
Turk J Math

(2013) 37: 1030 – 1039

c⃝ TÜBİTAK
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Abstract: In this paper we introduce the notions of semi-slant and bi-slant submanifolds of an almost contact 3-structure

manifold. We give some examples and characterization theorems about these submanifolds. Moreover, the distributions

of semi-slant submanifolds of 3-cosymplectic and 3-Sasakian manifolds are studied.
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1. Introduction

After slant submanifolds of complex manifolds were introduced by Chen [6], the properties of slant submanifolds

became an interesting subjects in differential geometry, both in complex geometry and in contact geometry.

Lotta [9] introduced this notion in contact manifolds and Cabrerizo et al. [4] studied widely in this area and

found many interesting results, especially on slant submanifolds of Sasakian manifolds. On the other hand,

Papaghiuc [12] defined semi-slant submanifolds as a generalization of slant and CR-submanifolds. Carriazo [5]

generalized these notions by introducing bi-slant submanifolds. Moreover, in [3], the authors investigated bi-slant

and semi-slant submanifolds of Sasakian manifolds. From then on, many authors have studied these types of

submanifolds when the ambient manifolds have been endowed with other structures such as trans-Sasakian and
Kenmotsu [1, 14, 15, 17]. In fact, one of the important reasons for studying slant and semi-slant submanifolds

is that they are a generalization of invariant, anti-invariant, semi-invariant, and totally real submanifolds.

Recently, Sahin [13] studied slant and semi-slant submanifolds of quaternion Kaehler manifolds, general-

izing semi-invariant and QR-submanifolds of quaternion Kaehler manifolds.

The authors introduced the notion of 3-slant submanifolds of an almost contact metric 3-structure in [10].

Almost contact 3-structures have been defined by Kuo and Udrişte independently [8, 16]. Because of important

properties and applications [7, 11], 2 types of these manifolds, 3-Sasakian and 3-cosymplectic manifolds, are very

interesting for geometricians and physicians. This motivated us to study semi-slant and bi-slant submanifolds

of these manifolds. In these structures there exist 3 (1, 1)-tensor fields (ϕi)i=1,2,3 and the vector fields should

be slant or invariant with respect to all of the ϕi ’s. Therefore, it is a generalization of invariant, anti-invariant,

slant, semi-slant, and bi-slant submanifolds in almost contact metric 3-structures and we denote them by 3-

semi-slant and 3-bi-slant submanifolds. Following the approaches of [3, 13], we characterized 3-bi-slant and

3-semi-slant submanifolds and studied geometric properties of distributions of these submanifolds where the

ambient manifolds are 3-Sasakian or 3-cosymplectic. It should be noted that, in the definition of semi-slant
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submanifolds in the sense of Sahin, the distributions are on the normal bundle of the manifold but in this paper

they are on the tangent bundle.

In this paper we review the basic definitions and information in Section 2; next, we define 3-semi-slant and

3-bi-slant submanifolds and show the existence of them by introducing some non-trivial examples and then we

characterize them in Section 3. Finally, in Section 4, we investigate the geometry of distributions of 3-semi-slant

submanifolds of 3-Sasakian and 3-cosymplectic manifolds.

2. Preliminaries

Definition 1 [2] Let M̃ be a (2m + 1) dimensional manifold and ϕ , ξ , η be a tensor field of type (1,1), a

vector field, a 1− form on M̃ , respectively. If ϕ , ξ , and η satisfy

η(ξ) = 1

ϕ2(X) = −X + η(X)ξ (1)

for any vector field X on M̃ , then M̃ is said to have an almost contact structure (ϕ, ξ, η).

Definition 2 [8] (M̃, ξi, ηi, ϕi)i∈{1,2,3} is called an almost contact 3-structure manifold if there exist 3 almost

contact structures (ξi, ηi, ϕi) , i = 1, 2, 3 , on M̃ such that

ηi(ξj) = 0, ϕiξj = −ϕjξi = ξk, ηi(ϕj) = −ηj(ϕi) = ηk, (2)

ϕioϕj − ηj ⊗ ξi = −ϕjoϕi + ηi ⊗ ξj = ϕk, (3)

where (i, j, k) is a cyclic permutation of (1, 2, 3) .

