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Abstract We present a notion of semi-self-decomposability for distributions
with support in Z+. We show that discrete semi-self-decomposable distri-
butions are infinitely divisible and are characterized by the absolute mono-
tonicity of a specific function. The class of discrete semi-self-decomposable
distributions is shown to contain the discrete semistable distributions and the
discrete geometric semistable distributions. We identify a proper subclass of
semi-self-decomposable distributions that arise as weak limits of subsequences
of binomially thinned sums of independent Z+-valued random variables. Mul-
tiple semi-self-decomposability on Z+ is also discussed.

Keywords Discrete distributions · Infinite divisibility · Semistability · Poisson
mixtures · Probability generating functions · Weak convergence

1 Introduction

The notion of semi-self-decomposability and the related concept of semista-
bility have been the object of growing interest in recent years. Semi-self-
decomposable and semistable distributions derive their importance from the
fact that they arise as solutions to central limit-type problems. We cite the
articles by Maejima and Naito (1998), Maejima et al. (1999), Maejima (2001),
Huillet et al. (2001),Meerschaert and Scheffler (2001), and Becker-Kern and
Scheffler (2005). These concepts are also closely connected with Lévy processes,
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in particular semistable processes and semi-self-similar processes (see Choi
1994, Maejima and Sato 1999, and Sato 1999).

A distribution on the real line is said to be semi-self-decomposable of order
α ∈ (0, 1) if its characteristic function f (t) satisfies

f (t) = f (αt)fα(t) (t ∈ R), (1)

for some infinitely divisible characteristic function fα(t).
Maejima and Naito (1998) showed that semi-self-decomposable distributions

are infinitely divisible and that their Lévy measures are characterized by the
representation

ν(E) =
∫

E
dM1(x) and ν(−E) =

∫
E

dM2(x),

for every E ∈ B((0, ∞)) (the tribe of Borel sets in (0, ∞)), where for i = 1, 2,
Mi(x) is right-continuous and non-decreasing on (0, ∞), limx→∞ Mi(x) = 0,

Mi(αx) − Mi(α(x + y)) ≤ Mi(x) − Mi(x + y) ≤ 0,

and

0 <

∫ ∞

0
(1 ∧ x2) dM1(x) =

∫ ∞

0
(1 ∧ x2) dM2(x) < ∞.

Importantly, Maejima and Naito (1998) showed that the class of semi-self-
decomposable distributions coincides with the class of weak limits of subse-
quences of normalized sums of independent random variables.

Steutel and van Harn (1979) introduced the binomial thinning operation �
which they defined as follows:

α � X =
X∑

i=1

Xi, (2)

where α ∈ (0, 1), X is a Z+-valued random variable, here Z+ := {0, 1, 2, · · · },
and {Xi} is a sequence of independent identically distributed (iid) Bernoulli(α)
random variables independent of X. The authors used the operation � to intro-
duce the concepts of discrete self-decomposability and stability. A Z+-valued
random variable X is said to have a discrete self-decomposable distribution if
for every α ∈ (0, 1),

X d= α � X ′ + Xα , (3)

where X ′ and Xα are Z+-valued, α � X ′ and Xα are independent, and X ′ has
the same distribution as X. Similarly to their continuous counterparts, discrete
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self-decomposable distributions are infinitely divisible, unimodal, and can be
characterized via canonical representations of their probability generating func-
tions (pgfs). The class of discrete self-decomposable distributions contains the
discrete stable as well as the discrete geometric stable distributions. We refer to
the recent monograph by Steutel and van Harn (2004) for details and for more
on the topic of discrete self-decomposability.

The purpose of this paper is to present a notion of semi-self-decomposability
for distributions with support in Z+ that generalizes the concept of discrete
self-decomposability. Our approach parallels that of Maejima and Naito (1998)
in the continuous case. In Sect. 2, we give a definition of discrete semi-self-
decomposability that is analogous to (1). We obtain several properties, includ-
ing characterization results, of discrete semi-self-decomposable distributions.
Notably, we establish that these distributions possess the property of infinite
divisibility and that they are characterized by the absolute monotonicity of a spe-
cific function. We show that the class of discrete semi-self-decomposable distri-
butions contains the discrete semistable distributions and the discrete geometric
semistable distributions. We construct some examples and offer a counterexam-
ple that shows that, in general, discrete semi-self-decomposable distributions do
not possess the property of unimodality. In Sect. 3, we establish a connection be-
tween semi-self-decomposability on R+ and discrete semi-self-decomposability
by way of Poisson mixtures and we proceed to identify a proper subclass of
semi-self-decomposable distributions that arise as weak limits of subsequences
of binomially thinned sums of independent Z+-valued random variables. A
related limit theorem that leads to discrete semistability is also given. Finally,
multiple semi-self-decomposability on Z+ is discussed in Sect. 4.

We recall a useful characterization of infinite divisibility for distributions on
Z+ (see Theorem II.4.2 in Steutel and van Harn 2004).

