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SEMI-STABLE PROCESSES ON LOCAL FIELDS

KUMI YASUDA

(Received November 29, 2004, revised October 6, 2005)

Abstract. Some characters of semi-stable stochastic processes on local fields such as
epochs, spans, and indices are given, and differences in nature from the corresponding objects
for Euclidean spaces are clarified. Criteria for the recurrence and for the polarity of one point
sets are given, and it is shown that semi-stable processes are characterized as limits of suitably
scaled sums of independent identically distributed random variables.

1. Introduction. Since 1980’s p-adic stochastic analysis has been discussed in con-
nection with p-adic physics. In particular the fundamental solutions to p-adic heat equations
are given by transition densities of rotation-symmetric p-adic semi-stable processes, and with
respect to this point research of stochastic processes is expected to contribute to physical prob-
lems. Recent developments in p-adic mathematical physics are summarized by Vladimirov-
Volovich-Zelenov ([14]), and Kochubei ([4]) indicates some remarkable relations between
p-adic stochastic analysis and physics.

Rotation-symmetric additive processes on the p-adics, including rotation-symmetric
semi-stable processes, were constructed by Albeverio-Karwowski ([1]), and their properties
were investigated by the present author ([15]). She also showed in [16] limit theorems on
groups, and gave a characterization of infinitely divisible and semi-selfdecomposable distri-
butions as limits of sums of infinitesimal independent random variables. In particular, p-adic
valued rotation-symmetric semi-stable processes are limits of suitably scaled sums of rotation-
symmetric independent identically distributed random variables.

This article aims at characterizing semi-stable processes on local fields, generalizing
the results in [15] and [16] even to non-symmetric case. Section 2 is a characterization of
semi-stable processes, where the range of epochs and the indices of processes are given
in contrast with semi-stable processes on Euclidean n-space Rn. The theory of Rn-valued
semi-selfsimilar processes have been established by Sato, Maejima, Watanabe et al. (e.g.,
[6, 7, 9, 12, 13]). Section 3 is devoted to criteria for the recurrence and for the polarity of one
point sets. In Section 4 we give several limit theorems. Theorem 4.1 claims that transition
probabilities of semi-stable processes are characterized as limit distributions of sums of i.i.d.
random variables. This assertion is essentially equivalent to the result given by Kochubei ([3]).
Maejima-Shah ([8]) deals with a more general concept, i.e., operator semi-stable measures,
where a corresponding limit theorem is given. Our main objective is Theorem 4.5, which
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gives a convergence in a stronger sense, namely semi-stable processes are realized as scaling
limits of sums of i.i.d. random variables in the space of right continuous paths with left limits.

Throughout this article, K denotes a local field of characteristic 0. Namely, K is a finite
algebraic extension of the p-adic field Qp for some prime p. Let NK/Qp

: K → Qp be the
norm map of the field extension K/Qp, and let | |p be the p-adic norm on Qp. Then

‖x‖ := |NK/Qp
(x)|p , x ∈ K ,

defines a norm on the field K . We denote the ring of integers in K by R := {x ∈ K | ‖x‖ ≤ 1}.
Then P := {x ∈ K | ‖x‖ < 1} is the unique prime ideal of the ring R. Let q be the module of
K (i.e., q is the cardinality of the residue field R/P ), and take a complete set of representatives
A of the classes of R modulo P . If we fix a prime element ω, then any non-zero element x of
K is uniquely represented by a series

x =
∞∑

i=m

aiω
i ,(1)

with m ∈ Z and ai ∈ A, am �= 0. For those elements x of K having a representation (1), it
holds that ‖x‖ = q−m.

We denote by dx the Haar measure on K normalized so that
∫
R 1dx = 1, and by vol(·)

the volume with respect to the Haar measure ; vol(B) := ∫
B 1dx, B being a measurable subset

of K . We write Bm := ω−mR = {x ∈ K | ‖x‖ ≤ qm} for integers m. Then it can be verified
that vol(Bm) = qm.

