isotropic

semi-Riemannian manifold or onto a semi-Riemannian manifold of index(B) ∈ {0, dim(B)}.

2. Preliminaries and examples. In this section we recall several notions and results
which will be needed throughout the paper. We also exhibit the construction of canonical
semi-Riemannian submersions.

DEFINITION 2.1. Let (M, g) be an (n + r)-dimensional connected semi-Riemannian
manifold of index s + r ′, and (B, g ′) an n-dimensional connected semi-Riemannian manifold
of index s, where 0 ≤ s ≤ n, 0 ≤ r ′ ≤ r . A semi-Riemannian submersion (see [One2]) is a
smooth map π : M → B which is surjective and satisfies the following axioms:

(a) π∗|p is surjective for all p ∈ M;
(b) the fibres π−1(b) , b ∈ B, are semi-Riemannian submanifolds of M;
(c) π∗ preserves scalar products of vectors normal to fibres.

We shall always assume that the fibres are connected, the dimension of the fibres dim M−

dim B > 0 and dim B > 0. The vectors tangent to fibres are called vertical and those normal
to fibres are called horizontal. We denote by V the vertical distribution and by H the horizontal
distribution.

The geometry of semi-Riemannian submersions is characterized by O’Neill’s tensors T ,

A (see [One1], [One2]) defined for vector fields E, F on M by

AEF = h∇hEvF + v∇hEhF ,

TEF = h∇vEvF + v∇vEhF ,

where ∇ is the Levi-Civita connection of g, and v and h denote the orthogonal projections on
V and H, respectively. For basic properties of O’Neill’s tensors see [One1], [One2], [Bes] or
[Ian].

DEFINITION 2.2. (i) A vector field X on M is said to be basic if X is horizontal and
π-related to a vector field X′ on B.

(ii) A vector field X along the fibre π−1(x), x ∈ M, is said to be basic along π−1(x)

if X is horizontal and π∗pX(p) = π∗qX(q) for every p, q ∈ π−1(x).

We notice that each vector field X′ on B has a unique horizontal lift X to M which
is basic. For a vertical vector field V and a basic vector field X we have h∇V X = AXV

(see [One1]). We denote by R, R′ and R̂ the Riemann curvature tensors of M, B and of
the fibre π−1(x), x ∈ M, respectively. We choose the convention for the curvature tensor
R(E,F) = ∇E∇F − ∇F ∇E − ∇[E,F ]. The Riemann curvature tensor is defined by

R(E,F,G,H) = g(R(G,H)F,E) .

For O’Neill’s equations of a semi-Riemannian submersion we refer to [One1] or [Bes].
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DEFINITION 2.3. Two semi-Riemannian submersions π, π ′ : (M, g) → (B, g ′) are
said to be equivalent if there exists an isometry f of M which induces an isometry f̃ of B so
that π ′ ◦ f = f̃ ◦ π . The pair (f, f̃ ) is called a bundle isometry.

We shall need the following theorem, which is the semi-Riemannian version of Theorem
2.2 in [Esc1].

THEOREM 2.4. Let π1, π2 : M → B be semi-Riemannian submersions from a com-

plete connected semi-Riemannian manifold M onto a semi-Riemannian manifold B. Assume

that the fibres of these submersions are connected and totally geodesic. Let f be an isometry

of M satisfying the following properties at a given point p ∈ M :

(1) f∗p : TpM → Tf (p)M maps H1p onto H2f (p), where Hi denote the horizontal

distributions of πi for i ∈ {1, 2}.

(2) f∗A1EF = A2f∗Ef∗F for every E, F ∈ TpM, where Ai are the integrability

tensors associated with πi .

Then f induces an isometry f̃ of B so that the pair (f, f̃ ) is a bundle isometry between π1

and π2. In particular, π1 and π2 are equivalent.

Escobales’s proof of Theorem 2.2 in [Esc1], also works in this semi-Riemannian case.
He proves that for any b ∈ B which can be joined with π1(p) by a geodesic we have:

(i) for every x ∈ π−1
1 (b), f∗x : TxM → Tf (x)M maps H1x onto H2f (x), and

(ii) f maps the fibre π−1
1 (b) into the fibre π−1

2 (π2(f (x))) with x ∈ π−1
1 (b).

We notice that for any x ∈ π−1
1 (b) with b ∈ B, which can be joined with π1(p) by a geodesic,

the conditions (1) and (2) are also satisfied for the point x. Since M is connected, B is also
connected. Therefore, any point b ∈ B can be joined with π1(p) by a broken geodesic.
Repeating the argument above, for any corner point of this broken geodesic, we see that for
any b ∈ B, f maps the fibre π−1

1 (b) into a fibre.

DEFINITION 2.5. Let 〈·, ·〉 be the symmetric bilinear form on R
m+1 given by

〈x, y〉 = −

s
∑

i=0

xiyi +

m
∑

i=s+1

xiyi

for x = (x0, . . . , xm), y = (y0, . . . , ym) ∈ R
m+1. For any c < 0 and any positive integer s,

let Hm
s (c) = {x ∈ R

m+1 | 〈x, x〉 = 1/c} be the semi-Riemannian submanifold of

R
m+1
s+1 = (Rm+1, ds2 = −dx0 ⊗dx0 −·· ·−dxs ⊗dxs +dxs+1 ⊗dxs+1 +·· ·+dxm⊗dxm) .

Hm
s (c) is called the m-dimensional (real ) pseudo-hyperbolic space of index s.

We notice that Hm
s (c) has constant sectional curvature c, whose curvature tensor is given

by R(X, Y,X, Y ) = c(g(X,X)g(Y, Y )−g(X, Y )2). We shall denote simply Hm
s = Hm

s (−1).
It should be remarked that Hm

s can be written as a homogeneous space, namely Hm
s =

SO(s + 1,m − s)/SO(s,m − s), H 2m+1
2s+1 = SU(s + 1,m − s)/SU(s,m − s), and H 4m+3

4s+3 =

Sp(s + 1,m − s)/Sp(s,m − s) (see [Wol]).
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DEFINITION 2.6. Let (·, ·) be the Hermitian form on C
m+1 given by

(z,w) = −

s
∑

i=0

ziw̄i +

m
∑

i=s+1

ziw̄i

for z = (z0, . . . , zm),w = (w0, . . . , wm) ∈ C
m+1. For c < 0, let M(c) be the real hyper-

surface of C
m+1 given by M(c) = {z ∈ C

m+1 | (z, z) = 4/c}, which is endowed with the
induced metric of

(Cm+1, ds2 = −dz0 ⊗ dz̄0 − · · · − dzs ⊗ dz̄s + dzs+1 ⊗ dz̄s+1 + · · · + dzm ⊗ dz̄m) .

The natural action of S1 = {eiθ | θ ∈ R} on C
m+1 induces an action on M(c). Let CHm

s (c) =

M(c)/S1 endowed with the unique indefinite Kähler metric of index 2s such that the projec-
tion M(c) → M(c)/S1 becomes a semi-Riemannian submersion (see [Ba-Ro]). CHm

s (c) is
called the complex pseudo-hyperbolic space.

Notice that CHm
s (c) has constant holomorphic sectional curvature c, whose curvature

tensor is given by R(X, Y,X, Y ) = (c/4)(g(X,X)g(Y, Y )−g(X, Y )2 +3g(I0X,Y )2), where
I0 is the natural complex structure on CHm

s (c). We shall denote simply CHm
s = CHm

s (−4).
It is well-known that CHm

s is a homogeneous space, namely CHm
s = SU(s + 1,m − s)/

S(U(1)U(s,m − s)) and CH 2m+1
2s+1 = Sp(s + 1,m − s)/U(1)Sp(s,m − s) (see [Wol]).

We shall denote by HH n
s the quaternionic pseudo-hyperbolic space of real dimension 4n,

and of quaternionic index s with quaternionic sectional curvature −4, and by Sn and Sn(4)

the spheres with sectional curvature 1 and 4, respectively.
By a standard construction (see Theorem 9.80 in [Bes]), one can obtain many examples

of semi-Riemannian submersions with totally geodesic fibres of type π : G/K → G/H,

where G is a Lie group and K, H are closed Lie subgroups of G with K ⊂ H . In this way the
following canonical semi-Riemannian submersions, also called generalized Hopf fibrations,
are obtained:

EXAMPLE 1. Let G = SU(t+1,m−t), H = S(U(1)U(t,m−t)), K = SU(t,m−t).
For every 0 ≤ t ≤ m, we have the semi-Riemannian submersion

H 2m+1
2t+1 = SU(t +1,m− t)/SU(t,m− t) → CHm

t = SU(t +1,m− t)/S(U(1)U(t,m− t)) .

EXAMPLE 2. Let G = Sp(t + 1,m − t), H = Sp(1)Sp(t,m − t), K = Sp(t,m − t).
For every 0 ≤ t ≤ m, we get the semi-Riemannian submersion

H 4m+3
4t+3 = Sp(t + 1,m − t)/Sp(t,m − t) → HHm

t = Sp(t + 1,m − t)/Sp(1)Sp(t,m − t) .

EXAMPLE 3. a) Let G = Spin(1, 8), H = Spin(8), K = Spin(7). Then we have
the semi-Riemannian submersion (see [Ba-Ia])

H 15
7 = Spin(1, 8)/Spin(7) → H 8(−4) = Spin(1, 8)/Spin(8) .

b) Let G = Spin(9), H = Spin(8), K = Spin(7). Then we have the semi-Riemannian
submersion (see [Bes])

S15 = Spin(9)/Spin(7) → S8(4) = Spin(9)/Spin(8) .
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EXAMPLE 4. Let G = Sp(t +1,m− t), H = Sp(1)Sp(t,m− t), K = U(1)Sp(t,m−

t). For every 0 ≤ t ≤ m, we obtain the semi-Riemannian submersion

CH 2m+1
2t+1 = Sp(t+1,m−t)/U(1)Sp(t,m−t)→HHm

t = Sp(t+1,m−t)/Sp(1)Sp(t,m−t) .