Theorem 1 A distribution (pn, n ≥ 0) on Z+ with pgf P(z), 0 < P(0) < 1, is
infinitely divisible if and only if the function R(z) = P′(z)/P(z) is absolutely
monotone on [0, 1), with power series expansion

R(z) =
∞∑

n=0

rnzn (z ∈ [0, 1)), (4)

where rn ≥ 0 for every n ≥ 0 and, necessarily,
∑∞

n=0 rn/(n + 1) < ∞.

Following Steutel and van Harn (2004), we will refer to the function R(z)

(respectively, the sequence (rn, n ≥ 0)) in Theorem 1 as the R-function (respec-
tively, the canonical sequence) of (pn, n ≥ 0), or that of its pgf P(z).

2 Discrete semi-self-decomposability

Definition 1 A nondegenerate distribution (pn, n ≥ 0) on Z+ is said to be
discrete semi-self-decomposable of order α ∈ (0, 1) if its pgf P(z) satisfies
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for all |z| ≤ 1

P(z) = P(1 − α + αz)Pα(z), (5)

where Pα(z) is the pgf of an infinitely divisible distribution.
Let X be a Z+-valued random variable with pgf P(z). Noting that P(1−α+αz)

is the pgf of α�X of (2), it follows that X has a discrete semi-self-decomposable
distribution of order α ∈ (0, 1) if and only if it admits the representation (3)
with the further property that Xα has an infinitely divisible distribution.

Discrete semi-self-decomposability implies infinite divisibility.

Theorem 2 A discrete semi-self-decomposable distribution of order α ∈ (0, 1) is
infinitely divisible.

Proof Let P(z) be the pgf of a discrete semi-self-decomposable distribution of
order α ∈ (0, 1). By (5) and an induction argument, we have for all k ≥ 1,

P(z) = P(1 − αk + αkz)

k−1∏
i=0

Pα(1 − αi + αiz) (|z| ≤ 1), (6)

for some infinitely divisible pgf Pα(z). By Proposition II.6.1 in Steutel and van
Harn (2004), Pα(1 − αi + αiz) is infinitely divisible for every i ≥ 0. Closure
under convolution of infinite divisibility implies that

∏k−1
i=0 Pα(1 − αi + αiz) is

an infinitely divisible pgf. Moreover, we have by (6)

P(z) = lim
k→∞

k∏
i=0

Pα(1 − αi + αiz) (|z| ≤ 1).

Since the class of infinitely divisible discrete distributions is closed under weak
convergence, we conclude that P(z) is infinitely divisible. 	


Next, we obtain some useful characterizations of discrete semi-self-
decomposability.

Theorem 3 Let (pn, n ≥ 0) be a distribution on Z+ with pgf P(z) and let α ∈
(0, 1). The following assertions are equivalent.

(i) (pn, n ≥ 0) is discrete semi-self-decomposable of order α ∈ (0, 1).
(ii) (pn, n ≥ 0) is infinitely divisible and the function

Rα(z) = R(z) − αR(1 − α + αz), (7)

(where R(z) is the R-function of P(z)) is absolutely monotone on [0, 1).
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(iii) (pn, n ≥ 0) is infinitely divisible and its canonical sequence (rn, n ≥ 0)

satisfies for every n ≥ 0,

rn − αn+1
∞∑

j=0

( j + n
n

)
(1 − α)jrj+n ≥ 0. (8)

Proof Assume that (i) holds. By Theorem 2, (pn, n ≥ 0) is infinitely divisible.
Therefore, we have by (5) ln P(z) = ln P(1 − α + αz) + ln Pα(z). This implies
that the R-functions R(z) and Rα(z) of P(z) and Pα(z), respectively, are related
by Eq. (7) and hence (ii) follows by Theorem 1. The converse ((ii)⇒(i)) is
deduced straightforwardly from Theorem 1 applied to Pα(z) and its R-function
Rα(z) of (7). To establish ((ii)⇔(iii)), we note that if (rn, n ≥ 0) is the canonical
sequence of P(z), then by (4) and (7)

Rα(z) =
∞∑

n=0

rnzn−
∞∑

n=0

rn(1 − α + αz)n =
∞∑

n=0

(
rn−

∞∑
k=n

(k
n

)
αn+1(1 − α)k−nrk

)
zn,

for any z ∈ [0, 1). Therefore, Rα(z) is absolutely monotone if and only if (8)
holds. 	

Corollary 1 The support of a discrete semi-self-decomposable distribution
(pn, n ≥ 0) of order α ∈ (0, 1) is equal to Z+. i.e., pn > 0 for every n ≥ 0.