We fix a character χ1 of K with rank 0. Namely, χ1 is a homomorphism on the additive
group K to the multiplicative group S1 = {w ∈ C | |w| = 1}, such that χ1(B0) = {1} and
χ1(B1) �= {1}. For each y in K , χy(·) := χ1(y·) gives a character on K , and by means of
this correspondence y �→ χy , the additive group K is isomorphic to its character group. The
formula ∫

Bm

χy(x)dx =
{

qm , ‖y‖ ≤ q−m ,

0 , ‖y‖ > q−m ,
(2)

(see e.g., [5]) will be frequently used in the subsequent sections.
The characteristic function µ̂ of a probability measure µ on K is the complex-valued

function on K , defined by

µ̂(y) :=
∫

K

χy(x)µ(dx) .

2. Semi-stable processes and characteristic functions. A stochastic process X(t),
t ≥ 0, on K with X(0) = 0 is a Lévy process if it is stochastically continuous, tempo-
rally homogeneous, and if it has independent increments and right continuous paths with left
limits. Semi-stable processes on K are K-valued Lévy processes X(t) satisfying the semi-
selfsimilarity {X(at)} = {bX(t)} in law for some a > 0, �= 1, and b �= 0 in K .

Let us fix a semi-stable process X(t) �≡ 0 on K , and denote by µt its transition proba-
bility. Then there are a > 0 and b ∈ K such that {X(at)} = {bX(t)} in law, but not unique.
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Indeed, we can see by iteration that {X(ant)} = {bnX(t)} holds for any integer n. Further-
more, even for a fixed a, there may correspond some distinct b’s. The following proposition
describes the structure of the set of such a’s, as well as a relation between a and b. The asser-
tion and the proof are analogous to known results in Rn (Lemma 13.8 and Theorem 13.11 in
[12]), except some differences indicated in the subsequent Remark.

We set Γ = Γ (X) := {a > 0 | {X(at)} = {bX(t)} in law for some b ∈ K}.
PROPOSITION 2.1. (i) If b and b′ in K satisfy {bX(t)} = {b′X(t)} in law, then

‖b‖ = ‖b′‖.
(ii) Put a0 := inf(Γ ∩ (1,∞)). Then a0 > 1 and Γ is the cyclic group generated by

a0.
(iii) There exists α > 0 such that for any a ∈ Γ and any corresponding b ∈ K , it holds

that a = ‖b‖α.

PROOF. (i) Suppose ‖b‖ > ‖b′‖ and put b̃ = b′/b. Then {X(t)} = {b̃X(t)} in law.
By iteration we have {X(t)} = {b̃nX(t)} for any n ≥ 1, and since ‖b̃‖ < 1, we obtain a
contradiction X(t) ≡ 0.

(ii) We shall show that Γ is a proper closed subgroup of (0,+∞). Suppose Γ =
(0,+∞), fix a ∈ Γ , and take b ∈ K such that {X(at)} = {bX(t)}. Put ‖b‖ = qn. Then by the
assumption we have a′ := a1/(2n) ∈ Γ , and can take b′ ∈ K such that {X(a′t)} = {b′X(t)}.
Since {(b′)2nX(t)} = {X((a′)2nt)} = {X(at)} = {bX(t)}, (i) implies ‖b′‖ = ‖b‖1/(2n) =
q1/2, which is impossible. Therefore we have Γ �= (0,+∞).

It is evident that 1 ∈ Γ . Suppose a and a′ belong to Γ . Then there exist b and b′
in K such that {X(at)} = {bX(t)} and {X(a′t)} = {b′X(t)} in law. Then it holds that
{X(aa′t)} = {bX(a′t)} = {bb′X(t)}, and therefore aa′ belongs to Γ . For a ∈ Γ and b ∈
K such that {X(at)} = {bX(t)}, we have {b−1X(t)} = {X(a−1t)} and hence a−1 ∈ Γ .
Assume that an ∈ Γ , n = 1, 2, . . . , satisfy an → a ∈ (0,+∞), and take bn ∈ K such
that {X(ant)} = {bnX(t)}. Since X(t) is stochastically continuous, X(ant) converges to
X(at) in law. Suppose {bn} is non-compact in K , and take a subsequence {n(k)}k=1,2,...

of N so that ‖bn(k)‖ → +∞. Then we obtain µ̂t (y) = µ̂an(k)t (b
−1
n(k)

y) → µ̂at (0) = 1
for any y ∈ K , which contradicts that X(t) �≡ 0. Therefore there exists an accumulation
point b ∈ K of {bn}. If we take a subsequence {n(k)} so that bn(k) → b, then we have
{X(at)} = {limk→∞ bn(k)X(t)} = {bX(t)}, and hence a belongs to Γ . Thus we have proved
that Γ is a proper closed group of Γ .

