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1 Introduction

Different Chern-Simons (CS) (super)gravity models based on extensions and deformations

of the Poincaré and AdS algebras have been recently introduced in the literature [1–10].

In general, apart from the vielbein and spin connection, these theories include new gauge

fields which appear as a direct consequence of the enlargement of the symmetry. Al-

though such models represent interesting gravity theories that extend General Relativity

(GR), not much is known yet about their solutions and their physical interpretations. In

three-dimensions, some progress has been recently carried out for the so-called Maxwell

algebra [11–13] and its semisimple counterpart [14, 15], also known as AdS-Lorentz al-

gebra. The general solution in the stationary sector was reported in [16] and, as a direct

consequence of a symmetry enhancement, it depends on three arbitrary functions for which

no gauge fixing was discussed. The study of non-stationary solutions with null boundary

in a CS gravity theory with Maxwell symmetry, was first reported in [17]. The general

solution was found by means of a suitable ansatz for the gauge connection consisting in the

standard Bondi-Metzner-Sachs-van der Burg (BMS) gauge for the space-time metric [18]

plus a suitable choice for the extra field content.

Asymptotic symmetries in gravitational theories, on the other hand, have attracted

great attention in the last decades due to their relation to different aspects of quantum grav-

ity [19–27]. Along these lines, three-dimensional gravity is of particular interest. Despite

the absence of local degrees of freedom, CS gravities in three dimensions present a rich

boundary dynamics and provide toy models that could realize the bulk/boundary duality
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beyond the AdS/CFT scenario [28]. In fact, in the case of three-dimensional asymptoti-

cally AdS Einstein gravity, it is possible to define an infinite number of conserved charges

at spatial infinity, which span a central extension of the two-dimensional conformal al-

gebra [29]. In the asymptotically flat case, an infinite dimensional asymptotic symmetry

algebra can be found at null infinity, given by the bms3 algebra [30]. These infinite-

dimensional algebras define the global symmetries of the corresponding boundary field

theory that controls the solution space of the bulk theory [31, 32] (for a geometric point of

view see also [33]). Different generalizations of asymptotic symmetries for supersymmetric

and higher spin extensions of three-dimensional Einstein gravity, have been found in the

last years [34–43]. In [17], the surface charge algebra of a CS gravity theory with Maxwell

symmetry was presented. In this case, the asymptotic symmetry is given by an enlargement

of the bms3 algebra.

In this paper, we extend these results to the case of a three-dimensional gravity theory

invariant under the AdS-Lorentz algebra. We construct a BMS-like gauge for the field

content of the theory, and find that the asymptotic symmetry of conserved charges at

null infinity turns out to be given by a semi-simple enlargement of bms3. This infinite-

dimensional symmetry was recently introduced as an expansion of the Virasoro algebra

in [44]. These considerations also indicate how to gauge fix the arbitrary functions of the

stationary solution found in [16] in such a way that it is contained in the solution space

defined by the boundary conditions proposed here. As a consistency test, we also show

that a flat limit of the asymptotic symmetry recovers the results previously found in [17].

This paper is organized as follows. In section 2, we review the main properties of a

CS theory invariant under the AdS-Lorentz algebra. In section 3, we propose a special

gauge fixing for the known stationary solutions of the theory, and we propose a BMS-

like gauge for the full field content that allows one to solve the field equations. We show

that the stationary solutions previously discussed are contained in the solution space with

BMS-like boundary conditions. In section 4, we use the boundary conditions to compute

the conserved charges of the theory and the corresponding asymptotic symmetry algebra.

Some aspects about the flat limit are also discussed. Finally, in section 5 we conclude with

a discussion of the results and possible future directions.

2 Three-dimensional AdS-Lorentz gravity

2.1 The AdS-Lorentz algebra

An interesting semi-simple enlargement of the Poincaré symmetry is the AdS-Lorentz alge-

bra [45, 46], which can be obtained by introducing an additional set of generators Za that

render the translations in the Poincaré algebra non-abelian. The commutation relations of

this algebra read

[Ja, Jb] = εabcJ
c , [Pa, Pb] = εabcZ

c ,

[Ja, Zb] = εabcZ
c , [Za, Zb] =

1

`2
εabcZ

c ,

[Ja, Pb] = εabcP
c , [Za, Pb] =

1

`2
εabcP

c ,

(2.1)
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where εabc is the Levi-Civita symbol, fullfiling ε012 = 1, and a = 0, 1, 2 is a Lorentz index.

This algebra can be shown to be equivalent to the direct sum of three copies of the Lorentz

algebra. Indeed, three commuting sets of so(2, 1) generators

[
J±a , J

±
b

]
= εabcJ

±c ,
[
Ĵa, Ĵb

]
= εabcĴ

c , (2.2)

reproduce equation (2.1) considering the redefinitions

Za =
1

`2
(
J+
a + J−a

)
,

Pa =
1

`

(
J+
a − J−a

)
, (2.3)

Ja = Ĵa + J+
a + J−a .