Proof By Theorem 2, (pn, n ≥ 0) is infinitely divisible in the discrete sense, i.e.,
the factor in the k-fold convolution (k ≥ 1) is Z+-valued. It follows that p0 > 0
(see Sect. II.1 in Steutel and van Harn 2004). Let (rn, n ≥ 0) be the canonical
sequence of (pn, n ≥ 0). If r0 = 0, then by (8) rn = 0 for every n ≥ 1. This
implies that (pn, n ≥ 0) is a degenerate distribution, which is a contradiction.
Therefore, r0 > 0 and hence p1 > 0 (as p1 = r0p0). The conclusion follows by
Corollary II.8.3 in Steutel and van Harn (2004). 	


The following result gives some characterizations of discrete self-
decomposability.

Proposition 1 Let (pn, n ≥ 0) be a distribution on Z+. The following assertions
are equivalent.

(i) (pn, n ≥ 0) is discrete self-decomposable.
(ii) (pn, n ≥ 0) is infinitely divisible and its canonical sequence (rn, n ≥ 0) is

nonincreasing.
(iii) (pn, n ≥ 0) is discrete semi-self-decomposable of order α for every α ∈

(0, 1).

Proof (i)⇒(ii) follows from Theorem V.4.13 in Steutel and van Harn (2004).
To show (ii)⇒(iii), we note that if (rn, n ≥ 0) is nonincreasing, then for every
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α ∈ (0, 1) and n ≥ 0

rn − αn+1
∞∑

j=0

( j + n
n

)
(1 − α)jrj+n ≥ rn

⎡
⎣1 − αn+1

∞∑
j=0

( j + n
n

)
(1 − α)j

⎤
⎦ = 0.

Therefore, (8) holds and (iii) follows by Theorem 3. (iii)⇒(i) is true by defini-
tion. 	


We next present an example.
Let λ > 0 and θ ∈ [0, 1). We define the function Pλ,θ (z) by

Pλ,θ (z) = exp

{
−λ

1 − z
1 − θz

}
. (9)

Pλ,θ (z) is the pgf of the compound Poisson (and therefore infinitely divisible)
distribution (pn(λ, θ), n ≥ 0) given by

pn(λ, θ) =
{

e−λ if n = 0∑n
i=1 e−λ λi

i!
(

n−1
i−1

)
(1 − θ)iθn−i if n ≥ 1.

(10)

The canonical sequence (rn(λ, θ), n ≥ 0) of (pn(λ, θ), n ≥ 0) is easily shown
to be rn(λ, θ) = λ(1 − θ)(n + 1)θn (n ≥ 0). Letting α ∈ (0, 1), we obtain by
straightforward calculations

∞∑
j=0

( j + n
n

)
(1 − α)jrj+n(λ, θ) = (1 − (1 − α)θ)−n−2rn(λ, θ).

Since 1−(1−α)θ
α

≥ 1, the inequality (8) holds if and only if
(

1−(1−α)θ
α

)2 ≥ 1
α

.

Therefore, by Theorem 3, (pn(λ, θ), n ≥ 0) is semi-self-decomposable of order
α if and only if

θ ∈ [0, (1 + √
α)−1]. (11)

Moreover, if θ ∈ [0, 1/2], then (11) holds for every α ∈ (0, 1) and therefore,
(pn(λ, θ), n ≥ 0) is discrete self-decomposable. If θ ∈ (1/2, (1 + √

α)−1], then
r0(λ, θ) < r1(λ, θ). Hence, (rn(λ, θ), n ≥ 0) is not nonincreasing, implying (by
Proposition 1) that (pn(λ, θ), n ≥ 0) is discrete semi-self-decomposable of order
α, but not discrete self-decomposable.

The next results identify some classes of discrete semi-self-decomposable
distributions.

We recall (see Satheesh and Nair 2002, Bouzar 2004) that a nondegenerate
distribution on Z+ is said to be discrete semistable with exponent γ ∈ (0, 1] and
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order α ∈ (0, 1) if its pgf P(z) satisfies for all |z| ≤ 1, P(z) �= 0 and

ln P(1 − α + αz) = αγ ln P(z). (12)

Proposition 2 A discrete semistable distribution with exponent γ ∈ (0, 1] and
order α ∈ (0, 1), and pgf P(z), is discrete semi-self-decomposable of order α. In
this case, the pgf Pα(z) of (5) has the form

Pα(z) = [P(z)]c (z ∈ [0, 1]), (13)

for some c ∈ (0, 1). Conversely, a discrete semi-self-decomposable distribution
of order α ∈ (0, 1) such that the pgf Pα(z) of (5) satisfies (13) for some c ∈ (0, 1),
is discrete semistable with some exponent γ ∈ (0, 1] and order α.

