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Abstract. Semi-smooth Newton methods are analyzed for the Signorini problem. A
proper regularization is introduced which guarantees that the semi-smooth Newton method
is superlinearly convergent for each regularized problem. Utilizing a shift motivated by an
augmented Lagrangian framework, to the regularization term, the solution to each regular-
ized problem is feasible. Convergence of the regularized problems is shown and a report on
numerical experiments is given.
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1. Introduction

The objective of this paper is to analyze a Newton type method for the following

Signorini problem:

(Sig)







min
1

2

∫

Ω

|∇u|2 −

∫

ΓN

qu−

∫

Ω

fu,

subject to u ∈ H1(Ω), u = 0 on ΓD, u 6 ψ on Γ,

where Ω is a bounded domain with boundary consisting of the disjoint subsets ΓN ,

ΓD and Γ. The inequality constraint u 6 ψ appears at first sight to impede the New-

ton method. But following the recent developments of semi-smooth Newton methods

*The first author was partially supported by the Army Research Office under DAAD19-
02-1-0394, the second author was supported in part by the Fonds zur Förderung der
wissenschaftlichen Forschung under SFB 32 “Mathematical Optimization and Applica-
tions in the Biomedical Sciences”.
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in functions spaces, see e.g. [6], [7], [8], [9], we shall show that superlinear methods

for solving (Sig) can be developed. We shall introduce a Lagrangian framework for

a family of regularized problems and prove their convergence as the regularization

parameter tends to its limit. Each of the regularized problems can be solved by a

semi-smooth Newton method with local superlinear convergence rate. The regular-

ization differs from penalty type methods by involving a shift ū which is the solution

to the following auxiliary problem

(Aux)







−∆ū = f in Ω,

ū = 0 on ΓD,
∂ū

∂n
= q on ΓN , ū = ψ on Γ.

Introducing the shift is suggested by augmented Lagrangian concepts. For the

problem under consideration it will guarantee that the approximating solutions are all

feasible. Section 2 contains the exact problem formulation and the convergence of the

regularized problems. The semi-smooth Newton method is developed in Section 3.

A short description of numerical experiments is given in the final Section 4.

2. Problem formulation and monotone, feasible approximation

Let Ω ⊂ R
2 be a rectangular domain with lateral boundaries ΓD, top boundary ΓN

and bottom boundary Γ and consider the Signorini problem

(2.1)







min
1

2

∫

Ω

|∇u|2 −

∫

ΓN

qu−

∫

Ω

fu

subject to u ∈ H1(Ω), u = 0 on ΓD, u 6 ψ on Γ.

Here f ∈ L2(Ω), q ∈ L2(ΓN) and

ψ = ψ̂|Γ with ψ̂ ∈ H1(Ω) and ψ̂|(ΓN ∪ ΓD) = 0.

In particular this implies that ψ ∈ H
1/2
0,0 (Γ), i.e. ψ ∈ H1/2(Γ) and ψ = 0 in an integral

sense on the boundaries of Γ [2, p. 44]. Associated to (2.1) we define the Lagrangian

L : H1
0,D(Ω) ×H

−1/2
0,0 (Γ) → R by

L(u, λ) =
1

2

∫

Ω

|∇u|2 −

∫

ΓN

qu−

∫

Ω

fu+ 〈λ, u− ψ〉Γ,

where H1
0,D(Ω) = {ϕ ∈ H1(Ω): ϕ|ΓD = 0}, and 〈·, ·〉Γ denotes the duality pairing

between H
1/2
0,0 (Γ) and H

−1/2
0,0 (Γ).
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Problem (2.1) admits a unique solution denoted by u∗ ∈ H1
0,D(Ω). Let g :

H1
0,D(Ω) → H

1/2
0,0 (Γ) denote the mapping describing the inequality constraint in (2.1),

i.e. g(u) = u|Γ − ψ. Its linearization at u∗ is surjective and hence there exists a

Lagrange multiplier λ∗ ∈ H
−1/2
0,0 (Γ) which renders L stationary at (u∗, λ∗), i.e.