On the other hand, the algebra (2.1) can be written as the direct sum so(2, 2) ⊕ so(2, 1),

reason why it is usually referred to as AdS-Lorentz algebra. In fact, one could define

J̃a = `2Za ,

P̃a = Pa , (2.4)

Z̃a = Ja − `2Za ,

so that a direct sum of the Lorentz and AdS is made manifest appears.

An alternative procedure to obtain the AdS-Lorentz symmetry is through the semi-

group expansion method [47]. As was shown in [48], the AdS-Lorentz algebra can be seen

as an S-expansion of the AdS algebra. As a consequence, the non-vanishing components

of an invariant tensor for the AdS-Lorentz algebra can be obtained using Theorem VII.2

of [47]. Indeed, the relevant invariant tensors of rank 2 are given by

〈JaJb〉 = µ0ηab , 〈PaPb〉 =
µ2

`2
ηab ,

〈JaPb〉 =
µ1

`
ηab , 〈ZaZb〉 =

µ2

`4
ηab , (2.5)

〈JaZb〉 =
µ2

`2
ηab , 〈ZaPb〉 =

µ1

`3
ηab ,

where µ0, µ1 and µ2 can be redefined as

µ0 → α0 , µ1 → α1` , µ2 → α2`
2 , (2.6)

such that the flat limit ` → ∞ is well defined and leads to the invariant tensor of the

Maxwell group. Here, α0, α1 and α2 are real arbitrary constants. Note that applying the

flat limit in equation (2.1) reproduces the commutation relations of the Maxwell algebra.

This limit has also been discussed in the context of supergravity [49, 50] and higher-spin

theory [51]. As an ending remark, it is worth it to mention that supersymmetric extensions

of the AdS-Lorentz algebra have been useful in order to restore supersymmetry invariance

of supergravity theories with boundary [52–54].
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2.2 Chern-Simons gravity

Now we consider a three-dimensional CS gravity theory invariant under the algebra (2.1).

The starting point is the CS action

I [A] =
k

4π

∫
M

〈AdA+
2

3
A3〉 , (2.7)

where A is the gauge connection, 〈· · · 〉 denotes the invariant trace, and k the is Chern-

Simons level, which is related to the Newton constant G according to k = 1
4G . The

connection one-form takes values in the AdS-Lorentz algebra,

A = ωaJa + eaPa + σaZa , (2.8)

where ωa is the spin connection, ea is the dreibein, and σa is the gauge field associated

with the non-abelian Za generator. In terms of the gauge field components, the action

takes the form

IAdS-L=
k

4π

∫
M

[
α0

(
ωadωa+

1

3
εabcωaωbωc

)
+α1

(
2Rae

a+
2

`2
F aea+

1

3`2
εabceaebec

)

+α2

(
T aea+

1

`2
εabceaσbec+2Raσa+

2

`2
F aσa

)
−d(α1(ωa+σa)ea+α2ω

aσa)

]
.

(2.9)

Here, Ra = dωa + 1
2ε
abcωbωc corresponds to the Lorentz curvature two-form, T a = Dωe

a is

the torsion two-form, and F a = Dωσ
a + 1

2`2
εabcσbσc is the curvature two-form associated

to the gauge field σa. One can see that the coupling constant α0 multiplies the usual

gravitational CS term, while the Einstein-Hilbert term is related to the coupling constant

α1. Then, a natural choice is to set α1 = 1. However, for the sake of generality we keep it

arbitrary in our analysis. Of particular interest is the presence of the extra field σa, which

appears in the action through the coupling constants α1 and α2. This gauge field affects

the dynamics of the geometry. Indeed, the field equations coming from equation (2.9) are

given by

δωa : 0 = α0Ra + α1

(
Ta +

1

`2
εabcσ

bec
)

+ α2

(
Fa +

1

2
εabce

bec
)
,

δea : 0 = α1

(
Ra +

1

`2
Fa +

1

2`2
εabce

bec
)

+ α2

(
Ta +

1

`2
εabcσ

bec
)
, (2.10)

δσa : 0 =
α1

`2

(
Ta +

1

`2
εabcσ

bec
)

+ α2

(
Ra +

1

`2
Fa +

1

2`2
εabce

bec
)
.

Let us note that, unlike the three-dimensional Maxwell CS theory studied in [17], three-

dimensional GR without cosmological constant can neither be recovered by a limit proce-

dure nor by eliminating some gauge field. However, it can be done by a combined procedure,

namely, taking the limit `→∞ followed by setting σa = 0 and α2 = 0. AdS CS gravity in
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three dimensions, on the other hand, can be obtained by solely considering the Euler-type

CS term (proportional to α1) in the action (2.9) and setting σa = 0, which leads to1

Ra +
1

2`2
εabce

bec = 0 ,

Ta = 0 . (2.11)

Naturally, when the gauge field σa is turned on, the field equations are modified. Since α0

and α2 are still arbitrary, equations (2.10) can be written as

Ra = 0 ,

Ta +
1

`2
εabcσ

bec = 0 , (2.12)

Fa +
1

2
εabce

bec = 0 .