Proof The R-function of a discrete semistable distribution with exponent γ ∈
(0, 1] and order α ∈ (0, 1) is absolutely monotone and has the form (Bouzar
2004, Proposition 2.4)

R(z) = (1 − z)γ−1r1(| ln(1 − z)|) (z ∈ [0, 1)), (14)

where r1(x), defined over [0, ∞), is periodic with period − ln α. It follows that

Rα(z) = R(z) − αR(1 − α + αz)=(1 − αγ )(1−z)γ−1r1(| ln(1−z)|) (z∈[0, 1)),

or, Rα(z) = (1−αγ )R(z). Therefore, Rα(z) is absolutely monotone on [0, 1) and
Pα(z) has the form (13) with c = 1 − αγ . Semi-self-decomposability follows by
Theorem 3. Conversely, by combining (5) and (13) we obtain P(1 − α + αz) =
[P(z)]1−c, z ∈ [0, 1]. Letting γ = ln(1 − c)/ ln α, it follows that (12) holds for
every z ∈ [0, 1], and hence, by analytic continuation, for all |z| ≤ 1. Lemma 2.1
in Bouzar (2004) insures γ ∈ (0, 1]. 	


A nondegenerate distribution on Z+ is said to be discrete geometric semi-
stable with exponent γ ∈ (0, 1] and order α ∈ (0, 1) (Bouzar 2004) if its pgf P(z)

satisfies

P(1 − α + αz) = P(z)

αγ + (1 − αγ )P(z)
(|z| ≤ 1). (15)

Proposition 3 A discrete geometric semistable distribution with exponent γ ∈
(0, 1] and order α ∈ (0, 1), and pgf P(z), is discrete semi-self-decomposable of
order α. In this case, the pgf Pα(z) of (5) has the form

Pα(z) = 1 − c + cP(z) (z ∈ [0, 1]). (16)

for some c ∈ (0, 1). Conversely, a discrete semi-self-decomposable distribution
of order α ∈ (0, 1) such that the pgf Pα(z) of (5) satisfies (16) for some c ∈ (0, 1),
is discrete geometric semistable with some exponent γ ∈ (0, 1] and order α.
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Proof Let P(z) be the pgf of a discrete geometric semistable distribution with
exponent γ ∈ (0, 1] and order γ ∈ (0, 1). It follows by (15) that

Pα(z) = P(z)

P(1 − α + αz)
= αγ + (1 − αγ )P(z). (17)

Therefore, (16) holds with c = 1 − αγ . Combining (15) and (17) leads to

Rα(z)=R(z)−αR(1−α+αz)= P′
α(z)

Pα(z)
=(1−αγ )P(1−α+αz)R(z) (z ∈ [0, 1)),

where R(z) is the R-function of P(z). The absolute monotonicity of R(z) and
P(1 − α + αz) over [0, 1) implies that of Rα(z), and semi-self-decomposability
follows by Theorem 3. Conversely, we have by (5) and (16) P(1 − α + αz) =
P(z)/(c + (1 − c)P(z)), z ∈ [0, 1]. Letting γ = ln(1 − c)/ ln α, we deduce (15)
holds for every z ∈ [0, 1] and hence, by analytic continuation, for all |z| ≤ 1.
Corollary 3.1 in Bouzar (2004) insures γ ∈ (0, 1]. 	


The pgf P(z) of a discrete geometric semistable distribution with exponent
γ ∈ (0, 1] and order α ∈ (0, 1) admits the representation (Corollary 3.2 in
Bouzar 2004)

P(z) = (1 − ln H(z))−1, (18)

where H(z) is the pgf of a discrete semistable distribution with the same expo-
nent and the same order. In view of (18), any discrete geometric semistable
distribution is an exponential compounding of discrete semistable distributions.
This suggests an extension of the first part of Proposition 3 to a wider class of
discrete compound distributions.

Proposition 4 Let φ(τ) be the Laplace-Stieltjes (LST) of a self-decomposable
distribution on R+ and let H(z) be the pgf of a discrete semistable distribution
with exponent γ ∈ (0, 1] and order α ∈ (0, 1). Then the (discrete) compound
distribution with pgf

P(z) = φ(− ln H(z)), |z| ≤ 1, (19)

is discrete semi-self-decomposable of order α.

Proof We refer to Steutel and van Harn (2004), Sect. II.3, for a discussion on
compound distributions of the type (19). By self-decomposability, we have for
every τ ≥ 0

φ(τ) = φ(αγ τ)φαγ (τ ), (20)
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for some infinitely divisible LST φαγ (τ ) (see Corollary V.2.7 in Steutel and van
Harn 2004). Combining (12) (applied to H(z)), (19), and (20) yields

P(z) = φ(−αγ ln H(z))φαγ (− ln H(z)) = φ(− ln H(1 − α + αz))φαγ (− ln H(z)).

Therefore, (5) holds for P(z), with Pα(z) = φαγ (− ln H(z)). By Proposition
II.3.5 in Steutel and van Harn (2004), Pα(z) = φαγ (− ln H(z)) is an infinitely
divisible pgf. 	


The gamma distribution with LST φ(τ) = (
λ

λ+τ

)r, for some λ > 0 and r > 0,
is an example of a self-decomposable distribution on R+ from which one can
generate discrete semi-self-decomposable distributions of the type (19).