In order to prove Theorem 1.2, we need the following nonexistence proposition, which
is the semi-Riemannian version of Proposition 5.1 in [Ran1].

PROPOSITION 2.7. There exist no semi-Riemannian submersions π : H 23
7+8t → CaH 2

t ,

t ∈ {0, 1, 2}, with totally geodesic fibres from the 23-dimensional pseudo-hyperbolic space of

index 7 + 8t onto the Cayley pseudo-hyperbolic plane of Cayley index t .

We notice that the case t = 2 is Proposition 5.1 in [Ran1]. For the case t = 0, see
[Ba-Ia]. Here we only recall some details of Ranjan’s proof and suggest its modification to
the semi-Riemannian case. Ranjan’s argument in [Ran1], which leads to a contradiction to
the assumption of the existence of such a submersion, is based on finding for every X ∈ Hp,

g(X,X) �= 0, an irreducible Cl(Vp)-submodule S of Hp passing through X. Here Cl(Vp)

denotes the Clifford algebra of (Vp, g̃p), where g̃(U, V ) = −g(U, V ) for every U, V ∈ Vp.
Hp becomes a Cl(Vp)-module by considering the extension of the map U : Vp → End(Hp)

defined by U(V )(X) = AXV to the Clifford algebra Cl(Vp). Since g̃p is positive definite, we
have Cl(Vp) ≃ R(8) ⊕ R(8). Hence, Hp splits into two 8-dimensional irreducible Cl(Vp)-
modules. Since the induced metrics on fibres are negative definite, we obtain in a manner
similar to Ranjan’s proof that

(i) for g(X,X) > 0, π−1(CaH 1) is totally geodesic in H 23
7+8t and is isometric to H 15

7 ,

where CaH 1 denotes the Cayley hyperbolic line through π∗X, and
(ii) for g(X,X) < 0, π−1(CaH 1

1 ) is totally geodesic in H 23
7+8t and is isometric to H 15

15 ,

where CaH 1
1 denotes the negative definite Cayley hyperbolic line through π∗X.

We choose S to be the horizontal space of the restricted submersion π̃ : H 15
7 → CaH 1 if

g(X,X) > 0 or π̃ : H 15
15 → CaH 1

1 if g(X,X) < 0.

3. Proof of the main results. The next lemma gives useful properties of O’Neill’s
integrability tensor.

LEMMA 3.1. Let π : M → B be a semi-Riemannian submersion with connected

totally geodesic fibres from a semi-Riemannian manifold M with constant curvature c �= 0.

Then the following assertions are true:

(a) If X is a horizontal vector such that g(X,X) �= 0, then the map AX : V → H

given by AX(V ) = AXV is injective and the map A∗
X : H → V given by A∗

X(Y ) = AXY is

surjective.

(b) If X, Y are the horizontal liftings along the fibre π−1(π(p)), p ∈ M, of two vectors

X′, Y ′ ∈ Tπ(p)B respectively, g
′(X′,X′) �= 0 and (AXY )(p) = 0, then AXY = 0 along the

fibre π−1(π(p)).

PROOF. (a) By O’Neill’s equations, we get

g(AXV,AXW) = cg(X,X)g(V ,W)
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for a horizontal vector field X and for vertical vector fields V and W . Thus A∗
XAXV =

−cg(X,X)V for every vertical vector field V . Therefore AX : V → H is injective and
A∗

X : H → V is surjective.
(b) By O’Neill’s equations, we have

−3g(AXY,AXZ) = c[g(X,X)g(Y,Z) − g(X, Y )g(X,Z)] − R′(π∗X,π∗Y, π∗X,π∗Z)

for horizontal vector fields X, Y and Z.
If X, Y, Z are basic vector fields, then g(AXY,AXZ) is constant along the fibre

π−1(π(p)). Therefore, g(AXAXY,Z) = 0 along the fibre π−1(π(p)) for every basic vector
field Z. Hence AXAXY = 0 along π−1(π(p)). Since AX : V → H is injective, it follows
that AXY = 0 along the fibre π−1(π(p)). ✷

LEMMA 3.2. If π : M → B is a semi-Riemannian submersion with connected totally

geodesic fibres from a semi-Riemannian manifold M with constant curvature c �= 0 onto a

semi-Riemannian manifold B, then the tangent bundle of any fibre is trivial.

PROOF. Let x ∈ B and p ∈ π−1(x). Let {v1p, . . . , vrp} be an orthonormal basis in Vp.
Let Y1, Y2, . . . , Yr be the horizontal liftings along the fibre π−1(π(p)) of (1/c)π∗AXv1p,

(1/c)π∗AXv2p, . . . , (1/c)π∗AXvrp, respectively. Let vi = AXYi for each i ∈ {1, . . . , r}.
Since

g(vj , vl) = g(AXYj , AXYl)

= (1/3)(R′(π∗X,π∗Yj , π∗X,π∗Yl) − cg(X,X)g(Yj , Yl) + cg(X, Yj )g(X, Yl))

is constant along the fibre π−1(π(p)) and

g(AXYj , AXYl)(p) =
1

c2
g(AXAXvjp, AXAXvlp) = g(X,X)2

g(vjp, vlp) = εjδj l ,

we see that {v1, v2, . . . , vr } is a global orthonormal basis of the tangent bundle of the fibre
π−1(x), which makes the tangent bundle trivial. ✷

We suppose that the curvature of the total space is negative. The case of positive curva-
ture can be reduced to the negative one by changing simultaneously the signs of the metrics
on the base and on the total space. We establish relations between the dimensions and the
indices of fibres and of base spaces, and see how the geometry of base spaces looks like.

THEOREM 3.3. Let π : M → B be a semi-Riemannian submersion with connected

totally geodesic fibres from an (n + r)-dimensional semi-Riemannian manifold M of index

s + r ′ with constant negative curvature c onto an n-dimensional semi-Riemannian manifold

B of index s. Then the following hold :

(1) n = k(r + 1) for some positive integer k and s = q1(r
′ + 1) + q2(r − r ′) for some

nonnegative integers q1, q2 with q1 + q2 = k.

(2) If, moreover, M is a simply connected complete semi-Riemannian manifold and the

dimension of fibres is less than or equal to 3, then B is an isotropic semi-Riemannian manifold

and r ∈ {1, 3}.



186 G. BĂDIŢOIU

PROOF. Normalizing the metric on M, we can suppose c = −1. Let p ∈ M . Since
the tangent bundle of the fibre π−1(π(p)) is trivial, we can choose a global orthonormal
frame {v1, v2, . . . , vr } for the tangent bundle of π−1(π(p)). We have g(vi , vj ) = εiδij ,

εi ∈ {−1, 1}, and card{i|εi < 0} = r ′.
(1) Let X be the horizontal lifting along the fibre π−1(π(p)) of a vector X′ ∈ Tπ(p)B,

so that g(X′,X′) ∈ {−1, 1}. By O’Neill’s equations, we have

g(AY V,AY V ) = −g(Y, Y )g(V , V )

for a horizontal vector field Y and for a vertical vector field V . Along the fibre π−1(π(p)) we
obtain for every i, j ∈ {1, . . . , r}

g(AXvi , AXvj ) = −g(X,X)g(vi , vj ) = −g(X,X)εiδij ,

g(X,AXvi) = −g(AXX, vi) = 0 .

Thus {X,AXv1, . . . , AXvr } is an orthonormal system. Hence n ≥ r + 1.
Let L0 = X. For every integer α such that 1 ≤ α < n/(r + 1), let Lα be a hori-

zontal vector field along the fibre π−1(π(p)) such that Lα is the horizontal lifting of some
unit vector (i.e., g(Lα, Lα) ∈ {−1, 1}), that Lα is orthogonal to L0, L1, . . . , Lα−1 and that
Lα(p) ∈ ker A∗

L0(p) ∩ ker A∗
L1(p) ∩ · · · ∩ ker A∗

Lα−1(p). Then, by Lemma 3.1, Lα(q) belongs

to ker A∗
L0(q) ∩ ker A∗

L1(q) ∩ · · · ∩ ker A∗
Lα−1(q) for every q ∈ π−1(π(p)). Therefore, for

j ∈ {1, . . . , r} and α, β ≥ 0, we get

g(ALαvj , Lβ ) = −g(vj , ALαLβ ) = 0

along the fibre π−1(π(p)).
By O’Neill’s equations, we obtain

R(X,U, Y, V ) = g((∇UA)XY, V ) + g(AXU,AY V )

= g(∇U AXY, V ) − g(A∇U XY, V ) − g(AX∇U Y, V ) + g(AXU,AY V )

= g(∇UAXY, V ) + g(AY AXU,V ) − g(AXAY U,V ) − g(AY AXU,V )

= g(∇UAXY, V ) + g(AY U,AXV )

(3.1)

for basic vector fields X, Y and for vertical vector fields U, V . Thus, along the fibre π−1(π(p))

we get for every α, β ≥ 0 and j, l ∈ {1, . . . , r}

g(ALαvj , ALβvl) = R(Lα, vl, Lβ , vj ) − g(∇vl ALαLβ , vj )

= −g(Lα, Lβ)g(vl , vj ) − vl(g(ALαLβ , vj )) + g(ALαLβ ,∇vl vj ) .

Since ALαLβ = 0 along the fibre π−1(π(p)), it follows that

g(ALαvj , ALβ vl) = −g(Lα, Lβ )g(vl , vj ) = −g(Lα, Lβ )εlδlj .