The vector fields ξi ’s are called structure vector fields. Moreover, if M̃ admits a Riemannian metric g

satisfying

g(ϕiX,ϕiY ) = g(X,Y )− ηi(X)ηi(Y ), ∀X,Y ∈ TM̃, (4)

then (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} is said to be an almost contact metric 3-structure manifold. It is easy to show

that (4) implies

g(ϕiX,Y ) = −g(X,ϕiY ). (5)

An almost contact metric 3-structure (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} is a 3-cosymplectic manifold if

∇̃ϕi = 0, (6)

and a 3-Sasakian manifold if

(∇̃Xϕi)Y = g(X,Y )ξi − ηi(Y )X, ∀X,Y ∈ TM̃, (7)

where ∇̃ is the Levi-Civita connection of M̃ . By using (6) and (7), one can obtain

∇̃ξi = 0 and ∇̃ξi = −ϕi, (8)

in 3-cosymplectic and 3-Sasakian manifolds, respectively.
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For an isometrically immersed submanifold M of a Riemannian manifold M̃ , we denote its induced

Riemannian metric by the same symbol g and the Levi-Civita connection of M by ∇ . Let TM and (TM)⊥

be the tangent bundle and normal bundle of M , respectively. Then the Gauss and Weingarten formulas are

given by

∇̃XY = ∇XY +B(X,Y ) and ∇̃XV = DXV −AV X, (9)

for X,Y ∈ TM and V ∈ (TM)⊥ , where D is the connection in the normal bundle, and B is the second

fundamental form related to A by the following equation:

g(AV X,Y ) = g(B(X,Y ), V ). (10)

M is called totally geodesic if and only if B vanishes identically on TM .

3. Slant submanifolds in almost contact metric 3-structure manifolds

Let M be a submanifold of (M̃, ξi, ηi, ϕi)i∈{1,2,3} . Then for all X ∈ TM and V ∈ (TM)⊥ , we have

ϕiX = TiX +NiX and ϕiV = tiV + niV, (11)

such that TiX (resp. NiX ) is the tangential (resp. normal) component of ϕiX , and tiV (resp. niV ) is

the tangential (resp. normal) component of ϕiV . M is called an invariant submanifold of M̃ if Ni vanishes

identically, that is, ϕi(TpM) ⊂ TpM , and it is called an anti-invariant submanifold if Ti = 0, which means

ϕi(TpM) ⊂ (TpM)⊥ , for all p ∈ M and i = 1, 2, 3.

As a generalization of invariant and anti-invariant submanifolds, the authors have introduced slant

submanifolds of almost contact metric 3-structure manifolds:

Definition 3 [10] Let M be a submanifold of an almost contact metric 3-structure manifold

(M̃, ξi, ηi, ϕi, g)i∈{1,2,3} . M is called a 3-slant submanifold if for all i ∈ {1, 2, 3}, the angle between ϕiX and

TpM is constant θ , for each p ∈ M and each non-zero vector X ∈ TpM , linearly independent of ξi . It means

that the angle between ϕiX and TjX is θ for all i, j ∈ {1, 2, 3}.

Now we introduce the notion of semi-slant and bi-slant submanifolds of almost contact metric 3-structures.
These notions generalize the concept of semi-slant and bi-slant submanifolds in almost contact manifolds.

Definition 4 Let M be a submanifold of an almost contact metric 3-structure manifold (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} .

Then we say M is a 3-semi-slant submanifold of M̃ , if it is endowed with 3 orthogonal distributions D1 , D2 ,

and D3 , where D3 = span < ξ1, ξ2, ξ3 > and the following conditions satisfy:

(a) TM = D1 ⊕D2 ⊕D3 ,

(b) The distribution D1 is an invariant distribution, i.e. ϕi(D1) = D1 , ∀i ∈ {1, 2, 3} ,

(c) The distribution D2 is 3-slant with slant angle θ ̸= 0 , i.e. for each non-zero vector X ∈ D2 at any point

p ∈ M , the angle between ϕi(X) , i = 1, 2, 3 and D2 is constant and it is independent of the choice of

X ∈ D2 and p ∈ M .
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Definition 5 Let M be a submanifold of an almost contact metric 3-structure manifold (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} .