We can take c ∈ (0,+∞)\Γ , and since Γ is closed, it holds that (r−1c, rc) ⊂ (0,+∞)\
Γ for some r > 1. If we suppose a0 = 1, we can take θ ∈ (1, r2) ∩ Γ , namely we have
0 < log θ < 2 log r . Then log c − log r < n log θ < log c + log r holds for some n ∈ N.
Therefore it holds that r−1c < θn < rc. Since Γ is a group, we have θn ∈ Γ , a contradiction.

We have {an
0 }n∈Z ⊂ Γ , since Γ is a closed subgroup of (0,+∞). Suppose that there

exists c ∈ Γ \ {an
0 } and take n0 ∈ Z such that a

n0
0 < c < a

n0+1
0 . Then we get a contradiction

ca
−n0
0 ∈ Γ , 1 < ca

−n0
0 < a0.



422 K. YASUDA

(iii) Take b0 ∈ K for which {X(a0t)} = {b0X(t)} holds, and put α := log a0/ log ‖b0‖.
Any a in Γ is represented as a = an

0 with some integer n, and if b ∈ K is such that {X(at)} =
{bX(t)}, then we have {bX(t)} = {X(an

0 t)} = {bn
0X(t)}. Hence (i) implies ‖b‖ = ‖bn

0‖ =
a1/α. �

We call an element a of Γ an epoch, a corresponding b ∈ K a span, and the α the index
of the semi-stable process X(t).

REMARK 2.2. The indices of Rd -valued semi-stable processes take values in (0, 2]
(Theorem 13.15 in [12]), while for any positive number α, there exists a K-valued semi-stable
process having index α. Indeed, for every α > 0, there is a rotation-symmetric semi-stable
process on K of index α having characteristic function µ̂t (y) = exp(−t‖y‖α) (Proposition
4.1 in [15]).

For a Rd -valued semi-stable process, it may occur that a0 = 1 and Γ = (0,∞), in which
case the process is called stable. As seen in (ii) of the above proposition, there exists no stable
process on K .

Let {µt }t≥0 be a one-parameter convolution semigroup of probability measures on K

which converges weakly to the δ-measure at the origin as t → 0. Since the field K is totally
disconnected, the characteristic function has a canonical representation

µ̂t (y) = χy(x0) exp

(
t

∫
K

(χy(x) − 1)ν(dx)

)
,(3)

where x0 ∈ K , and ν is a σ -finite measure with ν(Nc) < ∞ for any neighborhood N of the
origin and

∫
K(1−Re χy(x))ν(dx) < ∞ for any y ∈ K . The x0 and ν are uniquely determined

by {µt }t≥0 (Theorem 10.1 and Remark 1 following Corollary 7.1 in [10]).

LEMMA 2.3. A Lévy process X(t) on K is semi-stable with an epoch a and the corre-
sponding span b if and only if in the canonical representation (3) of its transition probability
µt , it holds that x0 = 0 and ν(b−1dx) = aν(dx).

PROOF. This is immediate from X0 = 0 a.s., µ̂at (y) = µ̂t (by), and the uniqueness of
the representation (3). �

3. Absolute continuity, recurrence, and polarity. In this section we will investigate
some properties of semi-stable processes. We begin with showing the absolute continuity of
the transition probabilities.

PROPOSITION 3.1. The transition probability µt of a semi-stable process X(t) �≡ 0 on
K is absolutely continuous relative to the Haar measure, and the Radon-Nikodým derivative
is given by

pt (x) =
∫

K

χx(−y)µ̂t (y)dy .