We proved that for some positive integer k,

L = {L0, AL0v1, . . . , AL0vr , . . . , Lk−1, ALk−1v1, . . . , ALk−1vr }
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is an orthonormal basis of H along the fibre π−1(π(p)). Thus dim B = (1 + dim fibre)k for
some positive integer k. Counting the timelike vectors in L, we get index(B) = q1(r

′ + 1) +

q2(r − r ′) for some nonnegative integers q1, q2 with q1 + q2 = k.
(2) Let x ∈ B and X′, Y ′ ∈ TxB such that g

′(X′,X′) = g
′(Y ′, Y ′) �= 0. We shall

construct an isometry f̃ : B → B such that f̃ (x) = x and f̃∗X
′ = Y ′. Note that we may

assume that g
′(X′,X′) = g

′(Y ′, Y ′) = ±1. Let X, Y be the horizontal liftings along the fibre
π−1(x) of X′ and Y ′, respectively. Take p ∈ π−1(x). Let

L = {L0, AL0v1, . . . , AL0vr , . . . , Lk−1, ALk−1v1, . . . , ALk−1vr } ,

L
′ = {L′

0, AL′
0
v′

1, . . . , AL′
0
v′
r , . . . , L

′
k−1, AL′

k−1
v′

1, . . . , AL′
k−1

v′
r }

be two orthonormal bases constructed as above such that L0 = X, L′
0 = Y, g(Lα, Lα) =

g(L′
α, L′

α) for α ∈ {1, . . . , k − 1}, and that {v1 = AXY1, . . . , vr = AXYr } and {v′
1 =

AY Y ′
1, . . . , v

′
r = AY Y ′

r } are orthonormal bases of the tangent bundle of the fibre π−1(π(p)),

where Y1, . . . , Yr and Y ′
1, . . . , Y

′
r are the horizontal liftings along π−1(π(p)) of the vectors

π∗AXv1p, . . . , π∗AXvrp and π∗AY v′
1p, . . . , π∗AYv′

rp, respectively (as in Lemma 3.1), for
which g(vi , vj ) = g(v′

i , v
′
j ) for i, j ∈ {1, . . . , r}. Let φ : TpM → TpM be the linear map

given by φ(Lα) = L′
α, φ(vj ) = v′

j , φ(ALαvj ) = AL′
α
v′
j for every α ∈ {0, . . . , k − 1} and

j ∈ {1, . . . , r}. Since both L, L′ are orthonormal bases, we see that φ is a linear isometry.
We shall apply Theorem 2.4. Thus we need to prove that φ(AEF) = Aφ(E)φ(F) for

every E, F ∈ TpM . Indeed, we obtain for α, β ∈ {0, . . . , k − 1} and j, l ∈ {1, . . . , r},

φ(ALαLβ) = φ(0) = 0 = AL′
α
L′

β = Aφ(Lα)φ(Lβ) ,

g(vj , ALαALβvl) = −g(ALαvj , ALβvl) = −g(Lα, Lβ )g(vj , vl)

= −g(L′
α, L′

β)g(v′
j , v′

l) = g(v′
j , AL′

α
AL′

β
v′
l) .

Hence φ(ALαALβvl) = Aφ(Lα)φ(ALβvl). ✷

LEMMA 3.4. ALαvj is a basic vector field along the fibre π−1(π(p)) for every 1 ≤

j ≤ r and α ≥ 0.

PROOF OF LEMMA 3.4. We have g(AXvj , Z) = g(AXAXYj , Z) = −g(AXYj , AXZ).
For every basic vector field Z along the fibre π−1(π(p)) we know that g(AXYj , AXZ) is
constant along the fibre π−1(π(p)). Hence AXvj is a basic vector field along the fibre
π−1(π(p)).

Now we assume α ≥ 1. Since dim(ker A∗
X ∪ ker A∗

Lα
) = dim ker A∗

X + dim ker A∗
Lα

−

dim(ker A∗
X ∩ ker A∗

Lα
) = (n−r)+(n−r)−(n−2r) = n, it follows that ker A∗

X+ker A∗
Lα

=

H. Hence ALαvj is a basic vector field along the fibre π−1(π(p)) if and only if the following
conditions are satisfied: g(ALαvj , Z1) is constant along π−1(π(p)) for every Z1 ∈ ker A∗

X,

which is a basic vector field along π−1(π(p)), and g(ALαvj , Z2) is constant along the fibre
π−1(π(p)) for every Z2 ∈ ker A∗

Lα
, which is a basic vector field along π−1(π(p)). If Z2 ∈

ker A∗
Lα

, then A∗
Lα

Z2 = 0 along π−1(π(p)). So g(ALαvj , Z2) = −g(vj , ALαZ2) = 0 along

π−1(π(p)). If Z1 ∈ ker A∗
X, then A∗

XZ1 = 0 along π−1(π(p)). By O’Neill’s equations, we
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get along the fibre π−1(π(p))

R′(π∗X,π∗Yj , π∗Lα, π∗Z1) = R(X, Yj , Lα, Z1) + 2g(AXYj , ALαZ1)

− g(AYj Lα, AXZ1) − g(ALαX,AYj Z1)

= −g(X,Lα)g(Yj , Z1) + g(X,Z1)g(Yj , Lα)

+ 2g(vj , ALαZ1) ,

since ALαX = −AXLα = 0 and AXZ1 = 0. Hence g(vj , ALαZ1) = −g(ALαvj , Z1)

is constant along π−1(π(p)) for every Z1 ∈ ker A∗
X, which is a basic vector field along

π−1(π(p)).
We proved that ALαvj is a basic vector field along π−1(π(p)) for every α ≥ 0 and

j ∈ {1, . . . , r}. ✷

We denote by ∇̂ the induced Levi-Civita connection on the fibre π−1(π(p)).

LEMMA 3.5. AALα viALβvj = g(Lα, Lβ )∇̂vivj .

PROOF OF LEMMA 3.5. By the relation (3.1) together with Lemma 3.4, we obtain for
i, j, l ∈ {1, . . . , r} and α, β ≥ 0 that

g(AALα viALβvj , vl) = −g(AALα vivl , ALβvj )

= −R(Lβ , vl, ALαvi, vj ) + g(∇vl ALβALαvi , vj )

= g(Lβ , ALαvi)g(vl , vj ) + vlg(ALβALαvi , vj )

− g(ALβALαvi ,∇vl vj )

= −vlg(ALαvi, ALβ vj ) + g(ALαvi , ALβvt )g(∇vl vj , vt )εt

= −g(Lα, Lβ )g(∇̂vl vj , vi)

= g(Lα, Lβ)g(∇̂vi vj , vl) .

In the last equality we used the fact that vj = AXYj is a Killing vector field along the fibre
π−1(π(p)) (see [Bis] or [Bes]). Thus

AALα viALβvj = g(Lα, Lβ )∇̂vi vj .

✷

LEMMA 3.6. The following assertions are true:

(a) r �= 2.

(b) If r = 1, then AALα v1ALβv1 = 0.

(c) If r = 3 and if we set v3p = g(X,X)−1(∇̂v1v2)(p), then v3 = ∇̂v1v2 and

g(∇̂vi vj , vk) =

{

0 if two of i, j, k are equal ,

ε
(1 2 3
i j k

)

g(v3, v3) if {i, j, k} = {1, 2, 3} ,

where ε
(1 2 3
i j k

)

is the signature of the permutation
(1 2 3
i j k

)

.
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PROOF OF LEMMA 3.6. Since v1, . . . , vr are Killing vector fields along π−1(π(p)) and
g(vi , vi) ∈ {−1, 1} for every i, we get

g(∇̂vi vj , vi) = g(∇̂vi vi, vj ) = g(∇̂vj vi , vi) = 0

for every i, j ∈ {1, . . . , r}.
(a) The case r = 2 is not possible. Indeed, if r = 2, then the relation g(∇v1v2, v1) =

g(∇v1v2, v2) = 0 implies ∇v1v2 = 0. On the other hand,

g(∇v1v2,∇v1v2) = −g(∇̂v1 ∇̂v2v2, v1) + R̂(v1, v2, v1, v2) = −g(v1, v1)g(v2, v2) ∈ {−1, 1} ,

since ∇̂v2v2 = g(X,X)−1AAXv2AXv2 = 0 and each fibre has constant curvature −1. So we
get a contradiction.

(b) If r = 1, then AALα v1ALβv1 = 0 for every α and β, because 0 = AAXv1AXv1 =

g(X,X)∇v1v1 implies ∇v1v1 = 0.
(c) In the case r = 3 we shall prove g(∇̂v1v2, v3) is constant along the fibre π−1(π(p)).

Since O’Neill’s integrability tensor A is skew-symmetric, it follows that ∇̂vivj = −∇̂vj vi .

Then ∇̂vi vj = (1/2)[vi, vj ] is a Killing vector field along π−1(π(p)). We then obtain

v1g(∇̂v1v2, v3) = g(∇̂v1 ∇̂v1v2, v3) + g(∇̂v1v2, ∇̂v1v3)

= −g(∇̂v3∇̂v1v2, v1) + g(∇̂v1v2, ∇̂v1v3)

= −v3g(∇̂v1v2, v1) + g(∇̂v1v2, ∇̂v1v3 + ∇̂v3v1) = 0 .

Analogously, we get v2g(∇̂v1v2, v3) = −v2g(∇̂v2v1, v3) = 0. We also obtain

v3g(∇̂v1v2, v3) = g(∇̂v3 ∇̂v1v2, v3) + g(∇̂v1v2, ∇̂v3v3) = 0 ,

since ∇̂v3v3 = 0 and ∇̂v1v2 is a Killing vector field along π−1(π(p)). It is easy to see that

g(∇̂v1v2, v3) = −g(∇̂v2v1, v3) = g(∇̂v2v3, v1)

= −g(∇̂v3v2, v1) = g(∇̂v3v1, v2) = −g(∇̂v1v3, v2) .

Thus g(∇̂vi vj , vl) is constant along the fibre π−1(π(p)) for each i, j, l ∈ {1, 2, 3}. Therefore

g(AXAAXvi AXvj , AXvl) = −g(X,X)g(AAXvi AXvj , vl) = −g(X,X)2
g(∇̂vi vj , vl)

is constant along π−1(π(p)). Also, we compute for α ≥ 1

g(AXAAXvi AXvj , ALαvl) = −g(AAXviAXvj , AXALαvl) = 0 ,

g(AXAAXviAXvj , Lα) = −g(AAXviAXvj , AXLα) = 0 .