Self-decomposable distributions are unimodal as shown by Yamazato (1978)
(see also Sato 1999) for the continuous case and by Steutel and van Harn
(1979) for the discrete case. This property does not hold in general for dis-
crete semi-self-decomposable distributions. As a counterexample, we consider
the distribution (pn(λ, θ), n ≥ 0) of (10). Let θ = 0.9, λ = 5, and α = 0.01.
Since θ ∈ (1/2, (1 + √

(α))−1], it follows that (pn(λ, θ), n ≥ 0) is discrete semi-
self-decomposable of order α (but not discrete self-decomposable). Using the
computer algebra system MAPLE, calculations show that (pn(λ, θ), n ≥ 0) has
a mode at n = 0 and at n = 35.

3 Limit theorems

In this section, we identify a proper subclass of discrete semi-self-decomposable
distributions that arise as weak limits of subsequences of binomially thinned
sums of Z+-valued independent random variables.

If (Nλ(t), t ≥ 0) is a Poisson process of rate λ > 0 and X is an R+-valued
random variable independent of (Nλ(t), t ≥ 0), then the Z+-valued random
variable Nλ(X) is called a Poisson mixture with mixing random variable X. Its
pgf Pλ(z) is given by

Pλ(z) = φ(λ(1 − z)) (z ∈ [0, 1]), (21)

where φ(τ) is the LST of X.
The following result is a useful characterization of semi-self-decomposability

on R+ in terms of discrete semi-self-decomposability.

Lemma 1 An R+-valued random variable X has a semi-self-decomposable dis-
tribution of order α ∈ (0, 1) if and only if for every λ > 0, the Poisson mixture
Nλ(X) is discrete semi-self-decomposable of order α.

Proof Let φ(τ) be the LST of X. Assume X has a semi-self-decomposable
distribution of order α ∈ (0, 1) and let λ > 0. By definition, there exists an
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infinitely divisible LST φα(τ) such that φ(τ) = φ(ατ)φα(τ), τ ≥ 0. This implies,
along with (21), that

Pλ(z) = φ(αλ(1 − z))φα(λ(1 − z)) = Pλ(1 − α + αz)φα(λ(1 − z)),

for every z ∈ [0, 1]. By Theorem VI.6.4 in Steutel and van Harn (2004), φα(λ(1−
z)) is an infinitely divisible distribution on Z+. Therefore, Nλ(X) is discrete semi-
self-decomposable of order α. Conversely, assume that for every λ > 0, Nλ(X)

is discrete semi-self-decomposable of order α. Then by (5) and (21),

φ(λ(1 − z)) = φ(αλ(1 − z))Pλ,α(z) (z ∈ [0, 1)),

for some infinitely divisible pgf Pλ,α(z). Note that as an infinitely divisible pgf
(Theorem 2), φ(λ(1 − z)) �= 0 for all λ > 0 and z ∈ [0, 1]. Therefore, φ(τ) �= 0
for all τ ≥ 0. Letting φα(τ) = φ(τ)/φ(ατ), τ ≥ 0, we have for all λ > 0,
φα(λ(1 − z)) = Pλ,α(z). This implies that φα(λ(1 − z)) is an infinitely divisible
pgf. By Theorem 6.4 and Proposition VI.6.5 in Steutel and van Harn (2004),
φα(τ) must then be an infinitely divisible LST. 	


The main result of the section follows.

Theorem 4 Let (Xn, n ≥ 1) be a sequence of independent Z+-valued random
variables and α ∈ (0, 1). Let (cn, n ≥ 1) be an increasing sequence of real num-
bers such that cn ≥ 1 and cn ↑ ∞ and let (kn, n ≥ 1) be a strictly increasing
sequence in Z+ such that kn ↑ ∞. Further, assume

(i) c−1
n �

kn∑
i=1

Xi converges weakly to a Z+-valued random variable X;

(ii) lim
n→∞

cn

cn+1
= α;

(iii) lim
n→∞ max

1≤i≤kn
P(c−1

n � Xi ≥ ε) = 0, for every ε > 0.

Then X has a discrete semi-self-decomposable distribution of order α. Moreover,
X admits a Poisson mixture representation with a semi-self-decomposable mixing
distribution on R+ of order α.

Conversely, if a Z+-valued random variable X admits a Poisson mixture repre-
sentation with a semi-self-decomposable mixing distribution of order α ∈ (0, 1),
then there exist sequences (Xn, n ≥ 1), (cn, n ≥ 1) and (kn, n ≥ 1), as defined
above, that satisfy (i)–(iii).