(2.2)



























∫

Ω

∇u∗∇υ −

∫

ΓN

qυ −

∫

Ω

fυ + 〈λ∗, υ〉Γ = 0

for all υ ∈ H1
0,D(Ω),

〈λ∗, u∗ − ψ〉Γ = 0, u∗ 6 ψ, 〈λ∗, υ〉Γ > 0

for all υ ∈ H
1/2
00 (Γ), υ > 0,

which can formally be expressed as















−∆u∗ = f in Ω,

u∗ = 0 on ΓD,
∂u∗

∂n
= q on ΓN ,

∂u∗

∂n
= −λ∗ on Γ,

u∗ 6 ψ, λ∗ > 0, λ∗(u∗ − ψ) = 0.

The solution ū ∈ H1
0,D(Ω) of the following problem will play a significant role

(2.3)







−∆ū = f in Ω,

ū = 0 on ΓD,
∂ū

∂n
= q on ΓN , ū = ψ on Γ.

We recall from e.g. [2, p. 27] that ∂ū/∂n ∈ H
−1/2
0,0 (Γ). Moreover, if

(2.4) q ∈ H
1/2
0,0 (Γ),

then

(2.5) ū ∈ H2(Ω),

and in particular

(2.6)
∂ū

∂n
|Γ ∈ H1/2(Γ).

Similarly

(2.7)
∂u∗

∂n

∣

∣Γ ∈ H1/2(Γ) ⊂ Lq(Γ) for every q > 1,
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if (2.4) holds. In what follows we shall utilize a function λ̄ ∈ L2(Γ) satisfying

(2.8) λ̄ > 0 and
〈

λ̄+
∂ū

∂n
, υ

〉

> 0 for all υ ∈ H
1/2
0,0 (Γ), υ > 0.

In case of (2.6) we can choose

(2.9) λ̄ = max
(

0,
−∂ū

∂n

)

,

where max denotes the pointwise a.e. maximum along Γ.

For every c > 0 we consider the regularized problem

(2.10) min
u∈H1

0,D
(Ω)

1

2

∫

Ω

|∇u|2 −

∫

ΓN

qu−

∫

Ω

uf +
1

2c

∫

Γ

|λc|
2,

where λc = max(0, λ̄ + c(u − ψ)). Clearly (2.10) admits a unique solution uc ∈

H1
0,D(Ω). It satisfies the variational form of the following equation

(2.11)























−∆uc = f in Ω,

∂uc

∂n
= q on ΓN , uc = 0 on ΓD,

∂uc

∂n
= −λc on Γ.

If

(2.12) λ̄ ∈ H
1/2
0,0 (Γ),

then λc ∈ H
1/2
0,0 (Γ), and if (2.4) and (2.12) hold then uc ∈ H2(Ω).

Proposition 2.1. Let (2.8) hold. Then for each c > 0 we have

uc 6 ψ on Γc.

P r o o f. Note that (uc − ū)+ ∈ H1
0,D(Ω) and (uc − ū)+|ΓN ∈ H

1/2
0,0 (ΓN ),

(uc − ū)+ |Γ ∈ H
1/2
0,0 (Γ). Consequently,

|∇(uc − ū)+|2Ω −
〈 ∂

∂n
(uc − ū), (uc − ū)+

〉

1/2
= 0,

and

|∇(uc − ū)+|2Ω −
〈

λ̄+
∂ū

∂n
, (uc − ū)+

〉

1/2
= 0.

By (2.8) and since ΓD 6= ∅ this implies that uc 6 ū in H1
0,D(Ω). Consequently,

uc 6 ū = ψ on Γ. �
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Corollary 2.1. If (2.8) holds, then

0 6 λc = max(0, λ̄+ c(uc − ψ)) 6 λ̄ for each c > 0.

Proposition 2.2. Let (2.8) hold. Then for any c 6 c̄ we have

uc 6 uc̄ in H1
0,D(Ω).

P r o o f. Again (uc − uc̄)
+ ∈ H1

0,D(Ω) and (uc − uc̄)
+|ΓN ∈ H

1/2
0,0 (ΓN ),

(uc − uū)+|Γ ∈ H
1/2
0,0 (Γ). Consequently,

|∇(uc − uc̄)
+|2Ω −

〈 ∂

∂n
(uc − uc̄), (uc − uc)

+
〉

1/2
= 0,

and

(2.13) |∇(uc − uc̄)
+|2Ω + (λc − λc̄, (uc − uc)

+)Γ = 0.

