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ABSTRACT: In this study, large-deformation and small-strain elasto-plastic analysis of space frames with 
symmetric cross sections and semi-rigid connections are presented. The effect of axial forces on the bending moment 
and lateral buckling are included. However, axial-torsional and warping effects are omitted. The Eulerian equations 
for a beam-column with finite rotation taking into account bowing effects are adopted for an elastic system and are 
extended to an inelastic system with a plastic hinge concept. The derived tangent stiffness matrix is asymmetric due 
to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation 
technique. The arc-length method was applied to trace the post-buckling range of elastic and elasto-plastic problems 
with semi-rigid connections. Nonlinear buckling and elasto-plastic collapse analyses were carried out for the 
proposed space frame to demonstrate the potential of the developed method in terms of accuracy and efficiency. 
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1.  INTRODUCTION 
 
Commonly, steel frames are analyzed and designed assuming ideal rigid joint or pin joint 
connections, however, testing shows that the connection behavior is semi-rigid. Hence, there may 
be problems or differences with the conventional design and analysis approach compared to the 
actual structural behavior. The structural post-buckling response of a semi-rigid space frame in the 
collapsed regime of deformation is still challenging and is an interesting area for analysis and 
structural design.  
 
General theoretical formulations and computational algorithms have been developed for planer and 
space frames. Both a beam-column approach, based on the member’s basic force and deformation 
relationships [1-17], and a finite element approach [18-60] have been used in developing the 
nonlinear governing equations. The cubic Hermite element is a finite element formulation that uses 
an energy principle and assumed shape functions for the displacement fields. This simple method 
for developing a nonlinear formulation for a space frame is widely used [18-29]. The 
large-deformation geometrically nonlinear analysis is carried out by various methods of treatment 
of the non-vectorial nature of rotations, the selection of coordinate systems of the stress-strain 
tensor and the linearization of variational equations. Large rotations are usually represented by 
Euler’s finite theory [30,38] and applied to both beam-column and finite element theory. Agyris et 
al. [30-34] introduced so-called semi-tangential rotations to circumvent the non-vectorial or 
non-commutative behavior of successive finite rotations about fixed axes. A total or updated 
Lagrangian method by degenerated continuum equations is developed [35,36]. Some formulations 
are derived directly from the weak form of nonlinear rod-type equations by introducing appropriate 
kinematics [37-46]. The model is often called the ‘geometrically exact finite-strain beam theory’, 
and many modern finite element developments of three-dimensional beam theories based their 
approach on the so-called geometrically exact beam theory [37,38]. An alternative way of deriving 
efficient non-linear finite element models is the co-rotational approach [47-54]. The main idea of 
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this approach is to decompose the motion of the element into rigid body and pure deformational 
parts through the use of a reference system that continuously rotates and translates with the element. 
The procedure for the co-rotational approach is similar to the Eulerian finite rotation of a 
beam-column element [3,9-15]. Izzuddin [55] adopted the Eulerian approach for large displacement 
analysis of thin-walled frames. Most of these finite element nonlinear analysis techniques are based 
on assumed displacement fields and require a large number of elements to model a structure with 
large deformation. There are some mixed hybrid elements for the objective of using one element to 
model each member [56-58] that are based on the complementary energy principle and abandon the 
assumed displacement shape for an element. There are also stress-based Cauchy formulations 
[59,60]. 
 
The material nonlinearity in a space frame has been described by means of plastic hinge 
(concentrated or lumped) [4-6,9-11,16-17,21-23,57,58] and plastic zone (distributed or spread of 
plasticity) [34,46,54,61-66] models. In the plastic hinge approach, the effect of the material 
yielding is concentrated or lumped into a dimensionless plastic hinge located at the end of the 
member. There are fewer required elements in this approach, and it eliminates the integration 
process on the cross-section for each member. The plastic hinge approach requires less 
computational effort and is less costly than the plastic zone analysis. However, the nonlinear 
material laws are valid only for limited specific geometries of the cross section. In the case of the 
plastic zone model, the member needs to be subdivided into several elements along its length and 
cross-section to model the material nonlinearity. In the literature, the material nonlinearity is often 
evaluated at a fixed number of cross sections, or moment-curvature-thrust relations [22,61] are 
derived for each cross-section. 
 
Usually, the joint flexibilities of semi-rigid components are installed by the zero length spring 
connection element at the end of member [4-6,17,58,67-71]. A procedure of static condensation is 
used to asses the effect on the element stiffness matrix and equivalent nodal forces. The minimized 
number of elements in the space frame is required to evaluate the semi-rigidity. Therefore, the 
one-element-per-member approach is usually used in the semi-rigid analysis of space frame 
formulation in elastic or elasto-plastic analysis.  
 