3 Solutions

In this section we study solutions of the field equations (2.12). To this purpose we will

deal with two different representations of the Minkowski metric. First, we focus on the

stationary solutions introduced in [16], where the Minkowski metric is taken to be on its

diagonal form η̄ =diag(−1, 1, 1). To avoid confusion, gauge fields whose indices are raised

and lowered with this metric, will be denoted with bars. Subsequently, we study solution

in the BMS gauge, where the Minkowski metric is written in the light-cone representation

ηab =

 0 1 0

1 0 0

0 0 1

 . (3.1)

3.1 Stationary solutions and gauge fixing

Now we consider the BTZ-type solution of the field equations (2.12). We also calculate

the conserved charges of the theory, which, as we will see, are modified with respect to the

pure gravity case by the presence of the gauge field σa. This solution was first presented

in [16]. The ADM form of the metric is

ds2 = −N2dt2 +
dr2

N2
+ r2 (dϕ+Nϕdt)

2 , (3.2)

where

N2 = −M +
J2

4r2
+
r2

`2
, Nϕ = − J

2r2
. (3.3)

Here M and J are integration constants. The dreibein one-forms can be chosen as

ē0 = Ndt ,

ē1 = N−1dr , (3.4)

ē2 = r (dϕ+Nϕdt) .

1This is a particular case the algebraic construction described in [55–57]. The AdS-Lorentz symmetry

belongs to a family of algebras denoted as Cm [58], which, under certain conditions, leads to Pure Lovelock

gravity.
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With this choice, the solution found in [16] for the spin-connection one-form and the non-

abelian gauge field σ̄ reads

ω̄0 = aBdt+ Cdr +Bdϕ ,

ω̄1 = aHdt+ Edr +Hdϕ , (3.5)

ω̄2 = aKdt+ Fdr +Kdϕ ,

σ̄0 = −`2 [aBdt+ Cdr + (B −N)dϕ] ,

σ̄1 = −`2
[
aHdt+

(
E +

Nϕ

N

)
dr +Hdϕ

]
, (3.6)

σ̄2 = −`2
[(
− r

`2
+ aK

)
dt+ Fdr + (K − rNϕ)dϕ)

]
,

where we have defined

B =
√
K2 +H2 + b ,

C =
H ′ +BF

K
, (3.7)

E =
KK ′ +HH ′

KB
+
HF

K
.

Note that the solution depends on three functions F (r), K(r) and H(r) and two additional

constants a and b. We choose to fix these functions as

F =
rNϕ

N2
+
N ′

N
, H =

b+G2 −N2

2N
, K = rNϕ (3.8)

since, as we will see in subsection 3.2 this choice allows one to connect the results presented

here with the ones written in a BMS-like ansatz for the theory.

It is important to remark that the presence of the arbitrary functions in equation (3.7)

is due to a residual gauge symmetry which has not been fixed yet. Indeed, the BTZ ansatz

for the metric (3.4) is obtained by assuming that it is stationary, axially symmetric so that

it has ∂t and ∂φ as the Killing vectors. For the field ω̄ and σ̄a the same symmetries of the

metric are assumed, reason why equations (3.5)–(3.7) have radial dependence only. This

already fixes a considerable part of the gauge symmetry. However, there is still a residual

symmetry that can be used to fix the arbitrary functions F , H and K (and therefore

they are pure gauge). In other words, one can look for restricted gauge transformations

δΛA = dΛ + [A,Λ], with Λ a gauge parameter taking values in the AdS-Lorentz algebra,

that map a given solution with Killing vectors ∂t and ∂φ in another solution having the

same Killing vectors. By doing this, one can completely identify the gauge transformation

A′ → A = A′+ δΛA
′ such that, starting from the solution (3.6) with an arbitrary choice of

the functions F , H and K, one ends up with a solution of the same form satisfying (3.8).

Let us now focus on the calculation of the Noether charges. As it is very well-known,

in CS gravity these are given by [59, 60]

Q[ξ] =
k

4π

∫
∂Σ

〈AιξA〉 , (3.9)

– 6 –
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where ξi are the asymptotic Killing vectors, and the charges are evaluated at the asymptotic

infinity and at a constant time slice ∂Σ. Considering bared gauge fields in equation (2.8),

it becomes

Q[ξ] =
k

4π
lim
r→∞

2π∫
0

dϕ ξi
[
α0ω̄

a
ϕω̄ai + α1

(
ω̄aϕēai + ēaϕω̄ai +

1

`2
(ēaϕσ̄ai + σ̄aϕēai)

)

+α2

(
ω̄aϕσ̄ai + ēaϕēai + σ̄aϕω̄ai +

1

`2
σ̄aϕσ̄ai

)]
. (3.10)

Using this formula, we compute the conserved charges of the solution (3.4)–(3.6), associated

with asymptotic invariance under time translations ξ = ∂t (mass m) and rotations ξ = ∂ϕ
(angular momentum j). These read

m ≡ Q[∂t] =
k

2
[−α0ab+ α1M + α2(`2ab− J)] ,

j ≡ Q[∂ϕ] =
k

2
[−α0b− α1J + α2`

2(b+M)] . (3.11)

As in the Maxwell case [17], the gauge field σa contributes to the mass and angular mo-

mentum of the solution, and therefore, modifies the asymptotic sector.