Note that

(λc − λc̄, (uc − uc̄)
+)Γ

= (max(0, λ̄+ c(uc − ψ)) − max(0, λ̄+ c̄(uc̄ − ψ)), (uc − uc̄)
+)Γ

= (max(0, λ̄+ c(uc − ψ)) − max(0, λ̄+ c(uc̄ − ψ)), (uc − uc̄))
+)Γ

+ (max(0, λ̄+ c(uc − ψ)) − max(0, λ̄+ c̄(uc̄ − ψ)), (uc − uc̄)
+)Γ

> (max(0, λ̄+ c(uc − ψ)) − max(0, λ̄+ c(uc̄ − ψ)), (uc − uc̄)
+)Γ > 0,

where in the next to last step we used Proposition 2.1. The claim now follows

from (2.13). �

Theorem 2.1. If (2.8) holds then (uc, λc) converges to (u∗, λ∗) in the sense that

uc → u∗ in H1
D(Ω) and λc ⇀ λ∗ weakly in L2(Γ), as c→ ∞.

P r o o f. From (2.11) we have

(2.14) |∇uc|
2
Ω = (f, uc)Ω + (q, uc)ΓN

− (λc, uc)Γ.

Since

(λc, uc)Γ = (max(0, λ̄+ c(uc − ψ)), uc − ψ)Γ

+ (max(0, λ̄+ c(uc − ψ)), ψ)Γ 6 (λ̄, ψ)Γ,
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it follows from (2.14) that {uc}c>1 is bounded in H
1
0,D(Ω). Together with Corol-

lary (2.1) this implies that {(uc, λc)}c>1 is bounded in H
1
0,D(Ω) × L2(Ω) and hence

there exist (û, λ̂) ∈ H1
0,D(Ω) × L2(Ω) and a subsequence such that (uc, λc) ⇀ (û, λ̂)

weakly in H1
0,D(Ω) × L2(Ω). Clearly û 6 ψ and λ̂ > 0 on Γ. By (2.2), (2.11) and

uc 6 ψ on Γ

|∇(uc − u∗)|2 = 〈λ∗ − λc, uc − u∗〉1/2 = 〈λ∗ − λc, uc − ψ + ψ − u∗〉1/2

6 − (λc, uc − ψ + ψ − u∗) 6 (λc, uc − ψ)Γ,

and hence

0 6 limc→∞|∇(uc − u∗)|2 6 (λ̂, û− ψ)Γ 6 0,

where we use that (uc − û)|Γ → 0 strongly in L2(Γ). As a consequence lim
c→∞

uc → u∗

strongly in H1
0,D(Ω) and (û, λ̂) satisfies the complementarity system

(2.15) û 6 ψ, λ̂ > 0, λ̂(û− ψ) on Γ.

Taking the limit in

(∇uc,∇υ)Ω = (f, υ)Ω + (q, υ)Γ − (λγ , υ), for all υ ∈ H1
0,D(Ω),

implies that

(∇û,∇υ)Ω = (f, υ)Ω + (q, υ)Γ − (λ̂, υ), for all υ ∈ H1
0,D(Ω).

Together with (2.15) this implies that (û, λ̂) satisfies (2.2). Since the solution to (2.2)

is unique we have (û, λ̂) = (u∗, λ∗). �

R em a r k 2.1. Let Ac = {x ∈ Γ: uc(x) = ψ(x)} and A = {x : u∗(x) = ψ(x)}.

Proposition 2.2 and Theorem 2.1 imply that Ac is monotonically increasing and that

Ac → A∗ as c→ ∞.
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3. Semi-smooth Newton method for regularized problem

This section is devoted to the discussion of an iterative algorithm for solving (2.10).

Note that the direct application of a Newton algorithm is impeded by the fact that

the max-operation is not differentiable. Alternatively we shall apply a semi-smooth

Newton method to the mapping F : L2(Γ) → L2(Γ) defined by

(3.1) F (λ) = λ− max(0, λ̄+ c(u(λ)|Γ − ψ)),

where u(λ) is the solution to (2.11), which we repeat for convenience, dropping the

index c,

(3.2)























−∆u = f in Ω,

∂u

∂u
= q on ΓN , u = 0 on ΓD,

∂u

∂u
= −λ on Γ.