Studies that consider nonlinear semi-rigid connection properties in steel frames have been 
successfully conducted by many researchers. Studies by Chen and coworkers [4-6] are 
representative work in this area. In his research, he and his coworkers have performed semi-rigid 
elasto-plastic analysis with the plastic hinge concept for beam-column elements.  
 
Kato et al. [67,68] carried out semi-rigid elasto-plastic analysis of three-dimensional (3D) steel 
reticulated domes using semi-rigid and elasto-plastic springs located at both ends and at mid-span 
for each 3D beam-column element in conjunction with an updated Lagrangian formulation.  
 
Recently, Liu et al. [69] and Sekulovic [70] performed the inelastic semi-rigid analysis in static and 
dynamic case. Chiorean [71] performed the inelastic and large deflection analysis of steel space 
frames with non-linear flexible joint connections. However, these formulations were based on 
two-dimensional plane frames or small deformation theory, thereby assuming small member chord 
rotations and not considering the effect of finite rotation and bowing for large deformations in 
beam-column element formulations.  
 
In this paper, a method for large deformational post-buckling analysis of semi-rigid elasto-plastic 
space frames is presented. To develop a space frame element that reflects the rigid body motion and 
relative deformation are calculated according to the theory of Spiller [12] and Levy and Spiller [15] 
for Eulerian finite rotation of a 3D space frame. The elastic beam-column formulations of 
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Kassimali and Abbasnia [8] are also adopted. For the material nonlinearity, the equation for a 
lumped plastic hinge concept on a beam-column Abbasnia and Kassimali [11] is included. The 
effects of axial force on the member bending moment (bowing effect) in the elastic and plastic 
moment capacity are included in the analysis. The asymmetric geometric stiffness matrix, derived 
by Spiller [12], is used to include some buckling mechanisms of lateral buckling in physical 
situations. Additionally, the elastic semi-rigid connection spring formulation with the element static 
condensation procedure developed by Kato et al. [67,68] is adopted to represent the proper 
semi-rigid joint connection characteristics of beam-column elements. However, the effect of axial 
force on the member’s torsional stiffness (Wagner effect) and warping effect are omitted for 
simplicity. Finally, nonlinear elastic, plastic beyond limit, or critical point analyses were performed 
using the arc-length method [72-75]. Analysis of numerical examples for nonlinear elastic and 
plastic analysis were carried out for the proposed simple and efficient space frame element with a 
joint connection element to demonstrate accuracy and efficiency. 
 
 
2.  EULERIAN FORMULATION FOR FINITE ROTATION 
 
In the nonlinear analysis of space frames, the assumption that rotations of a body are additive has 
been widely adopted by researchers in updating the end rotations of frame elements at each 
incremental step. Such an assumption remains valid only for incremental steps with small rotations. 
For the cases with finite rotations, it is necessary to consider the non-commutative nature of 
rotations in three dimensions, such as post-buckling or bifurcation, which makes these space frames 
more difficult to analyze than trusses or plane frames in nonlinear analysis. In this paper, we used 
the previous work of Spiller [12] and Levy and Spiller [15] for the Eulerian finite rotation of 3D 
space frames, which is briefly described as follows. 

rotation axis

α

n

O

oldx
newx

 
Figure 1. Rotation about an Axis 

 
If an old position oldx  of a body is rotated to new position newx , Euler's Theorem of rigid body 

motions implies that any finite rotation (or sequence of rotations) can be described as a single 
rotation   about some fixed axis described by a unit vector,    321 ,, nnnn  , as shown in Figure 

1. The new position vector newx  is described by the old position vector oldx , the rotation   and 

the fixed axis unit vector n  as follows: 
 

      oldoldoldoldnew xnnnxxxx    sincos1           (1) 
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We can obtain the following matrix representation of finite rotations: 
 

oldnew xRx
~                     (2) 
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( IRRRxx  newold                  (3) 

 
where R  is the rotation matrix in terms of the   and the components of n  as follows: 
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with  cos1 . 
 
Based on Euler's finite rotation formula, the rotation matrix is necessary to describe both joint 
rotations and member rigid body rotations. The matrix can be derived from the so-called Rodriguez 
rotation vector, a rotation about a fixed axis represented by a unit vector, and a scalar angle of 
rotation. Thus, a 3D rotation can be represented by a vector-like entity, but such entities cannot be 
added like vectors. Furthermore, it is assumed that these vector-like entities possess Taylor series 
expansions whose increments are the small rotation vectors of linear structural analysis [12,15]. To 
separate the large rigid body deformations of a member from its relative deformations, which are 
assumed to be small, a Eulerian or local member coordinate system was used, as shown in Figure 2. 
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Figure 2. Relative Member Deformations 
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In Figure 2, the unit vector of the non-deformed member axis is in , and the unit vector of the 

deformed member axis is in .  

