
Semi-Streamed Index Join for Near-Real Time
Execution of ETL Transformations

Mihaela A. Bornea #1, Antonios Deligiannakis ∗2, Yannis Kotidis #1,Vasilis Vassalos #1

#Athens U. of Econ and Business, Technical University of Crete
1{mihaela,kotidis,vassalos}@aueb.gr 2adeli@softnet.tuc.gr

Abstract—Active data warehouses have emerged as a new
business intelligence paradigm where data in the integrated
repository is refreshed in near real-time. This shift of practices
achieves higher consistency between the stored information and
the latest updates, which in turn influences crucially the output of
decision making processes. In this paper we focus on the changes
required in the implementation of Extract Transform Load (ETL)
operations which now need to be executed in an online fashion. In
particular, the ETL transformations frequently include the join
between an incoming stream of updates and a disk-resident table
of historical data or metadata. In this context we propose a novel
Semi-Streaming Index Join (SSIJ) algorithm that maximizes the
throughput of the join by buffering stream tuples and then
judiciously selecting how to best amortize expensive disk seeks
for blocks of the stored relation among a large number of
stream tuples. The relation blocks required for joining with the
stream are loaded from disk based on an optimal plan. In order
to maximize the utilization of the available memory space for
performing the join, our technique incorporates a simple but
effective cache replacement policy for managing the retrieved
blocks of the relation. Moreover, SSIJ is able to adapt to changing
characteristics of the stream (i.e. arrival rate, data distribution)
by dynamically adjusting the allocated memory between the
cached relation blocks and the stream. Our experiments with
a variety of synthetic and real data sets demonstrate that SSIJ
consistently outperforms the state-of-the-art algorithm in terms
of the maximum sustainable throughput of the join while being
also able to accommodate deadlines on stream tuple processing.

I. INTRODUCTION

Advances in information technology and business automa-
tion have multiplied our potential to generate and analyze huge
amounts of data. Business intelligence (BI) has emerged as a
set of technologies that enable an enterprise to make better
decisions. Data warehousing technology and tools provide an
integral part of any decision support system. From an oper-
ational viewpoint, the data warehouse is a single, integrated
informational store in which the enterprise can evaluate its
data over time. Typical data warehouses are updated in a
batch, periodic fashion (i.e., every night). Since data may be
coming from multiple operational and/or legacy systems across
the organization, or even, sometimes, from external sources,
significant cleansing, transformation and reconciliation is of-
ten necessary before the data is loaded in the repository.

Mihaela A. Bornea was supported by the European Commission and the
Greek State through the PENED 2003 programme. Vasilis Vassalos was
supported by the European Commission through a Marie Curie Outgoing
International Fellowship and by the PENED 2003 programme of research
support. Antonios Deligiannakis was partially supported by the European
Commission under ICT-FP7-LIFT-255951.

book1

2 DVD

id desc

id gidsrc

S1
S1
S2
S2

1

1
2

2
10
20
20
30

id desc

10 book
20 DVD
30 CDid desc

1 DVD

CD2

Surrogate
DWH

S1

S2

Fig. 1. Surrogate Key Replacement

Extraction-Transformation-Loading (ETL) processes handle
this task during the refresh, off-line periods [1]. Many of these
ETL processes involve expensive joins between the newly
arrived records and some warehouse data or metadata tables.
For example, record keys are often replaced with surrogates
keys for compactness and consistency. This process, also
known as conforming [1], necessitates the join of the refresh
tuples from each source with a metadata table that relates keys
and surrogate keys, as exemplified in Figure 1. Duplicate elim-
ination or identification of newly inserted tuples provide more
examples where similar join expressions are encountered [1].

The traditional cycle of updating the data warehouse in a
periodic fashion has been exemplified in research and best-
practices studies, as it allows us to utilize efficient bulk-loading
techniques [2], [3] and avoid interference of the ETL processes
with the query workload. However, in emerging applications,
such as network monitoring, supply-chain monitoring via
RFID technologies and sensory data analysis, the latency
introduced from the time that the data is conceived to the
time it is ready for analysis may be unacceptably large. Even
for traditional business intelligent tasks, finding the right piece
of information at the right (i.e., shortest) time is a necessity
for survival in today’s competitive marketplace. Active data
warehousing has emerged as a new BI paradigm where updates
from the operational stores are propagated in (near) real-time
to the repository. This shift of practices significantly affects the
ETL process as the type of joins we described are now between
an infinite stream of incoming records and some stored data
warehouse table. The output of this operation is a stream which
typically participates in additional online operations as part of
the repository update. Note that in this context there are no
particular tuple ordering requirements.