The solution to F (λ) = 0 provides the unique solution to (2.10). We now briefly

recall those facts on semi-smooth Newton methods which are relevant for the present

context.

Let X and Z be Banach spaces and let F : D ⊂ X → Z be a nonlinear mapping

with open domain D.

Definition 3.1. The mapping F : D ⊂ X → Z is called Newton differentiable

on the open subset U ⊂ D if there exists a family of generalized gradients G : U →

L(X,Z) such that

(A) lim
h→0

1

‖h‖
‖F (x+ h) − F (x) −G(x+ h)h‖ = 0,

for every x ∈ U .

Theorem 3.1. Suppose that x∗ ∈ D is a solution to F (x) = 0 and that F is

Newton-differentiable in an open neighborhood U containing x∗ and that {‖G(x)−1‖ :

x ∈ U} is bounded. Then the Newton-iteration xk+1 = xk−G(xk)−1F (xk) converges

superlinearly to x∗ provided that ‖x0 − x∗‖ is sufficiently small.

We refer to mappings F which allow a Newton derivative on U in the sense of

Definition 3.1 as Newton-differentiable.

Let us consider Newton-differentiability of the max-operator. For this purpose

X denotes a function space of real-valued functions on a bounded domain ω ⊂ R
n
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and max(0, y) is the pointwise max-operation. For δ > 0 we introduce candidates

for the generalized gradients of the form

(3.3) Gm(y)(x) =











1 if y(x) > 0,

0 if y(x) < 0,

δ if y(x) = 0,

where y ∈ X .

Proposition 3.1. The mapping max(0, ·) : Lq(ω) → Lp(ω) with 1 6 p < q < ∞

is Newton differentiable on Lq(ω) and Gm is a generalized gradient.

For the proofs of Theorem 3.1 and Proposition 3.1 we refer to [6]. Related re-

sults can be found in [9]. The following chain rule will be needed in the proof of

Theorem 3.2 below. We utilize a third Banach space Y .

Proposition 3.2. Let F2 : Y → X be an affine mapping with F2y = By + b,

B ∈ L(Y,X), b ∈ X , and assume that F1 : D ⊂ X → Z is Newton-differentiable on

the open subset U ⊂ D with generalized gradient G. If F−1
2 (U) is nonempty, then

F = F1 ◦ F2 is Newton-differentiable on F
−1
2 (U) with generalized gradient given by

G(By + b)B ∈ L(Y, Z), for y ∈ F−1
2 (U).

We are now prepared to address super-linear convergence of a semi-smooth Newton

method applied to (3.1).

Theorem 3.2. Let (2.8) hold and let λ̄ ∈ Lp(Γ) for some p > 2. Then semi-

smooth Newton-iteration applied to F given in (3.1) with generalized gradient for

the max-operator given in (3.3) and ω = Γ, converges locally superlinearly.

P r o o f. We apply Proposition 3.2 with Y = Z = L2(Γ) and X = Lp(Γ), where

p > 2. Moreover B is given by λ→ cu(λ)|Γ and b = λ̄− cψ. Since H1/2(Γ) embeds

continuously into every Lp(Γ), p ∈ [1,∞), we have b ∈ Lp(Γ). Moreover λ→ u(λ)|Γ

is a continuous mapping from L2(Γ) to H1/2(Γ) and hence B ∈ L(L2(Γ), Lp(Γ)).

We still have to verify that the generalized gradients GF of F are uniformly

bounded in L(L2(Γ)) for λ in a neighborhood of λ∗. Here

(3.4) GF (λ)δλ = δλ− cχAλ
δu(δλ),

where χAλ
is the characteristic function of the set

Aλ = {x ∈ Γ: λ̄+ c(u(λ) − ψ) > 0},
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with u(λ) the solution to (3.2) and δu = δu(δλ) = u′(λ)δλ the solution to

(3.5)























−∆δu = 0 in Ω,

∂

∂n
δu = 0 on ΓN , δu = 0 on ΓD,

∂

∂n
δu = −δλ on Γ.