3.2 Solutions in the BMS gauge

As was previously discussed, there is a basis where the AdS-Lorentz symmetry can be writ-

ten as the direct sum so(2, 2)⊕so(2, 1). Thus, a trick can be used to define suitable bound-

ary conditions for the theory: we can go to the direct product basis (2.4), where the torsion-

less fields ẽa and ω̃a can be set to obey standard pure gravity boundary conditions and σ̃a

can be considered simply as a flat Lorentz connection. Subsequently we can go back to the

original AdS-Lorentz basis. This is the strategy that we will adopt in the following analysis.

For later convenience, the asymptotically AdS geometries in the direct product ba-

sis (2.1) will be described in three-dimensional BMS gauge [32, 61], where the manifold is

parameterized by the local coordinates xµ = (u, r, φ). The metric takes the form

ds2 =

(
M(u, φ)− r2

`2

)
du2 − 2dudr +N (u, φ)dφdu+ r2dφ2 , (3.12)

were u is the retarded time coordinate and the boundary is located at r = const. Consider-

ing the off-diagonal Minkowski metric (3.1), this can be written in terms of the dreibein as

ds2 = 2ẽ0ẽ1 +
(
ẽ2
)2
. (3.13)

Therefore, the dreibein one-forms can be chose as

ẽ0 = −dr +
1

2
M(u, φ)du+

1

2
N (u, φ)dφ− r2

2`2
du ,

ẽ1 = du ,

ẽ2 = rdφ ,

(3.14)

– 7 –
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In the basis, where the AdS-Lorentz is manifestly written as so(2, 2) ⊕ so(2, 1), the spin

connection ω̃a is torsionless. Therefore it has the form

ω̃0 =
1

2
M(u, φ)dφ+

1

2`2
N (u, φ)du− r2

2`2
dφ ,

ω̃1 = dφ ,

ω̃2 =
r

`2
du ,

(3.15)

Finally, for the gauge firld σ̃a we consider

σ̃0 =
1

2

(
M(u, φ)− 1

`2
R(u, φ)

)
dφ ,

σ̃1 = dφ , (3.16)

σ̃2 = 0 .

As explained above, in the basis (2.4), the field σ̃a gets decoupled and the solutions for

the fields ẽa and ω̃a are the ones of three-dimensional GR with negative cosmological con-

stant. Thus, we can use the well-known results for the metric fields in asymptotically AdS

three-dimensional Einstein gravity. In the BMS gauge this means (see for instance [32]),

Ṁ(u, φ) =
1

`2
N ′(u, φ) , Ṅ (u, φ) =M′(u, φ) , (3.17)

where prime and dot denote derivative with respect to the coordinate φ and u, respectively,

and whose solution is

M = L+ + L− , N = `
(
L+ − L−

)
, (3.18)

with L± = L±(x±) and x± = φ± 1
`u.

The field equation for the field σ̃a, on the other hand, leads to the extra condition

Ṙ(u, φ) = N ′(u, φ) , (3.19)

which yields

R = `2
(
L+ + L− − 2L

)
, L = L(φ). (3.20)

Since we are interested in the basis where the Maxwell symmetry is found as a flat

limit of the AdS-Lorentz one, we need a BMS-like solution for our original gauge fields

(ea, ωa, σa). It is straightforward to show by means of equation (2.4) that these fields are

related to the previous ones (ẽa, ω̃a, σ̃a) as follows:

ea = ẽa, ωa = σ̃a, σa = `2(ω̃a − σ̃a) . (3.21)

Therefore, we have that the field equations (2.12) coming from the AdS-Lorentz CS gravity

action are satisfied by the following components of the gauge fields,

e0 = −dr +
1

2

(
M− r2

`2

)
du+

1

2
Ndφ , e1 = du , e2 = rdφ ,

ω0 =
1

2

(
M− R

`2

)
dφ , ω1 = dφ , ω2 = 0 ,

σ0 =
1

2
Ndu+

1

2

(
R− r2

)
dφ , σ1 = 0 , σ2 = rdu .

(3.22)
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These are the boundary conditions for the Maxwell connection (2.8) that we will adopt

for our analysis of the asymptotic symmetry algebra. Note that in the limit ` → ∞, the

solution (3.22) reduces to the Maxwell case presented in [17]. Also, when taking this limit

in equations (3.17) and equation (3.19), they lead to M =M(φ), N = uM′ + J (φ) and

R = u2

2 M
′′ + uJ ′ + Z(φ), which is precisely the result obtained in [17].

The boundary conditions (3.22) contain the stationary solution studied in subsec-

tion 3.1, when the functions M, N and R are constant, namely,

M (u, φ) = M , N (u, φ) = −J , R(u, φ) = `2(b+M) . (3.23)

The first and second expressions in equation (3.23) are straightforward, while the third one

can be obtained by proceeding in a similar way as done in [17]. The trick consists in using

the change of variables familiar from the pure gravity case [23], t = u+ f(r) , ϕ = φ+ g(r)

with f ′ = N−2 and g′ = −Nϕf ′, and define the following matrix

Ka
b = eaµē

µ
b =

− 1
2N

(
N2
ϕr

2 +N2
)