 
Furthermore, the unit vectors of the deformed member axis at joints 1 and 2, 

1n  and 
2n , can be 

represented by Euler's joint rotation matrices, 1R  and 2

~
R . The unit vector of the non-deformed 

member axis, in , can be represented as follows. 

 

inRn 11

~                     (5) 

 

inRn 22

~                     (6) 

 
The rotation vector at joint 2, 2 , can be represented by the cross product of the member unit 

vector, in , and the deformed member unit vector, 
2n , at joint 2 with properties as follows: 

 
 22 nni                     (7) 

 
  2

1
2 cos nni                    (8) 

 
The end of member rotation vector for joint 1, 1 , is represented as follows: 
 

1221                       (9) 
 
where 12  is the rotation of joint 1 with respect to joint 2. This equation simply describes the 

vector form of the matrix product, 2

~
RR .  

 
From this simple and exact formulation of Euler's finite rotation [12,15], we can calculate the exact 
member end rotations, 1 , 2  which is separated the rigid body rotations. In the case of 
geometrically nonlinear large displacement analysis of space frame, the exact member rotational 
deformation is relatively small, because of its large rigid body rotation occurrence. The formulation 
of this study is valid for the elastic, elasto-plastic large deformation analysis of space frame element 
with beam-column equations. The accuracy and efficiency are demonstrated in verification 
examples lately. 
 
 
3.  ELASTIC SPACE FRAME ELEMENT 
 
To analyze the plastic collapsing and post-buckling of the space frame, one should include the 
formulation of a large deformational effect. In this study, the beam-column element with a bowing 
effect [3,8,9] was used as the basic element equation, and then those 2D beam-column element 
equations were expanded to incorporate the element tangent stiffness matrix. The direct 3D 
beam-column elements that account the lateral-torsional effect are described in the literature 
[13-15]; however, these formulations are too complex for the elasto-plastic post-buckling analysis 
of a semi-rigid space frame. Therefore, in this study, the well-known two-dimensional (2D) 
beam-column equations are adopted for numerical efficiency. The coupling effect of the member 
axial-torsional and warping effects are omitted. 
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3.1  Beam-column Equation 
 
The member force of the space frame element shown in Figure 3 can be written by the 2D 
beam-column equations [3,8,9], which include the effect of member displacement upon the bending 
moment to the end. As a result, the member stiffness becomes a function of the axial load. 
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Figure 3. Relative Member Deformations and Corresponding Forces 

 
As is shown in Figure 3, j1  and j2  are the relative member end rotations calculated by Eqs. 7 

and 9, where t  is linear axial twist, u  is axial displacement, A  is the area of cross section, E  

is the modulus of elasticity, jI  is the moment of inertia about the jX -axis, GJ  is the torsional 

rigidity, jc1  and jc2  are the stability functions for bending about the jX -axis, bjc  is the length 

correction factor caused by flexural deformation (bowing) about the jX -axis, and jb1  and jb2  

are the bowing functions of the axial force parameter q , defined in Eq. 15. 
 

jEuler EI
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Q

Q

Q
q

2

2


                     (15) 

 
The expression for the member axial force, Q  in Eq. 13 contains bowing functions jb1  and jb2 , 

which are functions of the axial force parameter, q . Therefore, Eq. 13 is a nonlinear function. A 
computational difficulty arises in determining Q  from the axial displacement, u . An iterative 
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procedure must be employed to compute the axial force of a member and can be solved using the 
following process.  
 
Noting that q  is the only unknown quantity in Eq. 13, let a new function, )(qK , be defined as 
follows: 
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                  (16) 

 
A new value of 1iq  is obtained from the first order Taylor series expansion,  
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where )(qK   is the derivative of )(qK  with respect to the axial force parameter, q , and 
represented as follows: 
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where AIL //  and II jj / , in which I is an arbitrary reference moment of inertia and 

ijb  is a differentiation of the bowing function with respect to q . An approximate solution to this 

equation for iq  is initially assumed, and the iteration is performed until iq  is sufficiently small. 

After determining the axial force Q  by the iterative process, member end moments were 
computed from Eqs. 10-12. A detailed description of Eqs. 10-18 and the corresponding variables 
are explained in references [3,8,9]. 
 