Hence AXAAXvi AXvj = g(X,X)AX∇̂vivj is a basic vector field for each i, j ∈ {1, . . . , r}.
We choose v3p = (g(X,X)−1∇̂v1v2)(p). Since AX∇̂v1v2 is a basic vector field along

π−1(π(p)), we get the horizontal lifting along π−1(π(p)) of π∗(g(X,X)−1AX∇̂v1v2(p)) =

π∗AXv3p is g(X,X)−1AX∇̂v1v2. On the other hand, Y3 is, by definition, the horizontal lifting
along π−1(π(p)) of π∗AXv3p. It follows that Y3 = g(X,X)−1AX∇̂v1v2 along π−1(π(p)).
Thus v3 = AXY3 = g(X,X)−1AXAX∇̂v1v2 = ∇̂v1v2 along the fibre π−1(π(p)). ✷
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For r = 3, we choose v′
3p = g(Y, Y )−1(∇̂v′

1
v′

2)(p). If we repeat the argument above

for the basis {v′
1, v

′
2, v

′
3}, by Lemma 3.6, we get v′

3 = ∇̂v′
1
v′

2 along the fibre π−1(π(p)). It

follows that g(∇̂vi vj , vl) = g(∇̂v′
i
v′
j , v

′
l) for each i, j, l ∈ {1, 2, 3}.

Returning to the computation of g(AALα vi ALβvj , vl), in both cases r = 1 and r = 3, we
get for every α, β ≥ 0 and i, j, k ∈ {1, . . . , r}

g(AALα viALβvj , vl) = g(Lα, Lβ )g(∇̂vi vj , vl)

= g(L′
α, L′

β )g(∇̂v′
i
v′
j , v

′
l) = g(AAL′

α
v′
i
AL′

β
v′
j , v

′
l) .

Hence φ(AALα viALβvj ) = Aφ(ALα vi)φ(ALβvj ) and φ(AALα vivj ) = Aφ(ALα vi)φ(vj ).

By Corollary 2.3.14 in [Wol] we see that φ : TpM → TpM extends to an isometry on
M, denoted by f : M → M, such that f (p) = p and f∗p = φ. Hence f∗pX = Y and
f∗(Hp) = Hp. Since f∗AEF = Af∗Ef∗F for every E,F ∈ TpM, we see, by Theorem 2.4,
that there is an isometry f̃ : B → B such that f̃ ◦ π = π ◦ f . Thus f̃∗X

′ = f̃∗π∗X =

π∗f∗X = π∗Y = Y ′ and f̃ (x) = f̃ (π(p)) = π(f (p)) = π(p) = x.
Therefore B is an isotropic semi-Riemannian manifold. This completes the proof of

Theorem 3.3. ✷

If the metric on the base space is negative definite, the following lemma follows from
Theorem 3.3.

LEMMA 3.7. If π : M → B is a semi-Riemannian submersion with connected totally

geodesic fibres from an (n+ r)-dimensional semi-Riemannian manifold M of index r ′ +n and

of constant negative curvature onto an n-dimensional semi-Riemannian manifold B of index

n, then r ′ = r .

PROOF. By Theorem 3.3, we have n = q1(r
′ + 1) + q2(r − r ′) = (q1 + q2)(r + 1) for

some nonnegative integers q1 and q2. Hence 0 = q1(r − r ′)+q2(r
′ + 1). Since the right hand

side is the sum of two non-negative numbers, it follows that q1(r−r ′) = 0 and q2(r
′+1) = 0.

Therefore q2 = 0. This implies r ′ = r . ✷

REMARK. Changing simultaneously the signs of metrics on the total space and on the
base space, any semi-Riemannian submersion, under the assumptions of Lemma 3.7, becomes
a Riemannian submersion with totally geodesic fibres from a sphere onto a Riemannian man-
ifold. This case was completely classified by Escobales (see [Esc1]) and Ranjan (see [Ran1]).

PROPOSITION 3.8. Let π : M → B be a semi-Riemannian submersion with connected

totally geodesic fibres from a complete simply connected semi-Riemannian manifold M onto

a semi-Riemannian manifold B. Then B is simply connected and complete.

PROOF. If M is geodesically complete, then so is B (see [Bes] or [Ba-Ia]). Since M

is a complete semi-Riemannian manifold and the fibres are totally geodesic, any fibre is also
geodesically complete. By a theorem in [Rec], it follows that the horizontal distribution H is
an Ehresmann connection. Therefore, by [Ehr], we see that π is a fibre bundle. So we obtain
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an exact homotopy sequence:

· · · → π2(M) → π2(B) → π1(fibre) → π1(M) → π1(B) → 0 .

Thus π1(B) = 0. ✷

By Theorem 12.3.2 in [Wol], we know that any connected, simply connected isotropic
semi-Riemannian manifold is isometric to one of the following semi-Riemannian manifolds:

(i) R
m
t or the universal semi-Riemannian covering of the pseudo-hyperbolic space

Hm
t (c) with constant sectional curvature c < 0, or of the pseudo-sphere Sm

t (c) with constant
sectional curvature c > 0.

(ii) The complex pseudo-hyperbolic space CHm
t (c) with constant holomorphic sec-

tional curvature c < 0, or the complex pseudo-projective space CPm
t (c) with constant holo-

morphic sectional curvature c > 0.
(iii) The quaternionic pseudo-hyperbolic space HHm

t (c) with constant quaternionic
sectional curvature c < 0, or the quaternionic pseudo-projective space HPm

t (c) with con-
stant quaternionic sectional curvature c > 0.

(iv) The Cayley pseudo-hyperbolic plane CaH 2
t (c) with Cayley sectional curvature

c < 0, or the Cayley pseudo-projective plane CaP 2
t (c) with Cayley sectional curvature c > 0.

LEMMA 3.9. (a) If B is a semi-Riemannian manifold isometric to one of the semi-

Riemannian manifolds CPm
t (c), HPm

t (c), CaP 2
t (c) (c > 0), then the curvature tensor satis-

fies the inequality

R′(X′, Y ′,X′, Y ′) ≥
c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g

′(X′, Y ′)2)(3.2)

for each tangent vectors X′, Y ′ of B.

(b) If B is a semi-Riemannian manifold isometric to one of the semi-Riemannian man-

ifolds CHm
t (c), HHm

t (c), CaH 2
t (c) (c < 0), then the curvature tensor satisfies the inequality

R′(X′, Y ′,X′, Y ′) ≤
c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g

′(X′, Y ′)2)(3.3)

for each tangent vectors X′, Y ′ of B.

PROOF. For each tangent vectors X′, Y ′ of B, we have the following formulas for the
curvature tensors:

(i) If B ∈ {CPm
t (c), CHm

t (c)} and I0 is the natural complex structure on B, then

R′(X′, Y ′,X′, Y ′) =
c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g

′(X′, Y ′)2 + 3g ′(X′, I0Y
′)2) .(3.4)

(ii) If B ∈ {HPm
t (c), HHm

t (c)} and I0, J0,K0 are local almost complex structures
which give rise to the quaternionic structure on B, then

R′(X′, Y ′,X′, Y ′) = (c/4)(g ′(X′,X′)g ′(Y ′, Y ′) − g
′(X′, Y ′)2(3.5)

+ 3g ′(X′, I0Y
′)2 + 3g ′(X′, J0Y

′)2 + 3g ′(X′,K0Y
′)2) .
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(iii) If B ∈ {CaP 2
t (c), CaH 2

t (c)} and I0, J0,K0,M0,M0I0,M0J0,M0K0 are local
almost complex structures which give rise to the Cayley structure on B, then

R′(X′, Y ′,X′, Y ′) = (c/4)(g ′(X′,X′)g ′(Y ′, Y ′) − g
′(X′, Y ′)2

+ 3g ′(X′, I0Y
′)2 + 3g ′(X′, J0Y

′)2 + 3g ′(X′,K0Y
′)2

+ 3g ′(X′,M0Y
′)2 + 3g ′(X′,M0I0Y

′)2 + 3g ′(X′,M0J0Y
′)2

+ 3g ′(X′,M0K0Y
′)2) .

(3.6)

By these explicit formulas for curvature tensors, in all cases we obtain the inequalities (3.2)
and (3.3). ✷

First, we shall discuss the case of a base space with nonconstant curvature.

LEMMA 3.10. If π : H n+r
s+r ′ → Bn

s is a semi-Riemannian submersion with connected

totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space H n+r
s+r ′ of index

s + r ′ > 1 onto an n-dimensional isotropic semi-Riemannian manifold Bn
s of index s with

nonconstant curvature, then the induced metrics on the fibres are negative definite and B is

isometric to one of the following semi-Riemannian manifolds:

(i) CHm
t , m > 1,

(ii) HHm
t , m > 1,

(iii) CaH 2
t .

PROOF. Since dimH = k(dimV + 1) for some positive integer k, we get dimH ≥

dimV + 1. Let X be a horizontal vector field along a fibre π−1(π(p)) such that g(X,X) �= 0
and X is the horizontal lifting of some tangent vector of B.

First, we shall prove that

dimH > dimV + 1 .

Suppose that dimH = dimV+1. Then AX : V → X⊥ = {Y ∈ H | g(X, Y ) = 0} is bijective.
For every Y ∈ X⊥ we get Y = AXV for some vertical vector V . It follows that

g(AXY,AXY ) = g(AXAXV,AXAXV ) = g(X,X)2
g(V , V ) ,

g(Y, Y ) = g(AXV,AXV ) = −g(X,X)g(V , V ) .

Thus g(AXY,AXY ) = −g(X,X)g(Y, Y ) for every Y ∈ X⊥. By O’Neill’s equations, we
have

R′(π∗X,π∗Y, π∗X,π∗Y ) = −g(X,X)g(Y, Y ) + g(X, Y )2 + 3g(AXY,AXY )

= −4(g(X,X)g(Y, Y ) − g(X, Y )2)

for every horizontal vector field Y along π−1(π(p)). Hence B has constant curvature, a
contradiction.