While there is a lot of research on how to join relations
that are either both stored or streaming, there is, surprisingly,
little work [4] devoted to the problem of joining a streaming
relation with a stored one, as required by an ETL process of

an active data warehouse. The techniques proposed for this
problem are extensions of nested-loop joins where (part of)
the stream represents the outer relation while the disk-resident
relation becomes the inner. The element that differentiates
these approaches is the use of an index on the inner relation.

The work in [4] first drew attention to the need to support
streaming updates in an active data warehouse. The proposed
MeshJoin algorithm utilizes sequential reads from the stored
relation in a round robin fashion in order to amortize the I/O
look up cost for a large number of stream tuples. In our work
we demonstrate, formally as well as experimentally, that pure
sequential reads while performing the join are suboptimal both
in utilizing efficiently the available memory and in reducing
the cost of I/O, when the goal is to increase the supported rate
of the stream tuples and, thus, the throughput of the ETL task.
MeshJoin also ignores existing indexes in the stored relation
that can help speed up the join.

In this paper we contribute by introducing Semi-Streaming
Index Join (SSIJ), an index-based algorithm for joining a
relational stream with a disk resident relation. SSIJ possesses
several characteristics that are critical for its application en-
vironment: (i) SSIJ exploits available memory resources to
cache frequently accessed pages of the relation, thus being
able to quickly join several stream tuples without incurring
I/Os for them. The set of cached disk pages is determined
based on simple and intuitive statistics; (ii) Accesses to pages
(cached or not) of the relation are always batched, in order to
minimize the access costs and to take advantage of common
relation access patterns of different stream tuples; (iii) Blocks
of the relation that are not located in memory are read only if
needed (unlike prior techniques like MeshJoin), and based on
an optimal plan; (iv) SSIJ dynamically adapts memory allo-
cation between caching relation blocks and storing incoming
stream tuples in order to cope with different characteristics
of the streamed relation, such as tuple arrival rate, while
fully exploiting the available memory for faster processing;
(v) SSIJ supports equality as well as range join conditions,
works well for arbitrary join relations (one-to-one, one-to-
many, many-to-one) and produces the exact join result; (vi)
SSIJ is non-blocking, and produces a high rate output stream,
allowing this way the kind of pipelined plans essential in data
stream management1; and last but not least, (vii) SSIJ adapts
its execution in order to meet processing deadlines for the
incoming stream tuples.

SSIJ is an end-to-end index-based algorithm for stream
to relation joins enhanced with efficient batch processing, an
optimum disk block retrieval plan and an effective memory
management. All additional components are important and as
a result of their interaction SSIJ obtains best-in-class perfor-
mance. Our experiments compare SSIJ to existing specialized
techniques and state of the art processing algorithms used
in relational DBMSes. We also explore the parameter space
in order to shed light on SSIJ performance and to tune its

1Of course, for traditional pull-based pipelined plans the output of any
stream operator, including SSIJ has to be buffered.

parameters. Our analysis demonstrates that SSIJ consistently
outperforms MeshJoin in terms of the maximum sustainable
throughput of the join, for a variety of synthetic and real data
sets. A formal analysis of why this occurs, even in the worst
case of our algorithm, is presented in Section V. We also show
that state of the art implementations of index-based relational
techniques are not suitable for this problem.

The rest of the paper is organized as follows. Section
II presents the related work. In Section III we discuss the
characteristics of the index our algorithm uses. Section IV
introduces SSIJ, while Section V presents a comparison with
MeshJoin. Section VI presents our experimental study, while
Section VII contains concluding remarks.

II. RELATED WORK

Increasing the efficiency of the join operator has been
an important topic of research for the databases community.
Surprisingly, little attention has been paid to setups in which
one relation is disk-resident while the second is streamed.

The MeshJoin algorithm [5], [4] presented in Section I
is the most relevant piece of existing research work. The
authors demonstrated that MeshJoin outperforms traditional
join algorithms and achieves a higher throughput of the join
operator. In Section V we provide an extended comparison of
MeshJoin with SSIJ.