Proof Let Qi(z) (i ≥ 1) and P(z) be the pgf’s of Xi and X, respectively. By (i)
and Theorem 8.4 in van Harn et al. (1982) (applied to the semi-group of pgf’s
Ft(z) = 1 − e−t + e−tz), t ≥ 0), the R+-valued sequence (c−1

n
∑kn

i=1 Xi, n ≥ 1)

converges weakly to an R+-valued random variable Y whose LST φ(τ) (τ ≥ 0)
is related to P(z) via the equation P(z) = φ((1 − z)), z ∈ [0, 1]. Therefore,

X d= N1(Y), where (N1(t), t ≥ 0) is a Poisson process of rate one. It is easily
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seen (due to the discreteness of the Xi’s and the definition of the operator �)
that (iii) is equivalent to

lim
n→∞ min

1≤i≤kn
Qi(1 − c−1

n ) = 1.

Letting φi(τ ) denote the LST of Xi (i ≥ 1) and noting that φi(c−1
n ) = Qi(e−c−1

n ) ≥
Qi(1 − c−1

n ), we deduce that lim
n→∞ min

1≤i≤kn
φi(c−1

n ) = 1. This in turn leads to (see

the discussion following Definition 8.1 in van Harn et al. 1982)

lim
n→∞ min

1≤i≤kn
φi(τ/cn) = 1 (τ ≥ 0),

or, equivalently,

lim
n→∞ max

1≤i≤kn
P(c−1

n Xi ≥ ε) = 0 (ε > 0). (22)

The weak convergence of (c−1
n

∑kn
i=1 Xi, n ≥ 1) to Y, combined with condition

(ii) above and (22) imply, by Theorem 2.1(i) in Maejima and Naito (1998),
that Y has a semi-self-decomposable distribution of order α. We conclude by
Lemma 1 that P(z) is the pgf of a discrete semi-self-decomposable distribution

of order α. Conversely, assume that X d= Nλ(Y) for some λ > 0 and some
R+-valued random variable Y with a semi-self-decomposable distribution of
order α. By Theorem 2.1(ii) in Maejima and Naito (1998) (note that no con-
stant term is needed in the normalized sums in their result, as shown in the
proof of the theorem), there exists a sequence (Yn, n ≥ 1) of independent
R+-valued random variables such that (c−1

n
∑kn

i=1 Yi, n ≥ 1) converges weakly
to Y, where cn > 0 and cn ↑ ∞, kn, ∈ Z+, kn ↑ ∞, (cn, n ≥ 1) satisfies (ii) and
lim

n→∞ max
1≤i≤kn

P(c−1
n Yi ≥ ε) = 0, ε > 0. Letting φi(τ ) and φ(τ) be the LST’s of Yi

and Y respectively, it follows that

lim
n→∞

kn∏
i=1

φi

(
λ

cn
(1 − z)

)
= φ(λ(1 − z)) (z ∈ [0, 1]), (23)

and (referring again to the discussion following Definition 8.1 in van Harn et al.
1982)

lim
n→∞ min

1≤i≤kn
φi(λ/cn) = 1. (24)

Define Xi
d= Nλ(Yi) for i ≥ 1. It is easily seen from (23) and (24) that (i)–(iii) are

satisfied by (Xn, n ≥ 1), (cn, n ≥ 1) and (kn, n ≥ 1) (we have assumed without
loss of generality that cn ≥ 1). 	
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Unlike the case of continuous distributions (see Maejima and Naito 1998),
there are discrete semi-self-decomposable distributions that do not arise as lim-
iting distributions under the assumptions of Theorem 4. As a counterexample,
we consider the scaled Sibuya distribution of Christoph and Schreiber (2000).
Its pgf is given by

P(z) = 1 − c(1 − z)a (z ∈ [0, 1]),

for some c ∈ (0, 1] and a ∈ (0, 1]. We assume further 0 < c ≤ 1−a
1+a . This

insures, by Theorem 1 in Christoph and Schreiber (2000), the discrete self-
decomposability of the scaled Sibuya distribution. Since P(z) cannot be the pgf
of a Poisson mixture, as it fails to satisfy P(z) ≥ 0 for all z ∈ (−∞, 1], it follows
that the scaled Sibuya distribution (with 0 < c ≤ 1−a

1+a ) cannot arise as a limiting
distribution under the assumptions (i)–(iii) of Theorem 4.

If (Xn, n ≥ 1) in Theorem 4 is a sequence of iid random variables, then, as
shown next, the limiting distribution is discrete semistable. We note that in this
case condition (iii) is necessarily satisfied.

Theorem 5 Let (Xn, n ≥ 1) be a sequence of Z+-valued iid random variables
and α ∈ (0, 1). Let (cn, n ≥ 1) be an increasing sequence of real numbers such
that cn ≥ 1 and cn ↑ ∞ and let (kn, n ≥ 1) be a strictly increasing sequence in Z+
such that kn ↑ ∞. Further, assume

(i) c−1
n �

kn∑
i=1

Xi converges weakly to a Z+-valued random variable X;

(ii) lim
n→∞

cn

cn+1
= α.