We established that dimH > dimV+1. So we can find a horizontal vector field Z along
the fibre π−1(π(p)) such that Z ∈ ker A∗

X, g(X,Z) = 0, g(Z,Z) �= 0 and Z is the horizontal
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lifting of some Z′ ∈ Tπ(p)B. We then have

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) + g(X,Z)2 + 3g(AXZ,AXZ)

= −g(X,X)g(Z,Z) .

Since B is a simply connected isotropic semi-Riemannian manifold with nonconstant curva-
ture, we see that B is isometric to one of the following semi-Riemannian manifolds:

(a) CPm
t (c), HPm

t (c), CaP 2
t (c), or

(b) CHm
t (c), HHm

t (c), CaH 2
t (c).

We shall prove that only the case (b) is possible.
First, we suppose that B is isometric to one of the following semi-Riemannian manifolds:

CPm
t (c) , HPm

t (c) , CaP 2
t (c) (c > 0) .

By the inequality (3.2), we get

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV )

= 4g(X,X)2
g(V , V ) ≥ −(c/4)g(X,X)2

g(V , V ) .

Therefore

g(V , V ) ≥ 0(3.7)

for every vertical vector V . Since X and Z are basic vector fields along π−1(π(p)) with
g(X,Z) = 0 and AXZ = 0 along π−1(π(p)), it follows from the relation (3.1) that AZV ∈

ker A∗
X. On the other hand, by the inequality (3.2), we get

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) ≥ (c/4)g(X,X)g(Z,Z) ,

R′(π∗X,π∗AZV, π∗X,π∗AZV ) = −g(X,X)g(AZV,AZV )

≥ (c/4)g(X,X)g(AZV,AZV ) .

Hence g(X,X)g(Z,Z) ≤ 0 and g(X,X)g(AZV,AZV ) ≤ 0. Thus

0 ≤ g(Z,Z)g(AZV,AZV ) = −g(Z,Z)2
g(V , V ) .

So for any vertical vector V we get

g(V , V ) ≤ 0 .(3.8)

Since the induced metrics on fibres are nondegenerate, it is not possible to have both (3.7)
and (3.8). So we obtain the required contradiction. It follows that B is isometric to one of the
following semi-Riemannian manifolds:

CHm
t (c) , HHm

t (c) , CaH 2
t (c) (c < 0) .
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We shall now prove that c = −4. Suppose (c/4) + 1 �= 0. By the inequality (3.3), we
get

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) ≤ (c/4)g(X,X)g(Z,Z) ,

R′(π∗X,π∗AZV, π∗X,π∗AZV ) = −g(X,X)g(AZV,AZV )

≤ (c/4)g(X,X)g(AZV,AZV ) .

(3.9)

Hence

((c/4) + 1)2
g(X,X)2

g(Z,Z)g(AZV,AZV ) ≥ 0 ,(3.10)

from which follows that 0 ≤ g(Z,Z)g(AZV,AZV ) = −g(Z,Z)2
g(V , V ). Therefore

g(V , V ) ≤ 0 for every vertical vector field V . In particular, we have g(AXY,AXY ) ≤ 0,

which implies

R′(π∗X,π∗Y, π∗X,π∗Y ) ≤ g(X,X)g(Y, Y ) − g(X, Y )2(3.11)

for every horizontal vectors X and Y . We have the following cases:
Case (a) 0 < index B < dim B. We can choose vector fields X′, Y ′ on B such that

g
′(X′,X′)g ′(Y ′, Y ′) < 0 and that one of the following conditions is satisfied:

(i) Y ′ ∈ {X′, I0X
′}⊥ if B = CHm

s (c), where I0 is the natural complex structure on
CHm

s (c),

(ii) Y ′ ∈ {X′, I0X
′, J0X

′,K0X
′}⊥ if B = HHm

s (c), where {I0, J0,K0} are local al-
most complex structures which give rise to the quaternionic structure on HHm

s (c), or
(iii) Y ′ ∈ {X′, I0X

′, J0X
′,K0X

′,M0X
′,M0I0X

′,M0J0X
′,M0K0X

′}⊥ if B =

CaH 2
t (c), where {I0, J0,K0,M0,M0I0,M0J0,M0K0} are local almost complex structures

which give rise to the Cayley structure on CaH 2
t (c).

Let X, Y be the horizontal liftings of X′, Y ′. The inequality (3.11) then implies
c

4
g(X,X)g(Y, Y ) ≤ −g(X,X)g(Y, Y ) .

Hence ((c/4) + 1)g(X,X)g(Y, Y ) ≤ 0. Therefore (c/4) + 1 > 0. On the other hand,
we can choose horizontal vector fields X, Z such that g(X,Z) = 0, Z ∈ ker A∗

X and
g(X,X)g(Z,Z) < 0, because 0 < index B < dim B. Then the inequality (3.9) becomes
(c/4) + 1 < 0. So we get a contradiction.

Case (b) index B ∈ {0, dim B}. Similarly, we can choose vector fields X′, Y ′ on B

such that g
′(X′, Y ′) = 0 and R′(X′, Y ′,X′, Y ′) = (c/4)g ′(X′,X′)g ′(Y ′, Y ′). The inequality

(3.11) then implies ((c/4) + 1)g ′(X′,X′)g ′(Y ′, Y ′) ≤ 0. By the hypothesis of Case (b), we
get (c/4) + 1 ≤ 0. On the other hand, the inequality (3.9) becomes (c/4) + 1 > 0. So we get
a contradiction.

We have proved c = −4. The inequality (3.3) then becomes

R′(X′, Y ′,X′, Y ′) ≤ −g
′(X′,X′)g ′(Y ′, Y ′) + g

′(X′, Y ′)2(3.12)

for tangent vector fields X′, Y ′ on B. Then we have

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV ) ≤ −g(X,X)g(AXV,AXV )
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for a vertical vector field V and for a horizontal vector field X. Hence

0 ≤ g(X,X)g(AXV,AXV ) = −g(X,X)2
g(V , V ) .

Therefore the induced metrics on fibres are negative definite. ✷

By Lemma 3.10, we deduce the following proposition.

PROPOSITION 3.11. If π : H n+r
s+r ′ → Bn

s is a semi-Riemannian submersion with con-

nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space H n+r
s+r ′ of

index s + r ′ onto an n-dimensional isotropic semi-Riemannian manifold Bn
s of index s with

nonconstant curvature, then one of the following holds:

(1) n = 2m > 2, s = 2t, r = r ′ = 1 for some non-negative integers m, t, and Bn
s is

isometric to CHm
t .

(2) n = 4m > 4, s = 4t, r = r ′ = 3 for some non-negative integers m, t, and Bn
s is

isometric to HHm
t .

(3) n = 16, s ∈ {0, 8, 16}, r = r ′ = 7, and Bn
s is isometric to CaH 2

s/8.

PROOF. First, we shall discuss the case s + r ′ > 1. By Lemma 3.10, B is isometric to
one of the semi-Riemannian manifolds CHm

t , HHm
t , CaH 2

t for some m > 1.
Let x ∈ B and let X′ ∈ TxB such that g

′(X′,X′) �= 0, and let FX′ be the subspace in
TxB given by

FX′ = {Y ′ ∈ TxB | R′(X′, Y ′)X′ = −g
′(X′, Y ′)X′ + g

′(X′,X′)Y ′} .

Let p ∈ π−1(x) and let X be the horizontal lifting vector at p of X′. By O’Neill’s equa-
tions, we have R′(π∗X,π∗Y, π∗X,π∗Z) = R(X, Y,X,Z) + 3g(A∗

XY,A∗
XZ) for horizontal

vectors Y, Z. Since A∗
X : Hp → Vp is surjective and since the induced metrics on fibres are

nondegenerate, we get Y ∈ ker A∗
X if and only if π∗Y ∈ FX′ . Thus

dim ker A∗
X = dimH − dimV = dimFX′ .

We have the following possibilities:
(1) Bn

s is isometric to CHm
t . So n = 2m, s = 2t . From the geometry of the complex

pseudo-hyperbolic space (see relation (3.4)), we get dimFX′ = dimH − 1. It follows that
r = r ′ = dimV = 1.

(2) Bn
s is isometric to HHm

t . So n = 4m, s = 4t . From the geometry of the quater-
nionic pseudo-hyperbolic space (see relation (3.5)), we get dimFX′ = dimH − 3. It follows
that r = r ′ = dimV = 3.

(3) Bn
s is isometric to the Cayley pseudo-hyperbolic plane CaH 2

t . So n = 16,

s ∈ {0, 8, 16}. From the geometry of the Cayley pseudo-hyperbolic plane (see relation (3.6)),
we obtain dimFX′ = dimH − 7. Hence r = r ′ = dimV = 7.

Now, we discuss the remaining case s + r ′ = 1. From s + r ′ = 1, we have either
(i) s = 0, r ′ = 1, or

(ii) s = 1, r ′ = 0.
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If s = 0, r ′ = 1, then π : H n+r
1 → Bn is a semi-Riemannian submersion with totally

geodesic fibres from an anti-de Sitter space onto a Riemannian manifold. In this case, investi-
gated by Magid in [Mag], it follows that B is isometric to the complex hyperbolic space CHm

and r = r ′ = 1.
For s = 1, r ′ = 0, we get, by Theorem 3.3, 1 = q1 + q2r ≥ q1 + q2 with q1 + q2 =

k = n/(r + 1). Thus q1 + q2 = 1. It follows that n = r + 1. Hence AX : V → X⊥ is
bijective. Since R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV ), we see that
B has constant curvature −4, which contradicts our assumption of nonconstant curvature of
the base space. ✷

We shall now discuss the case where the base space is of constant curvature. We give the
following obstruction to the existence of semi-Riemannian submersions in terms of the index
of base space.

LEMMA 3.12. There are no semi-Riemannian submersions π : H n+r
s+r ′ → Bn

s with con-

nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space of index

s + r ′ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,

where 0 < s < n.