3.2  Approximate Beam-Column Equation 
 
Computational difficulties are occasionally encountered in post-buckling analysis when the closed 
form of the stability and bowing functions and their derivatives become singular at 0q . The 

explicit expressions for the stability function, jc1  and jc2 , and the bowing function, jb1  and jb2 , 

in terms of the axial force parameter q  can be written as a series expression [9]. By using the 
following series expressions, these difficulties can be avoided. However, these equations are only 
theoretically valid for low absolute values of axial force. 
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The approximate beam-column equation can be obtained by substituting Eqs. 19-22 for the member 
force equations Eqs. 10-13. 
 
By substituting Eq. 19 and 20, the member force equation of the approximate beam-column 
equation can be obtained as follows: 
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Teh [52] called the finite element formulated beam element that used the approximate 
beam-column equation as co-rotational cubic element. And these formulations were used in some 
references [47,48]. Though, this expression is an approximated expression of the closed form of 
Eqs. 10-13, it has shown satisfying results compared to a beam-column element with one element 
per member [47] or two elements per member [48] with a symmetric tangent stiffness matrix and 
joint rotation matrix. Lately, several formulations have been proposed in the literature [52,76-79] to 
improve the shortcomings of the cubic element and the conventional stability-based beam-column 
element. The improved formulation of co-rotational cubic elements by Teh and Clarke [52] used the 
asymmetric tangent stiffness matrix and shows more accurate results. Liew et al. [79] used the 
symmetric portion of the induced moment matrix alone, which is referred to as the joint moment 
matrix and needs to be assembled to form the structure tangent stiffness matrix. 
 
3.3  Tangent Stiffness Matrix for Large Deformation 
 
In this study, the beam-column approach in section 3.1 is applied to elastic and elasto-plastic 
post-buckling problems, and the so-called approximate beam-column element in section 3.2, which 
is similar to the formulation of the co-rotational form of cubic element, is applied to the analysis of 
elastic problems alone. The non-commutative nature of finite rotation in section 2 yields an 
asymmetric tangent stiffness matrix in both cases.  
 
The member force-deformation relationships of Eqs. 10-13 may be rewritten as follows: 
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And the incremental form of the member equation is written as follows: 
 

uts                        (29) 
 
Where t  is the element stiffness matrix according to the incremental member displacement u  
in the local coordinates, as shown previously in Eqs. 10-13 and 23-26. By using the incidence 
matrix B , the element nodal force and nodal displacement can be written as follows: 
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uBd                         (30) 
 

sBf                         (31) 
 
Conventionally, the element nodal force in global coordinates F  can be written from the rotation 
matrix R : 
 

sBRfRF                       (32) 
 
Eq. 32 could be interpreted as a member equilibrium equation in a global coordinate system. The 
tangent stiffness matrix of the beam-column can be obtained from the differential form with respect 
to the incremental displacement [12,15]: 
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The first term in Eq. 33 becomes the elastic stiffness matrix. The second and third terms become 
the geometric stiffness matrix. S

GK  and R
GK  indicate the stretching and rotational terms of the 

geometric stiffness. The rotational geometric stiffness matrix, R
GK , is asymmetric [12,15] due to 

the non-commutative nature of finite rotation, and this geometric stiffness matrix is responsible for 
the lateral-torsional buckling and the buckling mode shape at the critical point (limit or bifurcation). 
However, the geometric stiffness matrix does little to affect the material nonlinear problems.  
 
 
4.  INELASTIC EFFECT  
 
The plastic hinge concept was applied to account for the material nonlinearity. The material was 
assumed to be ideally elasto-plastic without strain-hardening or unloading effects. The yielding is 
concentrated at the member’s ends in the forms of plastic hinges. 
 
The members were assumed to remain elastic between plastic hinges with the large deformation 
formulation as mentioned in the previous section, and the yielding criterion [11] of the plastic hinge 
assumed to be as follows: 
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where yQ , 1pM  and pjM  are the axial yielding force, the plastic torsional moment capacity in 

the absence of axial force and bending moments, and the uniaxial plastic moment capacity for 
bending about the jX -axis, respectively. Q , tM  and ijM  are the axial force, torsional moment 

and moment at end i about the jX -axis when the plastic hinge forms, respectively. 

 
When plastic hinges are present, the member end rotations at the released ends are obtained from 
the relative member force-deformation relationships instead of the orientation matrices of the 
adjacent joints [11]. In each of the foregoing cases, the relative twisting of the member ends is 
given as follows: 
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t                        (35) 

 
Eq. 35 performs an important role in plastic analysis when the torsional moment governs the 
structural behavior, such as in Example 6.4, a horizontal bent frame.  
 