Then X has a discrete semistable distribution with some exponent γ ∈ (0, 1] and
order α. Moreover, X admits a Poisson mixture representation with a semistable
mixing distribution on R+ with exponent γ and order α. The sequence (kn, n ≥ 1)

necessarily satisfies

lim
n→∞

kn

kn+1
= γ . (25)

Conversely, if a Z+-valued random variable X has a discrete semistable distribu-
tion with exponent γ ∈ (0, 1] and order α, then there exist sequences (Xn, n ≥ 1),
(cn, n ≥ 1) and (kn, n ≥ 1), as in (25), that satisfy (i)–(ii) above.

Proof The proof of the direct statement is similar to that of Theorem 4. The
details are omitted. We simply note that Theorem 2.1 in Maejima (2001) (instead
of Theorem 2.1 in Maejima and Naito 1998) and Proposition 5.2 in Bouzar
(2004) (instead of Lemma 1) are needed. The converse is due to Bouzar (2004)
(Proposition 4.1). 	


The following characterization of discrete semistability is a direct conse-
quence of Theorem 5. The proof is omitted.
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Corollary 2 A Z+-valued random variable X has a discrete semistable distri-
bution with exponent γ ∈ (0, 1] and order α ∈ (0, 1) if and only if X admits a
Poisson mixture representation with a semistable mixing distribution on R+ with
exponent γ and order α.

Theorems 4 and 5 are extensions of results obtained by van Harn et al. (1982)
for discrete self-decomposable and discrete stable distributions. In the latter
case the statements of the theorems are expectedly stronger. The weak con-
vergence [condition (i)] is assumed to occur along the entire sequence of sums
(i.e., kn = n), condition (ii) is not needed, and condition (iii) (in Theorem 4)
is assumed to hold for kn = n. The limiting distribution will have a Poisson
mixture representation with a self-decomposable (stable) mixing distribution
on R+.

Remark The Poisson mixture representations in Theorems 4 and 5 are not

unique. In fact, if a Z+-valued random variable X can be written as X d= Nλ0(Y)

for some λ0 > 0 and some R+-valued random variable Y with a semi-self-

decomposable distribution, then for any λ > 0, X d= Nλ((λ0/λ)Y). It is easy to
see that (λ0/λ)Y has a semi-self-decomposable distribution with the exponent
and order of Y. The same argument holds for semistability.

4 Multiple semi-self-decomposability on Z+

Maejima and Naito (1998) constructed and studied a sequence of nested
subclasses of semi-self-decomposable distributions on Rd that contain the
semistable distributions (see also Maejima et al. 1999). In this section we
establish similar results for discrete semi-self-decomposable distributions. Our
results generalize those obtained by Berg and Forst (1983) for discrete self-
decomposability.

We start out by defining several classes of pgf’s.
PGF will denote the collection of all pgf’s P(z) such that P(0) < 1 and I(Z+)

will denote the subset of PGF that consists of all the pgf’s of infinitely divisible
distributions on Z+. For α ∈ (0, 1), the sequence ((DL)n(α), n ≥ 0) of subsets
of PGF is defined inductively as follows:

(DL)0(α) = {
P(·) ∈ PGF | P(·) satisfies (5) with Pα(·) ∈ I(Z+)

}
,

and for n ≥ 0,

(DL)n+1(α) = {
P(·) ∈ (DL)n(α)| P(·) satisfies (5) with Pα(·) ∈ (DL)n(α))

}
.

A distribution on Z+ whose pgf belongs to (DL)n(α) for some n ≥ 0 is said
to be n-times discrete semi-self-decomposable of order α.
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The subclass (DL)∞(α) is defined by

(DL)∞(α) =
∞⋂

n=0

(DL)n(α).

For α ∈ (0, 1), we have (by construction)

I(Z+) ⊃ (DL)0(α) ⊃ · · · ⊃ (DL)n(α) ⊃ · · · ⊃ (DL)∞(α).

Note that if DL denotes the subset of PGF that consists of the pgf’s of
discrete self-decomposable distributions, then by Proposition 1,

DL =
⋂

0<α<1

(DL)0(α).

Theorem 6 Let α ∈ (0, 1) and n ≥ 0. A pgf P(·) belongs to (DL)n(α) if and only
if P(·) belongs to I(Z+) and for every 1 ≤ j ≤ n + 1,

R(j)
α (z) =

j∑
i=0

(−1)i
( j

i

)
αiR(1 − αi + αiz) (26)

is absolutely monotone on [0, 1) [here R(·) is the R-function of P(·)].

Proof It is easily shown by induction that for every n ≥ 0, P(·) ∈ (DL)n(α) if
and only if the functions P(j)

α (·), 0 ≤ j ≤ n, defined by the recurrence relation

{
P(0)

α (z) = Pα(z)

P(j−1)
α (z) = P(j−1)

α (1 − α + αz)P(j)
α (z) 1 ≤ j ≤ n,

(27)

satisfy P(j)
α (·) ∈ I(Z+) for all 0 ≤ j ≤ n. The conclusion will follow (from

Theorem 3) if we show that R(j)
α (·) of (26) is the R-function of P(j−1)

α (·) for every
1 ≤ j ≤ n + 1. The statement is true for j = 1. Assume the statement holds
for 1 ≤ j ≤ n. Then by (27), and the argument used in the proof of Theorem 3
((i)⇔(ii)), the R-function S(·) of P(j)

α (·) satisfies

S(z) = R(j)
α (z) − αR(j)

α (1 − α + αz) z ∈ [0, 1).