According to general theory of Fourier analysis on groups, the proposition is proved if
we can show that µ̂t is integrable (see, e.g., Section 1.7 in [11]).
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PROOF. Let a < 1 be an epoch and b a corresponding span, and put ‖b‖ = q−k , k > 0.
For y ∈ K with ‖y‖ = q−ks−l , s ∈ Z, 0 ≤ l ≤ k − 1, by the canonical representation (3) and
Lemma 2.3 it holds that

|µ̂t (y)| = exp

(
− t

∫
K

(1 − Re χy(x))ν(dx)

)

= exp

(
− ast

∫
K

(1 − Re χy(b
−sx))ν(dx)

)
.

Since 1 − Re χy(b−sx) ≥ 0, we proceed to

|µ̂t (y)| ≤ exp

(
− ast

∫
‖x‖=ql+1

(1 − Re χy(b
−sx))ν(dx)

)
.

On the circle {‖x‖ = ql+1}, there exists c < 1 such that Re χy(b
−sx) ≤ c. On the other hand,

there exists 0 ≤ l0 ≤ k − 1 such that ν(‖x‖ = ql0+1) > 0. Indeed, supposing the contrary,
we have ν(q ≤ ‖x‖ ≤ qk) = 0, and by the self-similarity of ν, ν(K \ {0}) = ∑∞

i=−∞ ν(q ≤
‖bix‖ ≤ qk) = ∑∞

i=−∞ aiν(q ≤ ‖x‖ ≤ qk) = 0, which contradicts that X(t) �≡ 0. Hence
we have

∫
K

|µ̂t (y)|dy ≤
∞∑

s=−∞

k−1∑
l=0

exp
( − ast (1 − c)ν

(‖x‖ = ql+1))vol
({‖y‖ = q−ks−l})

≤
∞∑

s=−∞
exp

( − ast (1 − c)ν
(‖x‖ = ql0+1))(1 − q−1)q−ks−l0

< ∞ . �

The next proposition gives a criterion for the recurrence and the polarity of one point sets
according to the index.

PROPOSITION 3.2. A semi-stable process X(t) of index α is recurrent if and only if
α ≥ 1. It visits almost every point with probability 1 if and only if α > 1.

PROOF. Take an epoch a < 1, and let b be a corresponding span with ‖b‖ = a1/α =:
q−k < 1. Recall Formula (2), and put

hm(t, y) := qmµ̂t (y)1B−m(y) =
∫

Bm

χx(−y)µ̂t (y)dx .

As in the proof of Proposition 3.1, we can take 0 ≤ l0 ≤ k − 1 such that ν
(‖x‖ = ql0+1

)
> 0.
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First of all, we assume that α < 1. Let ‖y‖ = qn ≤ q−m, and put −n = ks + l with
s ∈ Z and 0 ≤ l ≤ k − 1. Then, similarly as in the proof of Proposition 3.1, we have

∫ ∞

0
dt

∫
K

|hm(t, y)|dy

= qm

∫ ∞

0
dt

∫
B−m

∣∣µ̂t (y)
∣∣ dy

≤ qm

∫ ∞

0
dt

∞∑
s=[m/k]

exp
( − ast (1 − c)ν

(‖x‖ = ql0+1))(1 − q−1)q−ks−l0 .

By Fubini’s theorem we proceed to

∫ ∞

0
dt

∫
K

|hm(t, y)|dy

≤ (1 − q−1)qm−l0(1 − c)−1ν
(‖x‖ = ql0+1)−1

∞∑
s=[m/k]

p−k(1−α)s < ∞ .