A more comprehensive explanation and numerical results are discussed below. As explained above, 
the axial force and bending moment are coupled when beam-column equations are employed, and 
the member end release effect may occur and influence the member equilibrium when the plastic 
hinges occur. Therefore, the iterative procedures of Eqs. 16-17 are required with the modification of 
Eq. 18, which accounts for the release end effect by the following equation: 
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5.  SEMI-RIGID CONNECTION ELEMENT 
 
To consider the semi-rigid connection characteristics of member ends, the elastic connection spring 
formulation of Kato [67] was adopted as shown in Figure 4. The overall stiffness matrix of the 
compound element can be computed with the static condensation technique.  
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Figure 4. Semi-rigid Connection Spring Element 

 
The member is modeled to be composed of the elements in the order as follows: (1) a rigid panel 
element of (1-a); (2) an elastic spring ( 1sK ) to represent the left end semi-rigid joint 

connection(a-b); (3) an elastic beam-column element ( BK ) between nodes b and c to include the 

large deformation behavior of the member with plastic hinges ( 1HP , 2HP ) (b-c); (4) an elastic spring 

( 2sK ) to represent the left end semi-rigid joint connection (c-d); and (5) a rigid panel element (d-2). 
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Equilibrium equations for elastic springs, denoted by a-b and c-d at both ends of each member, can 
be given by specific kinematics for outer and inner nodes. At the left connection a-b with 1sK , for 

example, the relationship of force-deformation can be written as follows: 
 

 abxab uuknn  1                  (38-a) 

 
 222122 abab kmm                   (38-b) 

 
 333133 abab kmm                   (38-c) 

 
Where au , 2a , 3a  and bu , 2b , 3b  are the axial displacements and the rotations about the 

jX -axes, respectively. The elastic constants, xk1 , 21k  and 31k , are the axial rigidity and the 

bending rigidities of the spring, 1sK . Thus, the matrix form of Eq. 38 is as follows: 
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Usually, the elastic constants, xk1 , 21k  and 31k  of the spring 1sK  would be determined by 

experimentation or with a previously proposed model [5]. 
 
The extended form of Eq. 39 for 12-dof of the spring end node a-b can be written as follows: 
 

absab dKF 1                       (40) 

 
Where the force and displacement vectors abF , abd  and spring stiffness matrix 1sK  are written 

as follows: 
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The stiffness matrix of member end node 1, 2 is represented from the rigid zone-spring 
displacement relationship matrix 1b  and 2b  for each end node 1 and 2, respectively: 
 

sss
T
ss

T bKbKbKbK  21111 ,                  (44) 
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Where 1b  and 2b  can be written as follows: 
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The incremental equilibrium equation of a composed member can be written (as follows) for each 
semi-rigid spring and beam-column element: 
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where the tangent stiffness matrix bK  and force vector at each end node of b and c, beamb,F and 

beamc,F , are the components of the elasto-plastic beam-column element with plastic hinges that were 

explained in the previous chapter, and 1P  and 2P  are the external load vector for each outer node, 

1 and 2. Thus, 21 ,,, gggg cb  are the semi-rigid spring force vectors and can be written as follows: 
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The reassembled form of Eq. 47 for each inner (b, c) and outer (1, 2) node is as follows: 
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From the static condensation procedure, the equilibrium equation of the composed element of 
Figure 4 can be written as follows: 
 

FPdK  1212                      (52) 
 
Where  
 

TBBCAK 1                      (53) 
 

bcGBCGF 1
12

                     (54) 

 
Figure 5 illustrates the various modeling capacities of the proposed semi-rigid, elasto-plastic 
beam-column element. The formulation of the proposed element was obtained from the previous, 
well-defined research of Spiller [12], Levy and Spiller [15], Kassimali and Abbasnia [8], Abbasnia 
and Kassimali [11] and Kato [67].  The numerical accuracy and capacity were verified by the 
following examples. 

Rigid joint

Semi-rigid connection

Plastic hinge

Semi-rigid connection 
with plastic hinge

Elastic 
Beam-column element

Elastic 
Beam-column element

Elasto-plastic 
Beam-column element

Elasto-plastic 
Beam-column element

 
Figure 5. Various Modeling Capacities of the Proposed Element 

 
 
6.  VERIFICATION EXAMPLES 
 
In an effort to assess the computational merits and limitations of the method of large deformation 
semi-rigid elasto-plastic analysis presented here, various numerical examples were solved with the 
proposed approach, and comparisons were made with previously published results. To trace the 
complete load-deflection curve, the arc-length method was adopted. 
 