1
2N

(
N2
ϕr

2 −N2
)
rNϕ

N−1 −N−1 0

−rNϕN
−1 rNϕN

−1 1

 , (3.24)

where N and Nϕ given by equation (3.3). This matrix can be used to map the gauge

field σ̄a in the diagonal basis ēa to the corresponding one in the off-diagonal basis ea as

σaµ = Ka
bσ̄
b
µ. Then, after a simple calculation one can see that the stationary solution given

in equations (3.2)–(3.8) is recovered from (3.22) when equation (3.24) is implemented

4 Asymptotic symmetry

In order to compute the asymptotic symmetry algebra associated to the AdS-Lorentz CS

gravity, we have to consider suitable fall-off conditions for the gauge fields at infinity. Using

equation (3.22), it is direct to evaluate the gauge connection A in the BMS gauge:

A =

(
1

2
N (u, φ) du+

1

2
R (u, φ) dφ− r2

2
dφ

)
Z0 + rduZ2

+

(
−dr +

1

2
M (u, φ) du+

1

2
N (u, φ) dφ− r2

2`2
du

)
P0 + duP1 + rdφP2 (4.1)

+

(
1

2
M (u, φ)− 1

2`2
R (u, φ)

)
dφJ0 + dφJ1 .

Furthermore, the radial dependence of the connection (4.1), can be gauged away by an

appropriate gauge transformation

A = h−1dh+ h−1ah , (4.2)

where h = e−rP0 . Then, using the Baker-Campbell-Hausdorff formula and the identity

h−1dh = −dr P0, we obtain the following asymptotic field:

a =

(
1

2
N (u, φ) du+

1

2
R (u, φ) dφ

)
Z0 +

(
1

2
M (u, φ) du+

1

2
N (u, φ) dφ

)
P0

+ duP1 +

(
1

2
M (u, φ)− 1

2`2
R (u, φ)

)
dφJ0 + dφJ1 . (4.3)
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4.1 Residual gauge transformations

The next step consists in finding the residual gauge transformations, δΛA = dΛ+[A,Λ], that

preserve our boundary conditions (4.1). To this purpose, let us consider gauge parameters

of the form

Λ = h−1λh , λ = χa (u, φ) Ja + εa (u, φ)Pa + γa (u, φ)Za . (4.4)

Then, gauge transformations of the connection A with gauge parameter Λ imply

r-independent gauge transformations of a with gauge parameter λ. Therefore, the variation

of the asymptotic field (4.3) reads

δλa =
1

2
(δλN (u, φ) du+ δλR (u, φ) dφ) Z0 +

1

2
(δλM (u, φ) du+ δλN (u, φ) dφ) P0

+
1

2

(
δλM (u, φ) dφ− 1

`2
δλR (u, φ) dφ

)
J0 , (4.5)

and has to be equal to a gauge transformation of the form

δλa = dλ+ [a, λ] . (4.6)

Let us focus first on the angular component of the connection a, and replace equa-

tions (4.3) and (4.4) in equation (4.6). We find

δλaφ =

(
γ0′ − R

2
χ2 − N

2
ε2 − M

2
γ2

)
Z0 +

(
γ1′ + γ2

)
Z1

+

(
γ2′ +

R
2
χ1 +

N
2
ε1 +

M
2
γ1 − γ0

)
Z2

+

[
ε0′ − N

2

(
γ2

`2
+ χ2

)
− M

2
ε2

]
P0 +

(
ε1′ + ε2

)
P1 (4.7)

+

[
ε2′ +

N
2

(
γ1

`2
+ χ1

)
+
M
2
ε1 − ε0

]
P2 +

[
χ0′ +

1

2

(
R
`2
−M

)
χ2

]
J0

+
(
χ1′ + χ2

)
J1 +

[
χ2′ +

1

2

(
M−R

`2

)
χ1 − χ0

]
J2 .

From equation (4.5) and (4.7), one immediately sees that the arbitrary functions appearing

in (4.1) must satisfy the following relations:

δλM+
δλR
`2

= 2χ0′ −Mχ2 +
R
`2
χ2 ,

δλN = 2ε0′ −N
(
γ2

`2
+ χ2

)
−Mε2 , (4.8)

δλR = 2γ0′ −Rχ2 −N ε2 −Mγ2 ,

while the gauge parameters satisfy

γ1′ + γ2 = 0 , γ2′ +
R
2
χ1 +

N
2
ε1 +

M
2
γ1 − γ0 = 0 ,

ε1′ + ε2 = 0 , ε1′ +
N
2

(
γ1

`2
+ χ1

)
+
M
2
ε1 − ε0 = 0 ,

χ1′ + χ2 = 0 , χ2′ +
M
2
χ1 − R

2`2
χ1 − χ0 = 0 .