Therefore, by Proposition 3.1 and Fubini’s theorem, we obtain

∫ ∞

0
µt(Bm)dt =

∫ ∞

0
dt

∫
Bm

dx

∫
K

χ−x(y)µ̂t (y)dy

=
∫ ∞

0
dt

∫
K

hm(t, y)dy < ∞ ,

and thus X(t) is transient provided α < 1.
Let α be arbitrary. By Proposition 3.1 and Fubini’s theorem, we have for λ > 0,

∫ ∞

0
dt

∫
K

exp(−λt)|hm(t, y)|dy

= qm

∫ ∞

0
dt

∫
B−m

exp(−λt)|µ̂t (y)|dy

≤ qm

∫ ∞

0
dt

∞∑
s=[m/k]

(1 − q−1)q−ks−l0 exp
( − t

(
λ + as(1 − c)ν

(‖x‖ = pl0+1)))

= (1 − q−1)qm−l0

∞∑
s=[m/k]

q−ks

λ + as(1 − c)ν
(‖x‖ = pl0+1

)

≤ (1 − q−1)qm−l0λ−1
∞∑

s=[m/k]
q−ks < ∞ .
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Put ϕ(y) := ∫
K

(χy(x) − 1)ν(dx). Then Lemma 2.3 implies ϕ(by) = aϕ(y). Applying the
canonical representation (3), Proposition 3.1, and Fubini’s theorem, we obtain that

V λ(Bm) :=
∫ ∞

0
exp(−λt)µt (Bm)dt

=
∫ ∞

0
dt

∫
K

exp(−λt)hm(t, y)dy

= qm

∫
B−m

dy

∫ ∞

0
exp(−λt)µ̂t (y)dt

= qm

∫
B−m

(λ − ϕ(y))−1dy .

(4)

Now we assume that α ≥ 1. Then it holds that
∫

B−m

Re(−ϕ(y))−1dy ≥
∞∑

s=[m/k]+1

k−1∑
l=0

∫
‖y‖=q−ks−l

Re(−ϕ(y))−1dy

=
∞∑

s=[m/k]+1

k−1∑
l=0

∫
‖y‖=q−l

Re(−ϕ(bsy))−1q−ksdy

=
∞∑

s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

Re(−ϕ(y))−1dy

= ∞ .

Since V λ(Bm) is real, the monotone convergence theorem and Fatou’s lemma imply that∫ ∞

0
µt(Bm)dt = lim

λ↓0
V λ(Bm)

= lim
λ↓0

qm

∫
B−m

Re(λ − ϕ(y))−1dy

≥ qm

∫
B−m

Re(−ϕ(y))−1dy = ∞ ,

and hence X(t) is recurrent in case α ≥ 1.
By the above formula (4), we have

V λ(Bm)

vol(Bm)
=

∫
B−m

Re(λ − ϕ(y))−1dy .

If −n = ks + l, s ∈ Z, 0 ≤ l ≤ k − 1, then Lemma 2.3 implies that∫
‖y‖=qn

Re(λ − ϕ(y))−1dy

= q−ks

∫
‖y‖=q−l

λ − q−αks Re ϕ(y)(
λ − q−αks Re ϕ(y)

)2 + (
q−αks Im ϕ(y)

)2
dy .

(5)
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Since Re ϕ(y) ≤ 0, it holds for m < 0 that

V λ(Bm)

vol(Bm)

≤
∞∑

s=[m/k]

k−1∑
l=0

q−ks

∫
‖y‖=q−l

(λ − q−αks Re ϕ(y))−1dy

≤
−1∑

s=[m/k]
q−ks

k−1∑
l=0

∫
‖y‖=q−l

(q−αks Re ϕ(y))−1dy +
∞∑

s=0

q−ks
k−1∑
l=0

∫
‖y‖=q−l

λ−1dy

=
−1∑

s=[m/k]
q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

(Re ϕ(y))−1dy + λ−1(1 − q−k)

∞∑
s=0

q−ks .

If α > 1, the last line converges as m → −∞, and hence a one-point set is not essentially
polar. On the other hand, we derive from (5) that

V λ(Bm)

vol(Bm)
≥

0∑
s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

qαksλ − Re ϕ(y)(
qαksλ − Re ϕ(y)

)2 + (
Im ϕ(y)

)2 dy

≥
0∑

s=[m/k]+1

q(α−1)ks

k−1∑
l=0

∫
‖y‖=q−l

− Re ϕ(y)(
λ − Re ϕ(y)

)2 + (
Im ϕ(y)

)2 dy .