Examples 6.1 and 6.2 are presented to demonstrate the accuracy of the proposed beam-column 
element (section 3.1) and approximate beam-column element (section 3.2) in conducting 
large-deformational elastic post-buckling analysis. Example 6.3 verifies the semi-rigid elastic 
post-buckling analysis. Example 6.4 verifies the plastic analysis of the bent frame which is 
governed by the tosional moment. Examples 6.5 and 6.6 verify the semi-rigid plastic collapse 
analysis. 
 
Example 6.1: Williams’ toggle frame 
 
Williams' toggle frame has been analyzed by many researchers to verify the numerical accuracy of 
their studies. Williams solved this frame using analytical and experimental tests. Papadrakakis [7] 



287                                               K.S. Lee and S.E. Han                                               
 

solved this problem by using the beam-column approach. Meek and Tan [47] used the so-called 
co-rotational finite element approach. Liew et al. [79] used the improved cubic element approach 
that accounts for some coupling effects. Wood and Zienkiewicz [35] employed a total Lagrangian 
finite element formulation in a continuous approach with five isoparametric elements per member.  
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Figure 6. Williams' Toggle Frame: Geometry and Load-deflection Curves 

 
The results of this problem, as obtained in this study, are illustrated in Figure 6 with one element 
per member as Papadrakakis [7], Meek and Tan [47] and Liew et al. [79]. The load-deflection 
curves are in good agreement with previous result curves. The load-deflection curve determined 
using the proposed beam-column element with a bowing effect is very close to the results predicted 
by Paradrakakis [7] and Liew et al. [79]. Our results without the bowing effect are similar to the 
results of Liew et al. [79] after the limit point of the post-buckling range, which did not consider the 
bowing effect. The load-deflection curve of the approximate beam-column approach is in good 
agreement with the curve of Meek and Tan [47]. 
 
Example 6.2: 12-member hexagonal space frame 
 
The geometry and load-deflection curves for the 12-member frame dome are illustrated in Figure 7. 
The boundary conditions for this problem are roller and pin support. The results curves obtained 
using the proposed formulation, beam-column and approximate beam-column methods are plotted 
according to the boundary conditions. The resulting curves are in good agreement with previously 
published results [7,47,48,58,79,80]. 
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Figure 7. 12-member Frame Dome: Geometry and Load-deflection Curves 

 
The load-deflection curve of the beam-column element is in accordance with Papadrakakis [7], Nee 
and Haldar [58] and Liew et al. [79] in the roller support condition and underestimates the 
load-deflection curves compared with the results of Hasegawa [80] and Nee and Haldar [58] in the 
pin-support condition. The load-deflection curves of the approximate beam-column element are in 
good agreement with Meek and Tan [47] for each boundary condition case. Chan [48] used two 
elements per member to analyze this problem using co-rotational cubic elements. Chan’s 
load-deflection curves are plotted between the curves of the beam-column and approximate 
beam-column elements for the roller support condition. This implies the well-known fact that the 
beam-column element is more exact than the FE formulate element. Generally, a larger number of 
elements per member are needed to obtain an exact solution when a finite element formulation 
space frame is used.  
 
Example 6.3: 24-member hexagonal star-shaped shallow dome 
 
This model is known as the Stardome and is used as a verification example for nonlinear analysis of 
truss models. However, Meek and Tan [47] solved this problem as a rigid jointed space frame by 
keeping the member cross sectional area but decreasing the flexural stiffness in the vertical plane. 
The geometry and section properties are shown in Figure 8. Section type-1 and Section type-2 are 
rigid joints; Section type-3 is a pin joint. As shown in Figure 9, the load-deflection of the rigid 
jointed space frame converge to that of the pin-jointed truss load-deflection curve as the stiffness of 
section decreases. Finally, the structure was found to exhibit snap-through buckling.  
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To verify the accuracy and applicability of the proposed semi-rigid connected beam-column 
element, the semi-rigid spring element, as described in Table 1, was introduced in both Section 
type-1 and Section type-2, and the structural flexibility was predicted with corresponding 
semi-rigid connection properties. 
 
As shown in Figure 9, the resulting curves determined by the approximate beam-column element 
are in good agreement with the previous results of Meek and Tan [47]. It can be seen that the 
load-deflection path of the beam-column element gradually differs from that of the approximate 
beam-column in the large deformational post-buckling range of high axial force levels. These 
phenomenon result from the omission of the higher order terms in Eqs. 19-22 of approximate 
beam-column equation.  
 