Therefore, by the induction hypothesis and (26),

S(z) =
j∑

i=0

(−1)i
( j

i

)
αiR(1 − αi + αiz) +

j+1∑
i=1

(−1)i
( j

i − 1

)
αiR(1 − αi + αiz)

=
j+1∑
i=0

(−1)i
( j + 1

i

)
αiR(1 − αi + αiz),
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where the second equation is derived by way of the identity
( j+1

i

) = ( j
i

)+ ( j
i−1

)
.

Therefore, S(z) = R(j+1)
α (z), z ∈ [0, 1). 	


Next, we characterize the subclass (DL)∞(α) in terms of an invariance prop-
erty.

Theorem 7 Let α ∈ (0, 1) and P(·) ∈ PGF. Then P(·) ∈ (DL)∞(α) if and only
if (5) holds for some Pα(·) ∈ (DL)∞(α). Moreover, if H is a subclass of I(Z+)

such that for any P(·) ∈ H, (5) holds for some Pα(·) ∈ H, then H ⊂ (DL)∞(α).

Proof By definition, P(·) ∈ (DL)∞(α) implies that for every n ≥ 1, P(·) ∈
(DL)n(α) and Pα(·) ∈ (DL)n−1(α). Therefore, Pα(·) ∈ (DL)∞(α). Conversely,
assume (5) holds for some Pα(·) ∈ (DL)∞(α). It follows that P(·) ∈ (DL)0(α)

and, since Pα(·) ∈ (DL)0(α), P(·) ∈ (DL)1(α). A simple induction leads to
P(·) ∈ (DL)n(α) for all n ≥ 1. An induction argument is again used to prove
the second part of the proposition. If P(·) ∈ H, then Pα(·) ∈ I(Z+) (since H ⊂
I(Z+)). We thus have H ⊂ (DL)0(α). Assume that for n ≥ 0, H ⊂ (DL)n(α).
Then for any P(·) ∈ H, Pα(·) ∈ (DL)n(α), which implies P(·) ∈ (DL)n+1(α). 	


We denote by SS(γ , α) the subset of PGF that consists of all the pgf’s of
discrete semistable distributions with exponent γ ∈ (0, 1] and order α ∈ (0, 1).

Corollary 3 Let α ∈ (0, 1). Then

⋃
0<γ≤1

SS(γ , α) ⊂ (DL)∞(α).

Proof Let P(·) ∈ SS(γ , α) for some γ ∈ (0, 1]. We show that P(·) ∈ (DL)n(α)

for every n ≥ 0. By (14), the R-function of P(·) is absolutely monotone on
[0, 1) and can be written as R(z) = (1 − z)γ−1r1(| ln(1 − z)|) where r1(·), defined
over [0, ∞), is periodic with period − ln α. By (26), we have for n ≥ 0 and
1 ≤ j ≤ n + 1,

R(j)
α (z) =

j∑
i=0

(−1)i
( j

i

)
αγ i(1 − z)γ−1r1(| ln(1 − z)| − i ln α) (z ∈ [0, 1)).

It follows by the binomial formula and the fact that r1(·) is periodic that

R(j)
α (z) = (1 − αγ )j(1 − z)γ−1r1(| ln(1 − z)|) = (1 − αγ )jR(z),

for every z ∈ [0, 1). Therefore, R(j)(·) is absolutely monotone on [0, 1) and, by
Theorem 6, P(·) ∈ (DL)n(α). 	


By Eq. (6), we have for every k ≥ 1,

(DL)0(α) ⊂ (DL)0(α
k). (28)
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Since αk < α, (28) suggests the claim (DL)0(α1) ⊂ (DL)0(α2) for all 0 <

α1 < α2 < 1. A counterexample by way of Poisson mixtures shows the claim to
be false. We start out with an infinitely divisible distribution µ on R+ with Lévy
measure

L(dy) =
∞∑

n=0

g(2n) δ2n(dy),

where g(·) is a monotone decreasing function on R+ and δa(dy) is the Dirac
point-mass measure (at a) on the σ -algebra of Borel sets in R+. Using the exact
same argument as in Maejima and Naito (1998), Example 4.1, it is shown that µ is
semi-self-decomposable of order 1/2, but that µ is not semi-self-decomposable
of order 1/3. Therefore, by Lemma 1, there exists a Poisson mixture distribu-
tion on Z+ (with mixing distribution µ) such that its pgf P(·) satisfies P(·) ∈
(DL)0(1/2) and P(·) /∈ (DL)0(1/3).
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