(4.9)
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On the other hand, the variation of the u-component of the gauge field a is given by

δλau =

[
γ̇0 − N

2

(
γ2

`2
+ χ2

)
− M

2
ε2

]
Z0 +

(
γ̇1 + ε2

)
Z1

+

[
γ̇2 +

N
2

(
γ1

`2
+ χ1

)
+
M
2
ε1 − ε0

]
Z2 (4.10)

+

[
ε̇0 − M

2

(
γ2

`2
+ χ2

)
− N

2`2
ε2

]
P0 +

(
ε̇1 + χ2 +

γ2

`2

)
P1

+

[
ε̇2 +

M
2

(
γ1

`2
+ χ1

)
+
N
2`2

ε1 − χ0 − γ0

`2

]
P2 + χ̇aJa .

Comparing equation (4.10) with the u-component of equation (4.5), we obtain the

conditions

δλM = 2ε̇0 −M
(
γ2

`2
+ χ2

)
− N
`2
ε2 ,

δλN = 2γ̇0 −N
(
γ2

`2
+ χ2

)
−M ε2 ,

(4.11)

together with χ̇a = 0. Furthermore, equation (4.10) implies that the components of the

gauge parameter λ satisfy

γ̇1 + ε2 = 0 , γ̇2 +
N
2

(
γ1

`2
+ χ1

)
+
M
2
ε1 − ε0 = 0 ,

ε̇1 + χ2 +
γ2

`2
= 0 , ε̇2 +

M
2

(
γ1

`2
+ χ1

)
+
N
2`2

ε1 − χ0 − γ0

`2
= 0 .

(4.12)

Equations (4.9) and (4.12) can be solved in terms of χ1 = Y (φ), ε1 = f (u, φ) and

γ1 = h (u, φ), where Y , f and h are arbitrary functions of their arguments. After some

calculations one gets

χ0 =

(
M
2
− R

2`2

)
Y −Y ′′ , ε0 =

(
Mf

2
+
NY

2
+
Nh
2`2

)
−f ′′ , γ0 =

(
Mh

2
+
N f
2

+
RY

2

)
−h′′,

χ2 =−Y ′ , ε2 =−f ′ , γ2 =−h′ ,
χ1 =Y , ε1 = f , γ1 =h. (4.13)

This leads to the following solution for (4.8) and (4.11) for the transformation laws of M,

N and R:

δM =M′Y + 2MY ′ − 2Y ′′′ +
2

`2

(
Mh′ +N f ′ − h′′′ + hM′

2
+
fN ′

2

)
,

δN =M′f + 2Mf ′ − 2f ′′′ +N ′Y + 2NY ′ + 1

`2
(
2Nh′ + hN ′

)
, (4.14)

δR =M′h+ 2Mh′ − 2h′′′ +N ′f + 2N f ′ +R′Y + 2RY ′ .

The asymptotic structure of AdS-Lorentz CS gravity with boundary conditions (4.1)

is contained in the transformation laws of the functions M,N and R . Indeed, the charge
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algebra of the AdS-Lorentz theory can be computed following the Regge-Teitelboim ap-

proach [62]. In particular, the variation of the charge generators in a three-dimensional CS

theory is given by [20]:

δQ [λ] =
k

2π

∫
dφ 〈λδaφ〉 , (4.15)

where the non-vanishing components of the invariant tensor for the AdS-Lorentz algebra

are given by equation (2.5). Then, using (4.5), we find

δQ [Y, f, h] = − k

4π

∫
dφ

[
Y
(
α0δM+

(
α2 −

α0

`2

)
δR+ α1δN

)
+ f (α2δN + α1δM) + h

(
α2δM+

α1δN
`2

)]
. (4.16)

Since this expression is linear in the variation of the functions M, N and R, it can be

directly integrated to give

Q [Y, f, h] = − k

4π

∫
dφ

[
Y
(
α0M+

(
α2 −

α0

`2

)
R+ α1N

)
+ f (α2N + α1M) + h

(
α2M+

α1N
`2

)]
. (4.17)

4.2 Charge algebra

Following [62], the Poisson algebra of the conserved charges can be evaluated by looking

at ther variations under gauge transformations,

δΛ2Q [Λ1] = {Q [Λ1] , Q [Λ2]} . (4.18)

From the expression (4.17), we see that it is possible to define independent charges for each

parameter Y , T and R as

j[Y ] =
k

4π

∫
dφY

[
α0M+

(
α2 −

α0

`2

)
R+ α1N

]
,

p[f ] =
k

4π

∫
dφ f (α2N + α1M) , (4.19)

z[h] =
k

4π

∫
dφh

(
α2M+

α1N
`2

)
.
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The Poisson brackets of these charges can be evaluated using equations (4.18) and (4.14),

leading to

{j[Y1], j[Y2]} = j [[Y1, Y2]]− kα0

2π

∫
dφY1Y

′′′
2 ,

{j[Y ], p[f ]} = p [[Y, f ]]− kα1

2π

∫
dφY f ′′′ ,

{j[Y ], z[h]} = z [[Y, h]]− kα2

2π

∫
dφY h′′′ , (4.20)