By decreasing the semi-rigidity of the connection, the structural behaviors tend to be more flexible 
and finally converge to a pin-jointed truss model, as shown in Figure 10 and Figure 11, which differ 
only in section properties.  
 

Table 1. Semi-rigid Spring Rigidities for the 24-member Shallow Dome 

 xk  2k  3k  

Semi-rigid type-1 EA  5.02 EI 5.03 EI  

Semi-rigid type-2 EA  1.02 EI 1.03 EI  

Semi-rigid type-3 EA  02.02 EI 02.03 EI  
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Figure 8. 24-member Shallow Dome: Geometry and Section Properties 
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Figure 9. 24-member Shallow Dome: Load-deflection Curves for Each Section Types 
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Figure 10. 24-member Shallow Dome: Load-deflection Curve for Semi-rigid Section Type-1 
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Figure 11. 24-member Shallow Dome: Load-deflection Curve for Semi-rigid Section Type-2 
 
Example 6.4: Horizontal bent frame 
 
The elasto-plastic analysis of a right-angle bent frame, as shown in Figure 12, was performed. The 
bent frame was subjected to a concentrated out-of-plane load in the vertical direction. A plastic 
hinge occurs at A→D→B nodes, sequentially. Shi and Atluri [57] used a yield function in which 
the interaction between the bending and torsional moments is considered, but the effect of axial 
force is neglected. Nee and Haldar [58] reported a load-deflection curve shape identical to that of 
Shi and Atluri [57] with a different yield function. Abbasnia and Kassimali [11] analyzed this 
problem with different cross section properties than those used by Nee and Haldar [58] and 
reported the behavior of large deformational rigid-body rotations. 
 
To verify the response to the problem, two types of input models were considered for Nee and 
Haldar [58] and Abbasnia and Kassimali [11]; the elasto-plastic analysis was performed for the two 
models. Figures 12 and 13 illustrate the results of the load-deflection curves and deformed 
configurations. The results of the maximum load parameter (6.68) and the load-deflection curve 
obtained in this study are in good agreement with the results of Abbasnia and Kassimali [11], as 
shown in Figure 12. When the effects of plastic torsional deformation, given by Eq. 35, are not 
considered, a small deformation response may be obtained for a bent frame, and the load-deflection 
curves converge to those of Nee and Haldar [58] and Shi and Atluri [57], as shown in Figure 13.  
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Figure 12. Horizontal Bent Frame: Geometry and Load-deflection Curve 
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Figure 13. Horizontal Bent Frame: Detailed Load-deflection Curve 
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As noted by Abbasnia and Kassimali [11], after a plastic hinge develops at nodes A and D, the 
structure becomes geometrically unstable and undergoes large rigid-body rotations to develop 
resistance to the applied load until a plastic hinge develops at node B. 
 
The results of the maximum load parameter (6.68) and the load-deflection curve obtained in this 
study are in good agreement with the results of Abbasnia and Kassimali [11], as shown in Figure 12. 
When the effects of plastic torsional deformation, given by Eq. 35, are not considered, a small 
deformation response may be obtained for a bent frame, and the load-deflection curves converge to 
those of Nee and Haldar [58] and Shi and Atluri [57], as shown in Figure 13. As noted by Abbasnia 
and Kassimali [11], after a plastic hinge develops at nodes A and D, the structure becomes 
geometrically unstable and undergoes large rigid-body rotations to develop resistance to the applied 
load until a plastic hinge develops at node B. 
 
Hodge [81] reported the corresponding value of the load parameter to be 4.9. Ueda and Yao [82] 
showed that the load parameter obtained by Hodge was the lower bound. Thus, the result of this 
example may be understood as acceptable and reasonable for elasto-plastic analysis. 
 
Example 6.5: 18-member frame dome 
 
This verification example is an 18-member frame dome used to analyze the semi-rigid 
elasto-plastic large deformational response, as shown in Figures 14 and 15. The overall 
comparative load-deflection curves that are plotted in these figures show good agreement with 
previously reported results. Paradrakakis [83] used a finite element-formulated 48-member system 
for this problem. However, many other researchers [11,34,56,57] used one element per member, as 
in this study. 
 
The results obtained using the proposed beam-column element show good agreement with the 
results of Kassimali and Abbasnia [8] until the buckling range is reached; our load-deflection curve 
proceeded until the large deformational post-buckling range, as shown in Figure 14. The elastic 
analysis capacity of the proposed elements has acceptable merit and applicability. Moreover, the 
elasto-plastic response of this problem shows good agreement with the results of Agyris et al. [34] 
and Abbasnia and Kassimali [11] until the plastic limit point. Conversely, in this study, after this 
limit point, the analysis procedure and structural response continued until plastic hinges occurred at 
node 3 with elasto-plastic large deformational behaviors.  
 