PROOF. Let X be a horizontal vector and V a vertical vector such that g(X,X) �= 0 and
g(V , V ) �= 0. By O’Neill’s equations, we have

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −g(X,X)g(AXV,AXV ) + g(X,AXV )2

+ 3g(AXAXV,AXAXV )

= −g(X,X)g(AXV,AXV ) + 3g(X,X)2
g(V , V )

= −4g(X,X)g(AXV,AXV ) .

If B has constant curvature, then the curvature of B should be −4. Therefore, by O’Neill’s
equations (see (9.29c) in [Bes]), for a horizontal vector Y we get

g(AXY,AXY ) = −g(X,X)g(Y, Y ) + g(X, Y )2 .(3.13)

By polarization of (3.13), we get

g(AXY,AXZ) = −g(X,X)g(Y,Z) + g(X, Y )g(X,Z)

for horizontal vectors Y and Z . Therefore AXA∗
XY = g(X,X)Y − g(X, Y )X.

Let A
∗,⊥
X : X⊥ → V be the restriction of A∗

X to the orthogonal complement of X

in H. Then AXA
∗,⊥
X Y = g(X,X)Y for every Y ∈ X⊥, from which follows that A

∗,⊥
X is

injective. Hence dimH − 1 ≤ dimV . By Lemma 3.1, we get AX : V → X⊥ is injective. So
dimH − 1 ≥ dimV .

We proved that dimH − 1 = dimV, which means that n = r + 1. If 0 < s < n,

then we can choose horizontal vectors X, Y such that g(X,X) = 1 and g(Y, Y ) = −1. Let
{v1, v2, . . . , vr } be an orthonormal basis of the tangent bundle of the fibre π−1(π(p)), p ∈ M .
Since {X,AXv1, . . . , AXvr } and {Y,AY v1, . . . , AY vr } are orthonormal bases, by the proof of
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Theorem 3.3, for every i ∈ {1, . . . , r} we have

g(AXvi , AXvi) = −g(X,X)g(vi , vi ) = −εi ,

g(AY vi , AY vi) = −g(Y, Y )g(vi , vi) = εi .

It follows that s = r − r ′ and s = r ′ + 1. Therefore r = 2r ′ + 1 and n = 2r ′ + 2.
We shall prove that there are no semi-Riemannian submersions π : H 4r ′+3

2r ′+1 → B2r ′+2
r ′+1

with totally geodesic fibres. Since the fibre F = π−1(π(p)) is a (2r ′ + 1)-dimensional semi-
Riemannian manifold of index r ′ and since B is a (2r ′ + 2)-dimensional semi-Riemannian
manifold of index r ′ + 1, we can choose orthonormal spacelike vectors Y2r ′+2, . . . , Y3r ′+2

in TpF (i.e., g(Yi , Yj ) = δij for i, j ∈ {2r ′ + 2, . . . , 3r ′ + 2}) and orthonormal spacelike
vectors Y ′

3r ′+3, . . . , Y
′
4r ′+3 in Tπ(p)B (i.e., g

′(Y ′
α, Y ′

β) = δαβ for α, β ∈ {3r ′ + 3, . . . , 4r ′ +

3}). Let Y3r ′+3, . . . , Y4r ′+3 be the horizontal liftings of Y ′
3r ′+3, . . . , Y

′
4r ′+3, respectively. Let

Y1, . . . , Y2r ′+1 be orthonormal timelike vectors in TpH 4r ′+3
2r ′+1 (i.e., g(Yl , Yt ) = −δlt for l, t ∈

{1, . . . , 2r ′ + 1}) such that they are orthogonal to Y2r ′+2, . . . , Y4r ′+3. Then {Y1, . . . , Y4r ′+3}

is an orthonormal basis in TpH 4r ′+3
2r ′+1 . By definition,

H 4r ′+3
2r ′+1 ={(x0, x1, . . . , x4r ′+3)∈R

4r ′+4 | −x2
0 −x2

1 −· · ·−x2
2r ′+1+x2

2r ′+2+· · ·+x2
4r ′+3 = −1} .

Let H̃ be the semi-Riemannian submanifold in H 4r ′+3
2r ′+1 defined by

H̃ ={(x0, 0, 0, . . . , 0, x2r ′+2, . . . , x4r ′+3)∈R
4r ′+4 | −x2

0 +x2
2r ′+2+· · ·+x2

4r ′+3 =−1, x0 >0} .

It is easy to see that H̃ is a complete totally geodesic submanifold in H 4r ′+3
2r ′+1 and that H̃ is

isometric to a hyperbolic space. Let {X2r ′+2, . . . , X4r ′+3} be an orthonormal basis in Tp̃H̃ ,

p̃ ∈ H̃ , and let {X1, . . . , X2r ′+1} ⊂ Tp̃H 4r ′+3
2r ′+1 be an orthonormal basis of the normal bundle

of the submanifold H̃ . Since H 4r ′+3
2r ′+1 is a frame-homogeneous space (see [One2], or a strong

isotropic manifold, cf. [Wol]), we have an isometry φ : H 4r ′+3
2r ′+1 → H 4r ′+3

2r ′+1 such that φ(p̃) = p

and φ(Xi) = Yi for each i ∈ {1, . . . , 4r ′ + 3}. Hence H = φ(H̃ ) is a complete, totally geo-
desic submanifold in H 4r ′+3

2r ′+1 and TpH = span{Y2r ′+2, . . . , Y4r ′+3}. Therefore H has constant
curvature −1. By Lemma 14 on page 105 in [One2], one sees that H is a unique complete,
totally geodesic semi-Riemannian submanifold such that TpH = span{Y2r ′+2, . . . , Y4r ′+3}.

If r ′ ≥ 1, then the base space B is simply connected by Proposition 3.8. Hence B is
isometric to a pseudo-hyperbolic space. Let B ′ be a unique semi-Riemannian submanifold of
the base space B2r ′+2

r ′+1 such that B ′ is complete, totally geodesic in B2r ′+2
r ′+1 , and that π(p) ∈ B ′

and Tπ(p)B
′ = span{Y ′

3r ′+3, . . . , Y
′
4r ′+3}, constructed as above if r ′ > 0, or chosen to be the

image of the spacelike geodesic in B passing through π(p), with velocity in π(p) equal to
Y ′

3, if r ′ = 0. Then B ′ is isometric to H r ′+1(−4).
First, we shall prove that π(H) = B ′. Let q ′ ∈ B ′. There is a unique geodesic τ ′

in B ′ joining π(p) with q ′, and satisfying τ ′(0) = π(p), τ ′(1) = q ′. Since B ′ is totally
geodesic in B, τ ′ is a geodesic in B. Let τ be the horizontal lifting of τ ′, with p = τ (0).
Since τ̇ (0) is the horizontal lifting in p of τ̇ ′(0) ∈ Tπ(p)B

′ = span{Y ′
3r ′+3, . . . , Y

′
4r ′+3}, we
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obtain τ̇ (0) ∈ TpH . Since H was chosen to be totally geodesic in H 4r ′+3
2r ′+1 , it follows that τ is

contained in H . Thus q ′ = π(τ(1)) ∈ π(H). Therefore B ′ ⊂ π(H).
Let q ∈ H . Since H is isometric to the real hyperbolic space H 2r ′+2, there is a unique

geodesic γ in H joining p with q . We denote by X = h(γ̇ (0)) and V = v(γ̇ (0)) the
horizontal and vertical components of γ̇ (0), respectively. If X = 0, then the geodesic γ is
contained in the fibre π−1(π(p)), since the fibres are totally geodesic. Hence π(q) = π(p) ∈

B ′. If V = 0, then γ is a horizontal geodesic and hence π ◦ γ is a geodesic in B. Since B ′ is
totally geodesic in B, the geodesic π ◦ γ is contained in B ′. Therefore π(q) ∈ B ′.

For X �= 0, V �= 0, we denote by γ0 the geodesic given by the initial conditions γ0(0) =

p and γ̇0(0) = h(γ̇ (0)) ∈ TpH . Let H2 be the unique complete totally geodesic submanifold
in H passing through p with TpH2 = span{X,V }. Since H2 is isometric to a real hyperbolic
plane, we can choose a point q0 ∈ H2 on the geodesic γ0 such that there exists a unique
geodesic in H2, denoted by γ1, joining q0 with q, and having the velocity vector at q0 equal
to the parallel translation along γ0 of the vector wV for some constant w ∈ R. Since H2 is
totally geodesic in H and H is totally geodesic in H 4r ′+3

2r ′+1 , it follows that γ1 is a geodesic in

H 4r ′+3
2r ′+1 . Since the fibres are totally geodesic, we obtain that γ1 is contained in π−1(π(q)).

Thus π(q0) = π(q). Since γ0 is a horizontal geodesic, π ◦ γ0 is a geodesic joining π(p)

with π(q0) = π(q), which has the initial velocity π∗γ̇0(0) ∈ Tπ(p)B
′. The geodesic π ◦ γ0 is

contained in B ′, because B ′ is totally geodesic. Hence π(q) ∈ B ′. We proved that π(H) =

B ′.

Let π̃ : H → B ′ be the restriction of π to H . It is easy to see that π̃ is a Riemannian
submersion. We need to prove that the fibre π̃−1(π(p)) is totally geodesic in p. Let γ be
a geodesic in H such that γ (0) = p and γ̇ (0) ∈ Tpπ̃−1(π(p)) = ker π̃∗p. Then 0 =

π̃∗(γ̇ (0)) = π∗(γ̇ (0)). Hence γ̇ (0) is vertical. Since the fibres of π are totally geodesic, γ is
contained in π−1(π(p)). Therefore γ (t) ∈ π̃−1(π(p)) for every t ∈ R. Since π̃ : H → B ′ is
a Riemannian submersion with the fibre π̃−1(π(p)) totally geodesic in p, we get, by O’Neill’s
equations (see (9.29b) in [Bes]) applied at p, that

0 ≤ g(AXV,AXV ) = −g(X,X)g(V , V ) ≤ 0

for every X ∈ H̃p, V ∈ Ṽp. So we get a contradiction. ✷

From Lemma 3.12, we obtain the following proposition.