{p[f1], p[f2]} = z [[f1, f2]]− kα2

2π

∫
dφf1f

′′′
2 ,

{p[f ], z[h]} =
p

`2
[[f, h]]− kα1

2π`2

∫
dφfh′′′ ,

{z[h1], z[h2]} =
z

`2
[[h1, h2]]− kα2

2π`2

∫
dφh1h

′′′
2 ,

where here [x, y] = xy′ − yx′ denotes the Lie bracket. By expanding in Fourier modes and

defining

Jm = j[eimφ] , Pm = p[eimφ] , Zm = z[eimφ] ,

the algebra (4.20) takes the following form:

i {Jm,Jn} = (m− n)Jm+n +
c1

12
m3δm+n,0 ,

i {Jm,Pn} = (m− n)Pm+n +
c2

12
m3δm+n,0 ,

i {Pm,Pn} = (m− n)Zm+n +
c3

12
m3δm+n,0 ,

i {Jm,Zn} = (m− n)Zm+n +
c3

12
m3δm+n,0 ,

i {Pm,Zn} =
1

`2
(m− n)Pm+n +

c2

12`2
m3δm+n,0 ,

i {Zm,Zn} =
1

`2
(m− n)Zm+n +

c3

12`2
m3δm+n,0 ,

(4.21)

where the central charges c1, c2 and c3 are related to the CS level k and the invariant

tensor constants α0, α1 and α2 defined in equation (2.6) by

ci = 12kαi−1 . (4.22)

This structure corresponds to a infinite-dimensional enhancement of the AdS-Lorentz al-

gebra. In the same way as the AdS-Lorentz algebra defines a semi-simple enlargement of

the Poincaré symmetry, the algebra (4.21) defines a semi-simple enlargement of the bms3

symmetry. Such infinite-dimensional symmetry has been first introduced in [44] as an

expansion of the Virasoro algebra. Here, we have shown that it can be realized as the

asymptotic symmetry of AdS-Lorentz CS gravity theory in three space-time dimensions.

One can see that the AdS-Lorentz algebra is a finite subalgebra spanned by the genera-

tors {J0,J1,J−1,P0,P1,P−1,Z0,Z1,Z−1}. It is worth noting that the algebra (4.21) is
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isomorphic to the direct product of three-copies of the Virasoro algebra. In fact, defining

new generators

L+
m =

1

2

(
`2Zm + `Pm

)
, L−m =

1

2

(
`2Z−m − `P−m

)
, L̂m = J−m − `2Z−m , (4.23)

three copies of the Virasoro algebra are revealed:

i
{
L+
m,L+

n

}
= (m− n)L+

m+n +
c+

12
m3δm+n,0 ,

i
{
L−m,L−n

}
= (m− n)L−m+n +

c−

12
m3δm+n,0 ,

i
{
L̂m, L̂n

}
= (m− n) L̂m+n +

ĉ

12
m3δm+n,0 ,

(4.24)

where the central charges are given by

c± =
1

2

(
`2c3 ± `c2

)
, ĉ =

(
c1 − `2c3

)
. (4.25)

Note that the occurrence of three copies of the Virasoro algebra could have been obtained

in a more straightforward way by recalling that the AdS-Lorentz algebra in three dimen-

sions is isomorphic to three copies of the so (2, 1) ' sl (2,R) algebra. In fact, using the

basis {J±a , Ĵa} defined in equation (2.2), the non-vanishing components of the invariant

tensor read 〈
J±a J

±
b

〉
=

1

2
(µ2 ± µ1) ηab ,

〈
ĴaĴb

〉
= (µ0 − µ2) ηab , (4.26)

and the connection (2.8) takes the form A = A+ +A− + Â, where

A± =

(
ωa ± ea

`
+
σa

`2

)
J±a , Â = ωaĴa . (4.27)

The action (2.7) then splits into the sum of three SL(2,R) Chern-Simons actions, one for

each sl (2,R) connection. They naturally lead to three sets of conserved charges of the

form (4.15), and the boundary conditions for the radial-independent connection (4.3) leads

to three sl (2,R) connections satisfying Brown-Henneaux boundary conditions:

a± 0 = L±(x±)dx± , â0 = L(φ)dφ,

a± 1 = dx± , â1 = dφ ,

a± 2 = 0 , â2 = 0 .

(4.28)

where the functions L± and L have been defined in equations (3.18) and (3.20). Therefore,

each set of charges coming from (4.15) will satisfy a Virasoro algebra. The corresponding

central charges take the standard form: c± = 6kηab
〈
J±a J

±
b

〉
, ĉ = 6kηab

〈
ĴaĴb

〉
. Using

the invariant tensor (4.26) and the definition (4.22), they can be shown to match equa-

tion (4.25), recovering the result (4.24).

It is important to remark that, even though the asymptotic symmetry algebra looks

simpler in the form (4.24), the analysis in the basis {Ja, Pa, Za} is important due to the

following reasons: i) it defines boundary conditions for the fields e, ω and σ present in the
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action (2.9), which is the original form of three-dimensional AdS-Lorentz gravity theory

that has been previously worked out in the literature (see [7, 8] and references therein);

ii) it allows one to understand the asymptotic symmetry algebra of the theory as a semi-

simple enlargement of bms3 in the very same way as the Ads-Lorentz algebra has been

defined as a semi-simple enlargement of the Poincaré algebra [14, 15, 45]; iii) as it will be

explained in the following, keeping the analysis in terms of the basis (2.1) allows one to

make a transparent contact with the deformed bms3 algebra obtained in [17, 44].