We say M is a 3-bi-slant submanifold of M̃ , if there exist 3 orthogonal distributions D1 , D2 , and D3 on M ,

such that TM = D1⊕D2⊕D3 and for i = 1, 2 , Di is 3-slant with slant angle θi and D3 = span < ξ1, ξ2, ξ3 > .

Thus a 3-semi-slant submanifold is a 3-bi-slant, in which θ1 = 0. In both Definitions 4 and 5, TM can

be decomposed to D1 ⊕D2 ⊕D3 . Therefore, for any X ∈ TM , we can write X = P1X +P2X +
∑3

i=1 ηi(X)ξi ,

where PαX is the projection of X in Dα , α = 1, 2.

Moreover, for all X ∈ TM and V ∈ (TM)⊥ we put

ϕiX = T1iX + T2iX +NiX and ϕiV = t1iV + t2iV + niV, (12)

where TαiX (resp. tαiV ) is the tangential component of ϕiX (resp. ϕiV ) on Dα and NiX (resp. niV ) is

the normal component of ϕiX (resp. ϕiV ), for i ∈ {1, 2, 3} and α = 1, 2. In fact, by virtue of (11), it is easy

to see that TαiX = Pα ◦ TiX and tαiV = Pα ◦ tiV , in which Pα is the projection on Dα .

Now, we give some non-trivial examples of 3-semi-slant and 3-bi-slant submanifolds of an almost contact

metric 3-structure manifold.

Example 1 We consider an almost contact metric 3-structure (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} as follows:

M̃ = R15, g((xi)i=1,15, (yi)i=1,15) =
15∑
i=1

xiyi, ξ1 = ∂x13, ξ2 = ∂x14, ξ3 = ∂x15,

ϕ1((xi)i=1,15) = (−x3, x4, x1,−x2, ...,−x11, x12, x9,−x10, 0,−x15, x14),

ϕ2((xi)i=1,15) = (−x4,−x3, x2, x1, ...,−x12,−x11, x10, x9, x15, 0,−x13),

ϕ3((xi)i=1,15) = (−x2, x1,−x4, x3, ...,−x10, x9,−x12, x11,−x14, x13, 0),

and ηi is the dual of ξi for i ∈ {1, 2, 3} .
Let M = (−u1 − u4, u1 − u4,−u2 + u3,−u2 − u3, v1sinθ, v2sinθ, v2sinθ, v2sinθ,

v1cosθ, 0, 0, 0, t1, t2, t3) for θ ∈ (0, π
2 ) . Then M is a 9-dimensional submanifold of M̃ and TM is spanned by

X1 = −∂x1 + ∂x2, X2 = −∂x3 − ∂x4, X3 = ∂x3 − ∂x4, X4 = −∂x1 − ∂x2,

X5 = sinθ∂x5 + cosθ∂x9, X6 = sinθ(∂x6 + ∂x7 + ∂x8)

X7 = ∂x13, X8 = ∂X14, X9 = ∂x15.

We put D1 =< X1, X2, X3, X4 > , D2 =< X5, X6 > and D3 =< X13, X14, X15 > . It is easy to see that D1 is

invariant with respect to ϕ1, ϕ2 , and ϕ3 . Moreover,

ϕ1(X5) =
1

3
[X6 + sinθ(2∂x7 − ∂x6 − ∂x8)] + cosθ∂x11

⇒ T21(X5) =
1

3
X6,

ϕ1(X6) = −sin2θX5 − cos2θsinθ∂x5 + sin2θcosθ∂x9 + sinθ(−∂x8 + ∂x6)
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⇒ T21(X6) = −sin2θX5,

ϕ2(X5) =
1

3
[X6 + sinθ(2∂x8 − ∂x6 − ∂x7)] + cosθ∂x12

⇒ T22(X5) =
1

3
X6,

ϕ2(X6) = −sin2θX5 − cos2θsinθ∂x5 + sin2θcosθ∂x9 + sinθ(−∂x6 + ∂x7)

⇒ T22(X6) = −sin2θX5.