PROPOSITION 3.13. If π : H n+r
s+r ′ → Bn

s is a semi-Riemannian submersion with con-

nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space of index

s + r ′ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,

then one of the following holds:

(1) n = s = 2t , r = r ′ = n − 1, B is isometric to H 2t

2t (−4) and t ∈ {1, 2, 3}.

(2) n = 2t , s = 0, r = r ′ = n − 1, B is isometric to H 2t
(−4) and t ∈ {1, 2, 3}.

PROOF. If B has constant curvature, then the curvature of B is −4 and n = r + 1. By
Lemma 3.12, we then get index(B) ∈ {0, dim B}.
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If index(B) = dim B, then, by Lemma 3.7, we obtain r = r ′. Hence, by [Ran1], we
have (1).

If index(B) = 0, then, by [Ba-Ia], we have (2).
The idea of the proof in [Ran1] and [Ba-Ia] is to see that the tangent bundle of any fibre is
trivial and that fibres are diffeomorphic to spheres, and then to apply a well-known result of
Adams which claims that the spheres of dimensions 1, 3 and 7 are the only spheres with trivial
tangent bundle. ✷

The next theorems solve the equivalence problem of semi-Riemannian submersions from
real and complex pseudo-hyperbolic spaces.

THEOREM 3.14. If π1, π2 : H n+r
s+r ′ → Bn

s are two semi-Riemannian submersions with

connected totally geodesic fibres from a pseudo-hyperbolic space of index s + r ′ > 1 and the

dimension of the fibres is r ∈ {1, 3}, then π1 and π2 are equivalent.

PROOF. Let p, q ∈ H n+r
s+r ′ . Let

L = {L0, A1L0v1, . . . , A1L0vr , . . . , Lk−1, A1Lk−1v1, . . . , A1Lk−1vr } ,

L
′ = {L′

0, A2L′
0
v′

1, . . . , A2L′
0
v′
r , . . . , L

′
k−1, A2L′

k−1
v′

1, . . . , A2L′
k−1

v′
r }

be two orthonormal bases of H1 along π−1
1 (π1(p)) and of H2 along π−1

2 (π2(q)) constructed
as in the proof of Theorem 3.3 such that gp(Lα, Lβ ) = gq (L′

α, L′
β) = εαδαβ for α, β ∈

{0, . . . , k − 1}, gp(vi , vj ) = gq(v′
i , v

′
j ) = εiδij for i, j ∈ {1, . . . , r} and for r = 3, v3p =

(∇̂v1v2)(p) and v′
3q = (∇̂v′

1
v′

2)(q).

Let φ : TpH n+r
s+r ′ → TqH n+r

s+r ′ be the linear map given by φ(Lα) = L′
α, φ(A1Lαvi) =

A2L′
α
v′
i , φ(vi) = v′

i for every α and i. In a manner similar to the proof of Theorem 3.3, we
obtain φ(A1EF) = A2φ(E)φ(F) for every E, F ∈ TpH n+r

s+r ′ . By Corollary 2.3.14 in [Wol],

φ extends to an isometry on H n+r
s+r ′, denoted by f : H n+r

s+r ′ → H n+r
s+r ′, satisfying f (p) = q

and f∗p = φ. From Theorem 2.4 it follows that f induces an isometry f̃ on B, such that
f̃ ◦ π = π ◦ f . Hence π1 and π2 are equivalent. ✷

THEOREM 3.15. If π1, π2 : CH 2n+1
2s+1 → HH n

s are two semi-Riemannian submersions

with connected complex totally geodesic fibres from a complex pseudo-hyperbolic space, then

π1 and π2 are equivalent.

PROOF. Let θ : H 4n+3
4s+3 → CH 2n+1

2s+1 be the canonical semi-Riemannian submersion.

By Theorem 2.5 in [Esc2], we see that π̃1 = π1 ◦ θ : H 4n+3
4s+3 → HH n

s and π̃2 = π2 ◦ θ :

H 4n+3
4s+3 → HH n

s are semi-Riemannian submersions with totally geodesic fibres. We denote

by Ã1, Ã2, A1, A2, A O’Neill’s integrability tensors of π̃1, π̃2, π1, π2, θ, respectively.
In order to reduce the proof of the equivalence theorem of semi-Riemannian submersions
from a complex pseudo-hyperbolic space to that from a pseudo-hyperbolic space, we need to
establish relations among the integrability tensors Ã1, A1, A.

First, we prove that θ∗Ã1XY = A1θ∗Xθ∗Y for π̃1-basic vector fields X and Y . Let
p ∈ H 4n+3

4s+3 . Let w′
1, w′

2 be two orthonormal π1-vertical vectors in Tθ(p)CH 2n+1
2s+1 and let w1,
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w2 be the θ -horizontal liftings at p of w′
1, w′

2, respectively. Let w3 be a unit θ -vertical vector
in TpH 4n+3

4s+3 . Then {w1, w2, w3} gives an orthonormal basis of Ṽ1p. Since the induced metrics
on the fibres of π̃1 are negative definite, we have

Ã1XY = −g(∇XY,w1)w1 − g(∇XY,w2)w2 − g(∇XY,w3)w3 .

Thus

θ∗Ã1XY = −g
′(∇ ′

θ∗X
θ∗Y, θ∗w1)θ∗w1 − g

′(∇ ′
θ∗X

θ∗Y, θ∗w2)θ∗w2 = A1θ∗Xθ∗Y

for π̃1-basic vector fields X and Y, where g
′ denotes the metric on CH 2n+1

2s+1 and ∇ ′ is the
Levi-Civita connection of g

′.
Let X be the π̃1-horizontal lifting along the fibre π̃−1

1 (π̃1(p)) of some unit vector in

Tπ̃1(p)HH n
s . Let Y1, Y2, Y3 be the π̃1-horizontal liftings along the fibre π̃−1

1 (π̃1(p)) of
π̃1∗Ã1Xw1, π̃1∗Ã1Xw2, π̃1∗Ã1Xw3, respectively. Let vi = Ã1XYi for i ∈ {1, 2, 3}. As in
Theorem 3.3, we choose w3 = g(X,X)−1

(

∇v1v2
)

(p), which implies that v3 = ∇v1v2 (see
Lemma 3.6).

We remark that v3 = Ã1XY3 is a θ -vertical vector field along the fibre θ−1(θ(p)). Indeed,
we have

θ∗(Ã1XY3(p
′)) = (A1θ∗Xθ∗Y3)(θ(p′)) = (A1θ∗Xθ∗Y3)(θ(p)) = θ∗(Ã1XY3(p))

= θ∗(A1XA1Xw3) = g(X,X)θ∗w3 = 0

for any p′ ∈ θ−1(θ(p)).
Since v1, v2 are orthogonal to the vertical vector field v3 along θ−1(θ(p)), we see that

v1, v2 are θ -horizontal. Since θ∗(Ã1XYi(p
′)) = (A1θ∗Xθ∗Yi)(θ(p′)) for p′ ∈ θ−1(θ(p))

and for i ∈ {1, 2}, we obtain that v1, v2 are θ -basic vector fields along θ−1(θ(p)). Thus
h∇v3v1 = Av1v3 along θ−1(θ(p)). Here h and v denote the θ -horizontal and θ -vertical
projections, respectively. We also obtain that v∇v3v1 = −g(∇v3v1, v3)v3 = 0. Therefore,
Av1v3 = ∇v3v1 = v2 along θ−1(θ(p)).

We shall prove that Ã1Xv3 = AXv3 along θ−1(θ(p)) for every π̃1-basic vector field X

along π̃−1
1 (π̃1(p)). We first obtain along θ−1(θ(p)) that

Ã1Xv3 = ∇Xv3 + g(∇Xv3, v1)v1 + g(∇Xv3, v2)v2 + g(∇Xv3, v3)v3 ,

g(∇Xv3, v1) = g(AXv3, v1) = −g(v3, AXv1) = g(v3, Av1X) = −g(Av1v3,X)

= −g(v2,X) = 0

for a π̃1-basic vector field X along π̃−1
1 (π̃1(p)). Analogously, we get g(∇Xv3, v2) = 0. Thus

Ã1Xv3 = ∇Xv3 + g(∇Xv3, v3)v3 = AXv3

along θ−1(θ(p)) for every π̃1-basic vector field X along π̃−1
1 (π̃1(p)).

Let L̃ = {L0 = X, Ã1L0v1, Ã1L0v2, Ã1L0v3, . . . , Ln−1, Ã1Ln−1v1, Ã1Ln−1v2, Ã1Ln−1v3}

be an orthonormal basis of H̃1 along the fibre π̃−1
1 (π̃1(p)) constructed as in Theorem 3.3, for

the semi-Riemannian submersion π̃1. From the proof of Theorem 3.3, we have

g(Ã1Ã1Lj
v1

v3, Ã1Llv2) = 0
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for j �= l, and
g(Ã1Ã1Lj

v1
v3, Lt ) = 0

for 0 ≤ j, t ≤ n − 1. We then obtain along π̃−1
1 (π̃1(p)) that

g(Ã1Ã1Lj
v1

v3, Ã1Lj v2) = −g(v3, Ã1Ã1Lj
v1

Ã1Lj v2)

= −g(v3,∇v1v2)g(Lj , Lj )

= −g(v3, v3)g(Lj , Lj ) = −g(v2, v2)g(Lj , Lj )

= g(Ã1Lj v2, Ã1Lj v2) ,

from which follows Ã1Lj v2 = Ã1Ã1Lj
v1

v3. Hence Ã1Lj v2 = AÃ1Lj
v1

v3, because Ã1Lj v1 is

π̃1-basic. We also have Ã1Lj v3 = ALj v3.