If we suppose Re ϕ(y) = 0 a.e. on q−(k−1) ≤ ‖y‖ ≤ 1, then, since ϕ(by) = aϕ(y)

and |χy(x)| ≡ 1, we obtain ϕ(y) = 0 a.e. on K . This contradicts the non-degeneracy of
X(t), and hence the last integral is strictly positive. Then we obtain that, in case α ≤ 1,
V λ(Bm)/vol(Bm) diverges as m → −∞, and as a consequence, a one-point set is essentially
polar. �

4. Limit theorem. This section is devoted to establishing limit theorems for semi-
stable processes. We show first that one dimensional distributions of semi-stable processes
are characterized as limit distributions of suitably scaled sums of independent identically dis-
tributed random variables. We make a further investigation, in what condition the limit gives
a convergence in paths space, and conclude that semi-stable processes are realized as limits
of scaled sums in the space of right continuous paths with left limits.

Let ξi , i = 1, 2, . . . , be independent identically distributed K-valued random variables.
For positive numbers an with limn→∞ an = +∞, non-zero elements bn of K (n = 1, 2, . . . ),
and t > 0, we consider a scaled sum Yn(t) := bn

∑[ant ]
i=1 ξi . Here, for h ∈ R, [h] denotes the

maximum integer which does not exceed h.
For a random variable ξ , we denote its law by L(ξ).

THEOREM 4.1. A Lévy process X(t) on K is semi-stable if and only if there exist
independent identically distributed random variables ξi , i = 1, 2, . . . , positive numbers a,
an, n = 1, 2, . . . , and non-zero elements b, bn, n = 1, 2, . . . , in K , such that an → +∞,
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limn→∞ an+1/an = a−1, limn→∞ bn+1/bn = b, and for any t > 0 the random variable Yn(t)

converges weakly to X(t) as n → ∞.

PROOF. We assume first the existence of such ξi , an, bn, and prove the semi-
selfsimilarity of the limit process X(t). If we put ρ for the law of ξi , then by the assump-
tion we have ρ̂(bny)[ant ] = L̂(bn

∑[ant ]
i=1 ξi)(y) → µ̂t (y) as n → ∞, for every y ∈ K and

t > 0. Since bn+1/bn → b, we can verify that

ρ̂(bn+1y)[ant ] = ρ̂(bn(bn+1/bn)y))[ant ] → µt (by) .

On the other hand, the assumptions an → +∞ and an+1/an → a−1 imply that

ρ̂(bn+1y)[ant ] = (ρ̂(bn+1y)[an+1t ])[ant ]/[an+1t ] → µt(y)a = µat(y) .

Therefore we obtain µt(by) = µat (y) for every y, and hence X(t) is semi-stable.
Conversely, suppose that X(t) is semi-stable, and take an epoch a < 1 and a correspond-

ing span b. Let ξi be an i.i.d. random variables such that L(ξi) = µ1, and put an := a−n,
bn := bn. According to the canonical representation (3), it holds that µ̂t (y) = exp(tϕ(y))

with ϕ(y) := ∫
K

(χy(x) − 1)ν(dx), and ϕ(by) = aϕ(y). Then

L̂(Yn(t))(y) = µ̂1(b
ny)[a−nt ]

= exp(ϕ(bny))[a−nt ]

= exp(ϕ(y))an[a−nt ]

→ µt(y), as n → ∞ ,

and hence for each t > 0, Yn(t) converges to X(t) in law. �

For a metric space S, let DS denote the space of right-continuous S-valued functions on
[0,∞) with left limits. We give a sufficient condition for the relative compactness of the ran-
dom sequence Yn in P(DK), the space of probability measures on DK . As a consequence, we
will see that Theorem 4.1 remains valid if the convergence of one-dimensional distributions
is substituted by the weak convergence of the random variables Yn on DK .

PROPOSITION 4.2. Suppose there exist C > 0 and 0 < r < 1 such that

sup
n

anP (‖ξi‖ ≥ ‖bn‖−1ql) ≤ Crl(6)

holds for any integer l. Then the sequence {Yn}n≥1 is relatively compact in P(DK).