Thus we have

cosβ =
g(ϕiX,T2jX)

|ϕiX|.|T2jX|
=

sinθ√
3
, ∀X ∈ D2 and i, j ∈ {1, 2, 3}.

Therefore, D2 is a 3-slant with slant angle β = cos−1( sinθ√
3
) . M is a 3-semi-slant submanifold of M̃ .

Example 2 Let (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} be the almost contact metric 3-structure manifold in the previous

example and M be a submanifold of M̃ given by the following equations:

x1 = x2 = x3 = u1, x4 = u2cosθ, x12 = u2sinθ,

x5 = x6 = x7 = v1, x8 = x9 = x10 = v2, x11 = 0,

x13 = t1, x14 = t2, x15 = t3.

By defining

D1 =< ∂x1 + ∂x2 + ∂x3, cosθ∂x4 + sinθ∂x12 >,

D2 =< ∂x5 + ∂x6 + ∂x7, ∂x8 + ∂x9 + ∂x10 >,

D3 =< ∂x13, ∂x14, ∂x15 >,

we have TM = D1⊕D2⊕D3 and D1 , D2 are 3-slant with slant angles cos−1( cosθ√
3
) and cos−1( 13 ) , respectively.

Thus M is a 3-bi-slant submanifold of M̃ .

Example 3 Let M̃ = R11 be endowed with the following almost contact metric 3-structure manifold:

ϕ1((xi)i=1,11) = (−x3, x4, x1,−x2,−x7, x8, x5,−x6, 0,−x11, x10),

ϕ2((xi)i=1,11) = (−x4,−x3, x2, x1,−x8,−x7, x6, x5, x11, 0,−x9),

ϕ3((xi)i=1,11) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9, 0),

g((xi)i=1,11, (yi)i=1,11) =
∑11

i=1 xiyi , ξ1 = ∂x9 , ξ2 = ∂x10 , ξ3 = ∂x11 and ηi ’s be the dual of ξi ’s.

Let M = (v1cosθ, v1cosθ, v1cosθ, v2sinθ + u1cosθ, v2cosθ − u1sinθ, u2sinθ, u2sinθ,

u2sinθ, t1, t2, t3) . By taking

D1 =< cosθ(∂x1 + ∂x2 + ∂x3), sinθ∂x4 + cosθ∂x5) >,

D2 =< sinθ(∂x6 + ∂x7 + ∂x8), cosθ∂x4 − sinθ∂x5) >,
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D3 =< ∂x9, ∂x10, ∂x11 >,

we have TM = D1 ⊕ D2 ⊕ D3 . By some computations in the same way as in Example 1, it can be verified

that D1 and D2 are 3-slant with slant angles cos−1( sinθ√
3
) and cos−1( cosθ√

3
) , respectively. Therefore, M is a

3-bi-slant submanifold of M̃ .

It should be noted that in a 3-bi-slant submanifold M , if the slant angles of D1 and D2 are equal, then

M is not necessarily a 3-slant submanifold. For example, by taking cosθ = 1√
3
and cosθ = 1√

2
, in Examples

2 and 3 respectively, M is 3-bi-slant but not 3-slant. A sufficient condition for a 3-bi-slant submanifold with

slant angles θ1 = θ2 to be a 3-slant submanifold is the following

g(X,ϕiY ) = 0, ∀X ∈ D1, ∀Y ∈ D2 and i ∈ {1, 2, 3}.

Theorem 1 Let M be a submanifold of an almost contact metric 3-structure manifold (M̃, ξi, ηi, ϕi, g)i∈{1,2,3}

such that TM can be decomposed to three orthogonal distributions D1 ⊕ D2⊕ < ξ1, ξ2, ξ3 > . Then M is a

3-bi-slant submanifold if and only if for α = 1, 2 , there exists a constant λα ∈ [−1, 0] such that:

TiTjX = λαX, ∀X ∈ Dα and i, j ∈ {1, 2, 3}. (13)

Moreover, in that case λα = −cos2θα , in which θα is the slant angle of distribution Dα .