Let L = L̃ ∪ {v1, v2}. Summarizing all the above, we obtain that

L = {L0, AL0v3, Ã1L0v1, AÃ1L0 v1
v3, . . . , Ln−1, ALn−1v3, ÃLn−1v1, AÃ1Ln−1v1

v3, v1, Av1v3}

is an orthonormal basis of the θ -horizontal space H along the fibre θ−1(θ(p)) and L satisfies
all conditions imposed in the construction of the basis L in the proof of Theorem 3.3. We
notice that v3 = AXY3 along θ−1(θ(p)), and that along θ−1(θ(p)), Y3 is equal to the θ -
horizontal lifting of θ∗AXw3.

Let q ∈ H 4n+3
4s+3 . Let

L̃
′ = {L′

0, Ã2L′
0
v′

1, Ã2L′
0
v′

2, Ã2L′
0
v′

3, . . . , L
′
n−1, Ã2L′

n−1
v′

1, Ã2L′
n−1

v′
2, Ã2L′

n−1
v′

3}

be an orthonormal basis of H̃2 along π̃−1
2 (π̃2(q)) constructed in the same way as L̃, but

for the semi-Riemannian submersion π̃2 (see the proof of Theorem 3.3), in such a way that
gp(Lα, Lβ ) = gq (L′

α, L′
β) for 0 ≤ α, β ≤ n−1, gp(vi , vj ) = gq (v′

i, v
′
j ) for 1 ≤ i, j ≤ 3, and

v′
3(q) = (∇v′

1
v′

2)(q). Let φ : TpH 4n+3
4s+3 → TqH 4n+3

4s+3 be the linear map given by φ(vi) = v′
i ,

φ(Ã1Lαvi) = Ã2L′
α
v′
i for 0 ≤ α ≤ n − 1 and for 1 ≤ i ≤ 3.

By Corollary 2.3.14 in [Wol], φ extends to an isometry f : H 4n+3
4s+3 → H 4n+3

4s+3 such that

f (p) = q and f∗p = φ. By the proof of Theorem 3.3, we have f∗Ã1EF = Ã2f∗Ef∗F for
every E, F ∈ TpH 4n+3

4s+3 . By the proof of Theorem 3.14 and by Theorem 2.4, f induces an

isometry on CH 2n+1
2s+1 , denoted by f̃ : CH 2n+1

2s+1 → CH 2n+1
2s+1 , such that θ ◦ f = f̃ ◦ θ . Since

the π1-vertical space at θ(p) is spanned by {θ∗v1, θ∗v2}, since the π2-vertical space at θ(q) is
spanned by {θ∗v

′
1, θ∗v

′
2}, and since f̃∗(θ∗vi) = θ∗v

′
i , for i ∈ {1, 2}, we see that f̃∗ maps the

π1-vertical space at θ(p) into the π2-vertical space at θ(q). For π̃1-horizontal vectors X and
Y we obtain

f̃∗A1θ∗Xθ∗Y = f̃∗θ∗Ã1XY = θ∗f∗Ã1XY

= θ∗Ã2f∗Xf∗Y = A2θ∗f∗Xθ∗f∗Y

= A2f̃∗(θ∗X)f̃∗(θ∗Y ) .

Therefore, by Theorem 2.4, we see that π1 and π2 are equivalent. ✷
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REMARK. We notice that our equivalence theorems can be applied, in particular, to
Riemannian submersions from a sphere with totally geodesic fibres of dimension less than or
equal to 3, and for Riemannian submersions with complex totally geodesic fibres from a com-
plex projective space. Unlike those in [Esc1], [Esc2], [Ran1], our proofs of the equivalence
theorems are intrinsic, we do not need to assume the existence of any specific structure on the
base space, such as complex or quaternionic one. In Theorem 3.15, we need to assume only
that the fibres are 2-dimensional and that the induced metrics on fibres are negative definite.

Summarizing all results above, we now prove the main theorems.

PROOF OF THEOREM 1.1. If s + r ′ > 1, then H n+r
s+r ′ is simply connected and hence,

by Theorem 3.3, B is an isotropic semi-Riemannian manifold and r ∈ {1, 3}. By Propositions
3.11 and 3.13, we see that the base space of the semi-Riemannian submersion is isometric
to a complex pseudo-hyperbolic space if the dimension of fibres is one, or to a quaternionic
pseudo-hyperbolic space if the dimension of fibres is 3. In Theorem 3.14 we solved the
equivalence problem. The existence problem is solved by the explicit construction given in
the preliminaries (see Examples 1 and 2).

If s + r ′ = 1, then either (i) s = 1, r ′ = 0, or (ii) s = 0, r ′ = 1.
(i) If s = 1, r ′ = 0, then, by the proof of Proposition 3.11, B has constant curvature.

By Theorem 3.3, (1) we get n = k(r + 1) ≥ 2, since r ≥ 1. Hence, by Lemma 3.12, there are
no such semi-Riemannian submersions.

(ii) If s = 0, r ′ = 1, then π is a semi-Riemannian submersion from an anti-de Sitter
space onto a Riemannian manifold. By [Mag], π is equivalent to the canonical submersion
π : H 2m+1

1 → CHm. This falls in the case (a). ✷

PROOF OF THEOREM 1.2. If the dimension of the fibres is less than or equal to 3, then,
by Theorem 1.1, π is equivalent to the canonical semi-Riemannian submersions:

(a) H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m, or

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

Now we assume that the dimension of the fibres is greater than or equal to 4.
(A) If we assume that the dimension of the fibres is greater than or equal to 4 and B

is an isotropic semi-Riemannian manifold with non-constant curvature, then, by Proposition
3.11, B is isometric to CaH 2

t , t ∈ {0, 1, 2}, and the dimension of the fibres is r = r ′ = 7.
By Proposition 2.7, there are no such semi-Riemannian submersions with base space CaH 2

t .
Therefore, the assumptions (A) and r ≥ 4 imply that B has constant curvature, and hence, by
Lemma 3.12, we obtain s = index(B) ∈ {0, dim(B)}.

(B) If index(B) = 0 and r ≥ 4, then, by [Ba-Ia], the semi-Riemannian submersion π

is equivalent to the canonical semi-Riemannian submersion H 15
7 → H 8(−4). If index(B) =

dim(B), then, by Lemma 3.7, we get r ′ = r . By changing the signs of the metrics on the base
and on the total space, π becomes a Riemannian submersion with connected totally geodesic
fibres from a sphere onto a Riemannian manifold. So, by [Esc1] and [Ran1], one obtains the
conclusion. ✷
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PROOF OF THEOREM 1.3. Let θ : H 2n+1
2s+1 → CH n

s be the canonical semi-Riemannian

submersion. By Theorem 2.5 in [Esc2], one obtains that π ◦ θ : H 2n+1
2s+1 → B is a semi-

Riemannian submersion with connected totally geodesic fibres.
(A) If the dimension of the fibres of π is r and 1 ≤ r ≤ 2, then the dimension of the

fibres of the semi-Riemannian submersion π ◦ θ is less than or equal to 3 and greater than or
equal to 2. By Theorem 1.1, B is isometric to HHm

t and 2n + 1 = 4m + 3, 2s + 1 = 4t + 3.
Then n = 2m + 1, s = 2t + 1. By Theorem 3.15, we see that π : CH 2m+1

2t+1 → HHm
t is

equivalent to the canonical semi-Riemannian submersion.
(B) and (C) If B is an isotropic semi-Riemannian manifold or if index(B) ∈ {0, dim B},

then, by Theorem 1.2, π ◦ θ is equivalent to one of the following canonical semi-Riemannian
submersions:

H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m ;

H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m ;

H 15
7+8t → H 8

8t (−4) , t ∈ {0, 1} .

If the dimension of the fibres of π is greater than or equal to 3, then the dimension of the
fibres of π ◦θ is greater than or equal to 4. Hence, in this case, π ◦θ is equivalent to H 15

7+8t →

H 8
8t(−4), t ∈ {0, 1}. For t = 1, the semi-Riemannian submersion π is, after a change of signs

of the metrics on the total space and on the base space, of type π : CP 7 → S8(4). For t = 0,

π is of type π : CH 7
3 → H 8(−4). In [Ran1] (for case t = 1) and [Ba-Ia] (for case t = 0),

it is proved that there are no such semi-Riemannian submersions with totally geodesic fibres.
We proved that the dimension of fibres of π is less than or equal to 2. ✷

PROOF OF THEOREM 1.4. We suppose that there are such semi-Riemannian submer-
sions. It is well-known that any quaternionic submanifold in HH n

s is totally geodesic. Let
η : H 4n+3

4s+3 → HH n
s , ξ : CH 2n+1

2s+1 → HH n
s , be the canonical semi-Riemannian submersions.

By Theorem 2.5 in [Esc2], we see that π ◦ η : H 4n+3
4s+3 → B is a semi-Riemannian submersion

with connected totally geodesic fibres. We remark that the dimension of the fibres of π ◦ η

is greater than or equal to 4. Thus, by Theorem 1.2, we see that π ◦ η is equivalent to the
canonical semi-Riemannian submersion

H 15
7 → H 8(−4) , or H 15

15 → H 8
8 (−4) .

It follows that π is one of the following types:
(i) π : HH 3

1 → H 8(−4), or
(ii) π : HH 3

3 → H 8
8 (−4).

In [Ucc], Ucci proved that there are no Riemannian submersions with fibres HP 1 from HP 3

onto S8(4). Therefore, Case (ii) is not possible.
The fibres of semi-Riemannian submersion π ◦ ξ : CH 7

3 → H 8(−4) are totally geo-
desic by Theorem 2.5 in [Esc2], and complex submanifolds, since the horizontal lifting of
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the tangent space of the quaternionic line π−1(π(p)) is invariant under the canonical com-
plex structure on CH 7

3 . By [Ba-Ia], there are no semi-Riemannian submersions with complex
totally geodesic fibres from CH 7

3 onto H 8(−4). Thus Case (i) is impossible. ✷
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[Ian] S. IANUŞ, Differential geometry with applications to the theory of relativity, (in romanian) Ed. Academiei

Române, Bucureşti, 1983.
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