4.3 Flat limit

The vanishing cosmological constant limit `→∞ can be performed transparently through-

out all the steps followed in obtaining the asymptotic symmetry algebra (4.21). In par-

ticular, this limit applied to connection (4.1) and their variations (4.7), (4.10) lead to the

asymptotic form of the Maxwell gravity connection introduced in [17, 44]:

i {Jm,Jn} = (m− n)Jm+n +
c1

12
m3δm+n,0 ,

i {Jm,Pn} = (m− n)Pm+n +
c2

12
m3δm+n,0 ,

i {Pm,Pn} = (m− n)Zm+n +
c3

12
m3δm+n,0 ,

i {Jm,Zn} = (m− n)Zm+n +
c3

12
m3δm+n,0 ,

i {Pm,Zn} = 0 ,

i {Zm,Zn} = 0 .

(4.29)

Note that after such limit, the bms3 algebra is recovered by setting the generators

Zn and the central charge c3 to zero. It is important to remark that this flat limit of

AdS-Lorentz CS gravity can be applied only in the {Ja, Pa, Za} basis.

The relation between the algebra obtained here and the deformed bms3 can be gen-

eralized to other algebras. As was discussed in [44], such infinite-dimensional symmetries

belong to a family of infinite-dimensional algebras denoted as virCr which is related to a

generalized bms3 algebra (virBr) by an IW contraction. In particular, r = 4 corresponds

to our result, while r = 3 reproduces the 2D-conformal algebra, whose flat limit is precisely

given by the bms3 algebra. This particular notation is motivated by the fact that they

correspond to infinite-dimensional lifts of the Cr and Br symmetries, respectively [58].

5 Comments and possible developments

In this paper we have studied the asymptotic structure of a CS gravity theory invariant

under the semi-simple enlargement of the Poincaré algebra in three-dimensions. In order

to carry out the analysis, a generalization of the three-dimensional BMS gauge familiar

from the GR analysis [32] has been considered to include the extra field content present in

the AdS-Lorentz connection. We have contrasted our results with the stationary solution

already known in ADM coordinantes in [16] and found that it can be recovered as a

particular case of our BMS-like extension when a suitable gauge fixing is chosen for the
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stationary σ̄ field in equation (3.8). Using this generalized anstaz we have defined boundary

conditions for the theory and the CS field equations can be solved exactly, which determines

the solution space of the theory completely.

The asymptotic symmetry of the theory is given by an infinite dimensional algebra,

which defines a semi-simple enlargement of the bms3 symmetry in the same spirit as the

AdS-Lorentz algebra is a semi-simple enlargement of the iso(2, 1) [14]. This novel infinite

dimensional algebra has three central charges and it is isomorphic to three-copies of the

Virasoro algebra.

The BMS formulation is known for providing a well-defined flat limit at the level of the

asymptotic charges when passing from asymptotically AdS to asymptotically flat GR [61].

This is also the case in our analysis, where the limit ` → ∞ leads to the deformed bms

algebra previously found in [17] as the asymptotic symmetry of a CS theory invariant under

the Maxwell algebra. Remarkably, the flat behavior of AdS-Lorentz CS gravity is inherited

to its asymptotic symmetry:

AdS-Lorentz

CS gravity

asymptotic symmetry−→ Semi-simple

enlargement of bms3

↓ flat limit ↓ flat limit

Maxwell

CS gravity

asymptotic symmetry−→ Enlarged and

deformed bms3

This flat limit was already discussed at the level of the algebras in [44]. However, this

is the first report showing that the semi-simple enlargement of the bms3 algebra (called

generalized Virasoro algebra in [44]) is the asymptotic symmetry of the a three-dimensional

CS gravity theory.

The results presented here could be generalized to the case of supersymmetric exten-

sions of AdS-Loretz CS gravity. One would expect to obtain a supersymmetric extension

of the asymptotic symmetry algebra found here. Furthermore, one could argue that the

flat limit also works at the supersymmetric level. Indeed, it is known that AdS-Lorentz

and the Maxwell CS supergravities are related by an Inönü-Wigner contraction [8, 49, 50].

It is important to note that the bms3 algebra can also be realized in non-gravitational

physics. Indeed, in [63] it is shown that the non-centrally extended bms3 algebra can be

canonically realized as a symmetry of the free Klein-Gordon field in 2 + 1 dimensions.

Therefore, as the flat limit of the AdS-Lorentz algebra, the Maxwell algebra, extends the

Poincaré symmetry to describe particle systems in the presence of constant electromagnetic

fields (see for instance [11–13]), it would be interesting to explore the possibility to realize

the semi-simple enlargement of bms3 here presented, or its flat limit, in scalar field models

including the coupling to electromagnetic fields.
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Asymptotic symmetries of three-dimensional Chern-Simons gravity for the Maxwell algebra,

JHEP 10 (2018) 079 [arXiv:1805.08834] [INSPIRE].

[18] R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851

[INSPIRE].

[19] A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009

[hep-th/9712251] [INSPIRE].
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