Proof Let X ∈ Dα and βα and θα be the angles ̂(ϕiX,TjX) and ̂(ϕjX,TjX), respectively. Using (4), (5),

and (11), implies

cosβα =
g(ϕiX,TjX)

|ϕiX|.|TjX|
= −g(X,ϕiTjX)

|X||TjX|
= −g(X,TiTjX)

|X||TjX|
, (14)

cosθα =
g(ϕjX,TjX)

|ϕjX|.|TjX|
= −g(X,TjTjX)

|X||TjX|
. (15)

Therefore, if (13) is satisfied, then the angles are equal. On the other hand, we have

cosθα =
g(ϕjX,TjX)

|ϕjX|.|TjX|
=

g(TjX,TjX)

|X||TjX|
=

|TjX|
|X|

, (16)

and then from (15) and (16) it follows that

cos2θα = −g(X,TjTjX)

|X|2
. (17)

Thus, if TiTjX = λαX , then λα = −cos2θα and θα is constant. Conversely if M is a 3-bi-slant submanifold

then βα and θα are equal and constant. Thus, (17) is satisfied and it implies TiTjX = −cos2θαX . 2

Since 3-semi-slant submanifolds are 3-bi-slant submanifolds with θ1 = 0, the previous theorem is true

for 3-semi-slant submanifolds too.
The following theorem generalizes Theorem 5.1 of [3], for 3-semi-slant submanifolds of an almost contact metric

3-structure.
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Theorem 2 Let M be a submanifold of an almost contact metric 3-structure manifold (M̃, ξi, ηi, ϕi, g)i∈{1,2,3}

such that all the structure vector fields are tangent to M . Then M is a 3-semi-slant submanifold if and only if

∃λ ∈ [−1, 0) such that for i, j ∈ {1, 2, 3} :

(a) D = {X ∈ TM\ < ξ1, ξ2, ξ3 > | TiTjX = λX} is a distribution.

(b) ∀X ∈ TM , orthogonal to D , NiX = 0 .

Moreover, in that case λ = −cos2θ , in which θ is the slant angle of M .

Proof If M is 3-semi-slant, then by taking λ = −cos2θ and using Theorem 1, we get D = D2 . On

the other hand, since D1 is invariant, ∀X ∈ TM , orthogonal to D , NiX = 0. Conversely, if we take

TM = D⊥ ⊕ D⊕ < ξ1, ξ2, ξ3 > , then (b) implies that D⊥ is invariant. Using (a) and by the same way

as in the proof of Theorem 1, it can be proved that D is 3-slant with slant angle θ satisfying λ = −cos2θ .

Thus, M is 3-semi-slant. 2

Corollary 1 Let M be a 3-semi-slant submanifold of (M̃, ξi, ηi, ϕi, g)i∈{1,2,3} with slant angle θ . Then for all

X,Y ∈ TM we have

g(TiX,TjP2Y ) = cos2θg(X,P2Y ), (18)

g(NiX,NjP2Y ) = −g(X,ϕkP2Y )− cos2θg(X,P2Y ), (19)

g(NiX,NiP2Y ) = sin2θg(X,P2Y ). (20)

Proof Using (5) and statement (a) of Theorem 2, implies

g(TiX,TjP2Y ) = −g(X,TiTjP2Y ) = cos2θg(X,P2Y ).

Since D2 is orthogonal to structure vector fields, by (3), (5), (11), and (18) we have

−g(X,ϕkP2Y ) = g(ϕiX,ϕjP2Y ) = g(TiX +NiX,TjP2Y +NjP2Y )

= cos2θg(X,P2Y ) + g(NiX,NjP2Y ).

By using (4), (11), and (18), equation (20) can be easily proved. 2

Theorem 3 Let M be a submanifold of an almost contact metric 3-structure manifold (M̃, ξi, ηi, ϕi, g)i∈{1,2,3}

and ξ1, ξ2, ξ3 ∈ TM . Then M is a 3-semi-slant submanifold if and only if ∃λ ∈ [−1, 0) such that for

i, j ∈ {1, 2, 3} :

(a) D = {X ∈ TM\ < ξ1, ξ2, ξ3 > | tjNiX = −TkX − λX} is a distribution.