For a proof, we apply the following criterion (Theorems 8.6 and 8.8 in [2]).

LEMMA 4.3. Let (S, ‖ ‖) be a complete separable metric space, and {Zα(t)} a family
of processes with sample paths in DS . Suppose that

(i) for every ε > 0 and rational t ≥ 0, there exists a compact set F = F(ε, t) such
that

inf
α

P (Zα(t) ∈ Fε) ≥ 1 − ε ,(7)

where Fε := {x ∈ S | infy∈F ‖x − y‖ < ε},
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(ii) for any T > 0, there exist β > 0, C′ > 0, and θ > 1 such that

E((‖Zα(t + h) − Zα(t)‖ ∧ 1)β/2(‖Zα(t) − Zα(t − h)‖ ∧ 1)β/2) ≤ C′hθ(8)

holds for all α, 0 ≤ t ≤ T + 1, 0 ≤ h ≤ t , and such that

lim
δ→0

sup
α

E((‖Zα(δ) − Zα(0)‖ ∧ 1)β) = 0 .(9)

Then {Zα} is relatively compact in P(DS).

PROOF (Proposition 4.2). We shall verify the conditions in Lemma 4.3. By the non-
archimedean property, ‖ξi‖ < R, i = 1, . . . , n, implies that

∑n
i=1 ‖ξi‖ < R, for R > 0 and

n ≥ 1. Therefore for any integer l,

P(‖Yn(t)‖ ≥ ql) = P

(∥∥∥∥
[ant ]∑
i=1

ξi

∥∥∥∥ ≥ ‖bn‖−1ql

)

≤ P(‖ξi‖ ≥ ‖bn‖−1ql, 1 ≤ ∃i ≤ [ant])
= 1 − P(‖ξi‖ < ‖bn‖−1ql)[ant ]

≤ [ant]P(‖ξi‖ ≥ ‖bn‖−1ql)

≤ [ant]a−1
n Crl ,

(10)

where we used the inequality 1 − xn ≤ n(1 − x) for n ≥ 1 and x ≤ 1. For any ε > 0 and
rational t > 0, take an integer l = l(ε, t) large enough so that Crl < εt−1 and ql > ε. Put
F = Bl and assume x ∈ Fε . Then we can take y ∈ F for which ‖x − y‖ < ε, and the
non-archimedean inequality implies ‖x‖ ≤ max(‖y‖, ‖x − y‖) ≤ ql . Namely, we obtain
Fε = F , and hence

P
(
Yn(t) ∈ Fε

) ≥ 1 − P(‖Yn(t)‖ ≥ ql)

≥ 1 − [ant]a−1
n εt−1 > 1 − ε .

Thus the condition (i) in Lemma 4.3 is cleared.
For the condition (ii), take β > −2 log r/ log q . Since the process Yn(t) has independent

increments, it follows from (10) that

E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2(‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

= E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2)E((‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

≤
∞∑

m=0

q−βm/2P(‖Yn(t + h) − Yn(t)‖ ≥ q−m)

×
∞∑

m=0

q−βm/2P(‖Yn(t) − Yn(t − h)‖ ≥ q−m)

≤ ([an(t + h)] − [ant])([ant] − [an(t − h)])
( ∞∑

m=0

q−βm/2a−1
n Cr−m

)2
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for 0 ≤ h ≤ t . In case 2anh < 1, we have either [an(t + h)] = [ant] or [ant] = [an(t − h)],
and the above expectation is 0. If 2anh ≥ 1, then we see that

([an(t + h)] − [ant])([ant] − [an(t − h)]) ≤ (an(t + h) − an(t − h) + 1)2 ≤ (4anh)2 ,

and then

E((‖Yn(t + h) − Yn(t)‖ ∧ 1)β/2 (‖Yn(t) − Yn(t − h)‖ ∧ 1)β/2)

≤ 16C2
( ∞∑

m=0

(q−β/2r−1)m
)2

h2 .