The bowing effect of the proposed beam-column element influences the comprehensive effect for 
the elastic response governed by the geometric nonlinearity but not for the plastic case. The 
load-deflection curves are closely plotted for the low axial-force level, plastic analysis case, as 
shown in Figure 14. Therefore, for the plastic analysis case, it is not necessary to consider the 
bowing effect. Such a phenomenon also occurred in Example 6.6 (below). The collapse mechanism 
for this example goes sequentially to nodes → → ; the load levels and the points at which the ① ② ③
plastic hinges occurred are marked in the figure.  
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Figure 14. 18-member Frame Dome: Geometry and Load-deflection Curve 
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Figure 15. 18-member Frame Dome: Semi-rigid Elasto-plastic Response 
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Table 2. Semi-rigid Spring Rigidities for the 18-member Frame Dome 
 xk  2k  3k  

Semi-rigid type-1 EA  3.02 EI 3.03 EI  

Semi-rigid type-2 EA  05.02 EI 05.03 EI  

 
Figure 15 shows the semi-rigid elasto-plastic response of this example. The elastic semi-rigid 
spring rigidities are described in Table 2. From the analyzed response, it can be seen that the elastic 
and plastic limit load levels are influenced by the applied semi-rigidities. The plastic hinges of 
perfect plastic material model without strain-hardening of joint  ① and ② make the structure as 
ideally pin jointed dome structures. Therefore, the load-deflection paths after plastic limit load trace 
similar curves. The elastic semi-rigid joint flexibility influences the response of elastic 
load-deflection curves but not plastic case.  
 
Example 6.6: two-story frame 
 
A two-story frame, as shown in Figure 16, was verified for the semi-rigid elasto-plastic analysis. 
Plastic zone and plastic hinge approaches were used by Argyris et al. [34] and Abbasnia and 
Kassimali [11] respectively. The load-deflection curves at node (a) in Figure 16 are illustrated in 
Figure 17. As a result, the response curve shows good agreement with results of previous work by 
Argyris et al. [34] and Abbasnia and Kassimali [11]. The bowing effect slightly influences the 
plastic response in this example, as also seen in Example 6.5 for the plastic case. The sequence of 
the plastic hinge formation or collapse mechanism is from ①→②→③→④→⑤ nodes of Figure 
16. Figure 18 shows the deformed shape of structures according to the analysis results. 
 
The four-parameter Ramberg-Osgood hysteresis model of Hart and Wilson [84] was adopted in this 
example for the y- and z-axis rotational terms. The initial stiffness of the semi-rigid springs are 
illustrated in Table 3, and the relative spring yielding values for each axis are assumed as the value 
of the connected member. According to the semi-rigid flexibility of connections with 
Ramberg-Osgood control parameters  and  , the load-deflection curves are plotted in Figure 17.  
 

Table 3. Semi-rigid Spring Rigidities for a Two-story Frame 
 xk  2k  3k  

Semi-rigid EA  04.02 EI 04.03 EI  

 
 
7.  CONCLUSION 
 
The elasto-plastic post-buckling analysis of a semi-rigid space frame is presented. The Eulerian 
finite deformation formulations were included for large deformations and small strains. The 
formulation to represent the space frame was a conventional beam-column element with a bowing 
effect. The lateral-torsional effect was included in asymmetric rotational tangent stiffness. However, 
the shear, axial-torsional and warping effects were not considered for the sake of simplicity. The 
joint connection characteristics were represented by semi-rigid spring elements. The well-known 
static condensation processes were adopted for the element stiffness and equilibrium equations. 
Highly nonlinear load-deflection curves were traced by the arc-length method with an asymmetric 
tangent stiffness matrix.  
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Figure 16. Two-story frame: geometry and properties 
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Figure 17. Two-story Frame: Load-deflection Curves 
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Figure 18. Two-story Frame: Deformed Shape 
 
The proposed simple and effective space frame element with a semi-rigid connection is the result of 
well-defined and previously reported research. The theories were combined for the purposes of 
numerical capacity and applicability. The results of the verified examples show good agreement 
with results in the literature. Moreover, in some cases, newly reported result curves and values are 
obtained. It was observed that the proposed method is reliable and accurate for studying the 
post-buckling behavior of finite deformed space frames and is applicable to various nonlinear 
problems. 
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