(b) ∀X ∈ TM , orthogonal to D , NiX = 0 .

Proof Let X ∈ TM\ < ξ1, ξ2, ξ3 > . Applying ϕj to (11) implies

−ϕkX = TjTiX + tjNiX +NjTiX + njNiX. (21)
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Taking tangential and normal parts of (21),

−TkX = TjTiX + tjNiX, −NkX = NjTiX + njNiX. (22)

If M is 3-semi-slant, then by putting D = D2 and using (22) and statement (a) of Theorem 2, we obtain

tjNiX = −TkX + cos2θX and also for all X ∈ D⊥ , NiX = 0. Conversely, by virtue of (22) and (a), we have

TjTiX = −TkX − tjNiX = λX,

thus by Theorem 2, M is 3-semi-slant. 2

4. 3-Semi-slant submanifolds of 3-cosymplectic and 3-Sasakian manifolds

Now, we study some geometric properties of the distributions of a 3-semi-slant submanifold when the ambient

manifold is a 3-cosymplectic or a 3-Sasakian manifold.

Let M be a 3-semi-slant submanifold of an almost contact metric 3-structure manifold

(M̃, ξi, ηi, ϕi, g)i∈{1,2,3} and X ∈ TM\ < ξ1, ξ2, ξ3 > . Then if M̃ is a 3-cosymplectic manifold, using (8) it

follows that g([ξi, ξj ], X) = g(∇̃ξjξi − ∇̃ξiξj , X) = 0, and if M̃ is a 3-Sasakian manifold, then g([ξi, ξj ], X) =

g(−ϕiξj + ϕjξi, X) = −2g(ξk, X) = 0. Therefore, the distribution D3 =< ξ1, ξ2, ξ3 > is integrable in both
cases.

On the other hand, if M̃ is a 3-cosymplectic manifold, then we have 0 = ∇̃ξjξi = ∇ξjξi + B(ξi, ξj).

Thus, B(ξi, ξj) = 0. Furthermore, if M̃ is a 3-Sasakian manifold, ∇ξjξi + B(ξi, ξj) = ∇̃ξjξi = −ϕiξj = −ξk .

Thus, B(ξi, ξj) = 0 and so the distribution D3 =< ξ1, ξ2, ξ3 > is totally geodesic in both cases. Therefore, we

can state the following theorem.

Theorem 4 Let M be a 3-semi-slant submanifold of a 3-cosymplectic or a 3-Sasakian manifold. Then the

distribution D3 =< ξ1, ξ2, ξ3 > is integrable and totally geodesic.

Theorem 5 Let M be a 3-semi-slant submanifold of an almost contact metric 3-structure manifold

(M̃, ξi, ηi, ϕi, g)i∈{1,2,3} . If M̃ is a 3-cosymplectic manifold, then the distribution D1 ⊕ D2 is integrable.

However, if M̃ is 3-Sasakian, then the distribution D1 ⊕D2 is not integrable.

Proof Let M̃ be a 3-cosymplectic manifold. Then for all X,Y ∈ D1 ⊕ D2 and i ∈ {1, 2, 3} , (8) implies

g([X,Y ], ξi) = g(∇̃Y X − ∇̃XY, ξi) = −g(X, ∇̃Y ξi) + g(Y, ∇̃Xξi) = 0. Thus, D1 ⊕D2 is integrable.

If M̃ is a 3-Sasakian manifold, then (8) implies for all X,Y ∈ D1 ⊕D2

g([X,Y ], ξi) = −g(X, ∇̃Y ξi) + g(Y, ∇̃Xξi) = −2g(X,ϕiY ) = −2g(X,TiY ), (23)

which shows that [X,Y ] is not in D1 ⊕D2 . 2

Note that if X,Y ∈ D1 or X,Y ∈ D2 , then (23) is satisfied too, and so if M is a 3-semi-slant submanifold

of a 3-Sasakian manifold, then the distributions D1 and D2 are not integrable in general. Moreover, from (23)

it follows that if D2 is integrable then the slant angle of this distribution is θ = π
2 .
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Proposition 1 Let M be a 3-semi-slant submanifold of a 3-cosymplectic or a 3-Sasakian manifold M̃ . Then

for all X,Y ∈ D1

P1(∇Xϕi)Y = 0, ∀i ∈ {1, 2, 3}. (24)

Proof First, we show that if M is a 3-semi-slant submanifold, then ϕi(D⊥
1 ) ⊂ D⊥

1 . Let Z ∈ D⊥
1 and X ∈ D1 .