By the assumption β > −2 log r/ log q , this implies (8). Furthermore, (10) leads to

E((‖Yn(δ)‖ ∧ 1)β) ≤
∞∑

m=0

q−βmP(‖Yn(δ)‖ ≥ q−m)

≤
∞∑

m=0

q−βm[anδ]a−1
n Cr−m

≤ Cδ

∞∑
m=0

(q−βr−1)m ,

and hence (9) follows immediately. �

REMARK 4.4. Suppose an+1/an → a−1, bn+1/bn → b, and Condition (6). Then, by
Proposition 4.2, there exists a subsequence n(k) of N such that {Yn(k)(t)}k=1,2,... has a limit
in DK , and Theorem 4.1 implies that the limit X(t) is a semi-stable process. It should be
noted that the original sequence {Yn(t)} does not necessarily converge, and as is shown in the
following example, it may have distinct accumulation points more than one.

Suppose that X(t) is semi-stable with an epoch a < 1 and a corresponding span b. Let
ξi be identically distributed as X(1), and put bn := bn,

an :=




a−n , n = 3k ,

3−kna−n , 3k < n ≤ 2 · 3k ,

(4 − 3−kn)a−n , 2 · 3k < n < 3k+1 , k ∈ N .

It can be verified that an+1/an → a−1, bn+1/bn → b, and Condition (6) is fulfilled. If we
take n(k) = 3k, then as k → ∞ we have

L̂(Yn(k)(t))(y) = µ̂1(b
3k

y)[a−3k t ] = µ̂1(y)a
3k [a−3k

t ] → µ̂t (y) .

On the other hand, taking n′(k) = 2 · 3k , we obtain

L̂(Yn′(k)(t)(y) = µ̂1(b
2·3k

y)[2a−2·3k ] = µ̂1(y)a
2·3k [2a−2·3k

t ] → µ̂2t (y) .

Thus Yn(k)(t) converges to X(t), while Yn′(k)(t) goes to X(2t).
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THEOREM 4.5. Let X(t) be a semi-stable process on K with an epoch a and a span
b. If ξi is identically distributed as X(1), an = a−n, and bn = bn, then Yn weakly converges
to X in DK .

PROOF. Recalling the proof of Theorem 4.1, it is clear that for every t , Yn(t) converges
to X(t). Since Yn(t) has independent increments, the convergence of every finite dimensional
distribution follows, and hence it suffices to show the relative compactness of {Yn} in P(DK).
It follows by Proposition 3.1, Fubini’s theorem, and Formula (2) that

P(‖X(t)‖ ≥ ql) = 1 −
∫

K

dyµ̂t(y)

∫
Bl−1

χx(−y)dx

= ql−1
∫

B−l+1

(1 − µ̂t (y))dy .

Using the canonical representation (3) : µ̂t (y) = exp(tϕ(y)), ϕ(y) = ∫
K

(χy(x) − 1)ν(dx),
the dominated convergence theorem, and (2), we proceed to

t−1P(‖X(t)‖ ≥ ql) = ql−1
∫

B−l+1

t−1(1 − exp(tϕ(y)))dy

t→0→ ql−1
∫

B−l+1

(−ϕ(y))dy

= ql−1
∫

K

ν(dx)

∫
B−l+1

(1 − χy(x))dy

= ql−1
∫

K

q−l+1(1 − 1Bl−1(x))ν(dx)

= ν(Bc
l−1) .

(11)

Let ‖b‖ = q−k and put s := [l/k]. Then, by the self-similarity of the Lévy measure ν, we
obtain that

ν(Bc
l−1) ≤ ν(b−sBc

−1) = asν(Bc
−1) ≤ al/ka−1ν(Bc

−1) .(12)

Here note that

P(‖ξi‖ ≥ ‖bn‖−1ql) = P(‖bnX(1)‖ ≥ ql) = P(‖X(an)‖ ≥ ql) .

Then we have

a−l/k sup
n

a−nP (‖ξi‖ ≥ ‖bn‖−1ql) ≤ a−l/k sup
t≤1

t−1P(‖X(t)‖ ≥ ql) ,

and by (11) and (12), this is finite. Therefore (6) is fulfilled, and hence {Yn} is relatively
compact. �
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