Let λ and g in L2(Γ) be arbitrary, and note that

GF (λ)δλ = g

can equivalently be expressed as

δλ− cχAλ
δu(δλ) = g

or

(3.6)

{

δλχI = gχI ,

δλχA − cχAδu(δλχA) = gχA + cχAδu(δλχI),

where the notation of the dependence of A and I on λ is dropped. The first equa-

tion in (3.6) determines δλ uniquely on I. The Lax-Milgram lemma can be used

to solve the second equation in L2(A). In fact, note that |∇δu(δλχA)|2L2(Ω) =

−
∫

Γ
δλχAδu(δλχA). Therefore, taking the inner product of the second equation

in (3.6) with δλχA we obtain for a constant K independent of δλ

|δλχA|L2(Γ) 6 |g|L2(Γ) + c|δu(δλχI)|L2(Γ) 6 |g|L2(Γ) + cK|δλχI |L2(Γ)

6 |g|L2(Γ) + cK|gχI |L2(Γ) = (1 + cK)|g|L2(Γ).

This implies that (3.6) admits a solution δλ for any g ∈ L2(Γ) and |δλ|L2(Γ) 6

(1 + cK)|g|L2(Γ). The claim now follows from Theorem 3.1. �

To express the Newton step

(3.7) GF (λk)δλ = −F (λk)

in an alternative way let

Ak = {x ∈ Γ: λ̄(x) + c(uk(x) − ψ(x)) > 0}, Ik = Γ \ Ak,
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where uk = u(λk). Then (3.7) can be equivalently expressed as

δλ− cu′(λk)δλχAk
= −λk + max(0, λ̄+ c(uk − ψ))

or

(3.8) λk+1 = (λ̄+ c(uk+1 − ψ))χAk
.

Thus λk+1, uk+1 = u(λk+1) are the solution to

(3.9)











































−∆uk+1 = f in Ω,

∂

∂n
uk+1 = q on ΓN , uk+1 = 0 on ΓD,

λk+1 = −
∂

∂n
uk+1 = 0 on ΓIk

,

λk+1 = −
∂

∂n
uk+1 = λ̄+ c(uk+1 − ψ) on ΓAk

.

The semi-smooth Newton algorithm can now be expressed as the following active set

strategy with respect to the inequality u 6 ψ:

Primal Dual Active set algorithm.

(i) Determine ū, λ̄ according to (2.3) and (2.9), set c > 0, k = 0.

(ii) Set u0 = ū.

(iii) Determine Ak, Ik.

(iv) Solve (3.9) for uk+1. Set λk+1 = −∂uk+1/∂n on Γ.

(v) Stop or set k = k + 1 and go to (iii).

Clearly alternative initializations are possible. By Theorem 3.2 this algorithm con-

verges superlinearly if the initialization is sufficiently close to the solution uc of (2.10).

The algorithm also converges globally.

Theorem 3.3. Let (2.8) hold and c > 0. Then lim
k→∞

(yk, λk) = (yc, λc) in H
1(Ω)×

L2(Γ) as k → ∞.

P r o o f. On Ik

−
∂

∂n
(uk+1 − uk) =

{

0 − 0 on Ik ∩ Ik−1

0 − (λ̄+ c(uk − ψ)) on Ik ∩Ak−1

}

> 0.

Similarly on Ak

−
∂

∂n
(uk+1 − uk) =

{

c(uk+1 − uk) on Ak ∩ Ak−1

λ̄+ c(uk+1 − ψ) − 0 on Ak ∩ Ik−1

}

> c(uk+1 − uk).
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Thus, it follows that

0 = −

∫

Ω

∆(uk+1 − uk)(uk+1 − uk)+ dx

=

∫

Ω

|∇(uk+1 − uk)+|2 −

∫

Γ

∂

∂n
(uk+1 − uk)(uk+1 − uk)+ ds

>

∫

Ω

|∇(uk+1 − uk)+|2 +

∫

Ak

c|(uk+1 − uk)+|2 ds.

Consequently uk+1 − uk 6 0 a.e. in Ω. We can now proceed as in [8] to verify the

desired convergence.