Since D1 is invariant, using (5) implies

g(ϕiZ,X) = −g(Z, ϕiX) = 0.

Now, let M̃ be a 3-cosymplectic manifold. Then, by Gauss formula, we obtain

(∇̃Xϕi)Y = (∇Xϕi)Y +B(X,ϕiY )− ϕiB(X,Y ) = 0, (25)

for all X,Y ∈ D1 . Since B(X,ϕiY )− ϕiB(X,Y ) ∈ D⊥
1 , applying P1 on (25) it follows that

P1(∇Xϕi)Y = 0.

If M̃ is a 3-Sasakian manifold, then by (7)

(∇̃Xϕi)Y = (∇Xϕi)Y +B(X,ϕiY )− ϕiB(X,Y ) = g(X,Y )ξi, (26)

for all X,Y ∈ D1 , since ηi(Y ) = 0. Applying P1 to (26) completes the proof. 2

Equation (24) shows that if D1 is an integrable distribution, then the ambient 3-cosymplectic or 3-

Sasakian manifold induces a 3-cosymplectic structure on D1 . Now the following theorem shows an interesting

geometric property of distribution D1 .

Theorem 6 Let M be a 3-semi-slant submanifold of a 3-cosymplectic or a 3-Sasakian manifold M̃ . Then the

distribution D1 is integrable if and only if D1 is totally geodesic.

Proof By taking the normal parts, both equalities (25) and (26) imply

NiP2∇XY = −B(X,ϕiY ) +NiB(X,Y ), ∀X,Y ∈ D1. (27)

By interchanging the role of X and Y in (27), since B(X,Y ) = B(Y,X), we obtain

NiP2[X,Y ] = B(X,ϕiY )−B(ϕiX,Y ), ∀X,Y ∈ D1. (28)

Equation (28) shows that D1 is integrable if and only if

B(X,ϕiY ) = B(ϕiX,Y ). (29)

On the other hand, from (3) and (29), we get B(ϕiX,Y ) = B(X,ϕiY ) = B(X,ϕjϕkY ) = B(ϕjX,ϕkY ) =

B(ϕkϕjX,Y ) = −B(ϕiX,Y ). It follows that B(X,Y ) = 0,∀X,Y ∈ D1 and thus D1 is totally geodesic. Con-

versely, if D1 is totally geodesic, (28) implies [X,Y ] ∈ D1 . 2
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[1] Atçeken, M.: Warped product semi-slant submanifolds in Kenmotsu manifolds. Turk. J. Math. 34, 325–432 (2010).

[2] Blair, D.E.: Riemannian geometry of contact and sympelectic manifolds. Boston-Basel-Berlin. Brikhauser 2002.

[3] Cabrerizo, J.L., Carriazo, A., Fernández, L.M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold.

Geom. Dedicata 78, 183–199 (1999).

[4] Cabrerizo, J.L., Carriazo, A., Fernández, L.M., Fernández, M.: Slant submanifolds in Sasakian manifolds. Glasg.

Math. J. 42, 125–138 (2000).

[5] Carriazo, A.: Bi-slant immersions. Proc. ICRAMS 2000, Kharagpur, India, 88–97 (2000).

[6] Chen, B.-Y.: Geometry of Slant Submanifolds. K.U. Leuven 1990.

[7] Gibbons, G.W., Rychenkova, P.: Cones, tri-Sasakian structures and superconformal invariance. Phys. Lett. B 443,

138–142 (1998).

[8] Kuo, Y.Y.: On almost contact 3-structure. T óhoku Math. J. 22, 325–332 (1970).
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