In fact, as in Propositions 2.4 and 2.5 and of [8] we show that uc 6 uk and

0 6 λk+1 6 λk for all k. Since uk is the solution to

min
u∈H1

0,D
(Ω)

1

2

∫

Ω

|∇u|2 −

∫

ΓN

qu−

∫

Ω

uf +
1

2c

∫

Ak−1

|λk|
2,

it follows that {uk}∞k=1 is bounded in H
1(Ω). Extracting subsequences and using

Lebegue’s bounded convergence theorem, the proof can now be completed as that of

Theorem 2.1 in [8]. �

4. Numerical tests

The feasibility of the proposed active set method was tested numerically by means

a finite difference approximation on a uniform grid. The second order operator

was discretized by a five point stencil and the Neumann boundary conditions were

realized by a second order discretization.

The iteration can be terminated by means of the criterion that two consecutive

active sets coincide. In this case the exact solution of the discretized problem is

found.

For several examples with smooth problem data, we made the following common

observations.

• The number of iterations increases with c and with the number of grid points.

However, the increase is very moderate.

• The active sets increase as c is increased.

• For the examples that we ran, the active set did not change any more for

c > 104.

• Choosing λ̄ different from (2.9) may lead to chattering of the iterates, higher

iteration numbers and in any case, to unfeasible solutions. Chattering can

possibly be eliminated by taking into consideration that the determination of
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the active sets involves manipulation with numerical zeroes. In [1] a method

was proposed in a related situation, which allows to cope with this difficulty.

Here we took the point of view that using λ̄ the situation did not arise.

• The angle between the obstacle and the solution at the points of contact can

be very small. Consequently, the determination of the active set on the basis

of logic statements involving > 0 can be sensitive with respect to discretization

errors.

Let us turn to a specific example next. We chose q(s) = −7s(1 − s), f(x1, x2) =

cos(1
2π + πx1) + 1, and ψ(s) = 5s(1− s)(.5 − x)max(s, 1 − s). The solution ū to the

initialization phase is depicted in Fig. 1, the final solution, for c = 104 and mesh size

h = 1/n = 1/128 in Fig. 2.

0

0.5

1

0

0.5

1

−0.4

−0.2

0

x−axis

Figure 1.

0
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1

0

0.5

1

−0.4

−0.2

0

x−axis

Figure 2.

In Tab. 1 we present results for increasing values of c and fixed mesh size h = 1/256.

Here iter refers to the number of iterations that are required before two consecutive

active sets Ak coincide. Further max(uc − ψ) refers to the value of this expression

along Γ. We note that consistent with Remark 2.1 the active sets are increasing as

c increases.

c iter active set Ac max(uc − ψ)
1 2 {} 6 0

10 3 (0, .008) ∪ (.760, .820) 4.4 ∗ 10−5

100 5 (0, .027) ∪ (.656, .863) 8.8 ∗ 10−5

1000 6 (0, .031) ∪ (.664, .867) 1.9 ∗ 10−5

10000 6 (0, .031) ∪ (.664, .867) 2.1 ∗ 10−6

100000 6 (0, .031) ∪ (.664, .867) 2.1 ∗ 10−7

Table 1. n = 256, increasing c.

In Tab. 2 we present the results for decreasing mesh size. As claimed earlier, the

dependence of the iteration number on n is small. For this reason we do not propose
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to use specific techniques, such as path following methods for this class of problems,

to determine c. The second component of the active set determined on the basis of

u > ψ is sensitive with respect to the meshsize.

n iter active set Ac max(uc − ψ)
16 2 (0, .0625)∪ (.563, .875) 2.98 ∗ 10−5

32 3 (0, .0625)∪ (.531, .875) 1.6 ∗ 10−5

64 4 (0, .0625)∪ (.547, .891) 7.5 ∗ 10−6

128 6 (0, .0625)∪ (.586, .883) 3.8 ∗ 10−6

256 6 (0, .0625)∪ (.664, .867) 2.1 ∗ 10−6

Table 2. c = 10000, increasing n.

In Fig. 3 we present u− ψ along the boundary Γ for four consecutive mesh sizes,

exhibiting the two components of the active set.
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Figure 3.
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