The work in [6] focuses on reducing the update propagation
delays introduced by ETL processing rather than increasing
the maximum supported rate of the join. The main idea is to
create hash or range-based partitions for the relation and to
organize accordingly an in-memory stream wait buffer. How-
ever, infrequent stream tuples can wait for long periods, even
longer than with MeshJoin. In contrast, as we demonstrate
in the experiment in Figure 16, SSIJ introduces significantly
smaller delays and is able to adjust its execution in order to
meet stream processing deadlines.

Active data warehouses [7], [8], [9], [10] have appeared
as a new data management paradigm where updates from
operational stores are propagated in (near) real time to the
repository. Active data warehouses require a fundamental shift
in the design of Extraction-Transformation-Loading (ETL)
processes, since most prior work in the area, including, for
example, the detection of duplicates and the surrogate key
replacement [11], [12], [13] have assumed a batch, off-line
refresh of the warehouse.

Traditional query processing has explored variations of
some of the techniques incorporated into SSIJ. [14],[15],[16]
present improvements of index nested loops included in com-
mercial database systems. These papers consider techniques
like caching, prefetching or the partial sort of the outer relation
in order to increase the locality of reference. The problem of
finding an optimum read schedule for a set of disk pages has
also been addressed in [17]. We detail our contributions with
respect to [17] in Section IV-D. While at an abstract level all
the individual aforementioned techniques propose solutions to
increase the efficiency of the join operator in specific ways,
our work is the first to provide a complete algorithm and a

thorough analysis of how to offer an efficient solution to the
problem of stream to relation join. Specifically, as we show in
our experimental study, SSIJ vastly outperforms join operators
provided by traditional relational systems.

The importance of a stream to relation join operator has also
been acknowledged in general purpose DSMS systems like
Telegraph [18], Gigascope [19], Aurora [20], STREAM [21].
One of the open issues in these systems refers to servicing
queries involving streams and historical data from disk. An
approximate solution proposed to this problem was included
inside the Telegraph project. OSCAR access method [22]
proposes addressing the problem of joining streamed sensor
data with ”history” tables by retrieving only a reduced version
of the data on disk when the system is overloaded. Reduced
versions of the history are retrieved for correspondingly fewer
I/Os. Unlike OSCAR, we focus on providing exact join results.
OSCAR or load shedding techniques [5] can be used in
addition to SSIJ to deal with exceptional cases of extremely
high stream arrival rates.

III. PRELIMINARIES-INDEX USE

Our algorithm assumes and makes effective use of an index
on the join attribute of the relation. The only requirements
from the used index is that it can return a set of block ids
(or offsets of these blocks) where matching (i.e., joining)
records of that key can be found. To implement such an
index, many widely used techniques can be considered, such
as B+trees [23], hash tables and bitmapped indexes [24] (for
the latter the record pointers are implied by the location of the
1s in the bitmap). The B+tree has the advantage of efficiently
supporting range queries.

In our implementation we use a B+tree for indexing the
relation. Furthermore, relation tuples themselves are stored
at the leaves of the B+tree. (In our discussion these leaves
are referred to as relation blocks or relation pages.) Such a
structure has the benefit of reducing the indexing overhead,
typically by reducing the height of the tree by one level,
thus allowing the non-leaf nodes of the index to more eas-
ily fit within the available memory. Moreover, it is widely
implemented in commercial database systems, under different
names (e.g., “Index-Organized Table” in Oracle, “Clustered
Index Table” in SQL Server, etc). However, using such an
index/relation organization is not necessary for SSIJ which
can just as easily use any index with a memory footprint
similar to the B+tree.

For ease of presentation, we assume that the non-leaf pages
of the index are brought into memory at the beginning of the
join and remain pinned until the join completes. Index nodes
do take up space in main memory, which is accounted for
in our memory budgeting. In our index of choice, fitting the
upper levels of the B+tree (and not the relation, stored at the
leaves) in memory is expected to be possible for most realistic
application scenarios mentioned in Section I. More generally
speaking, in the experiments presented in this paper, the size
of the internal nodes of the B+tree index is no more than
13MB for a relation size equal to 10GB.

Symbol Description
DR Disk-resident relation
SR Streaming relation (stream)
CR Memory cached blocks/pages of DR
IB Input buffer for unprocessed stream tuples
SB Stream buffer: stream tuples waiting for disk blocks to be read for

their join
IBthresh Minimum number of tuples in IB for the online phase to kick in
SBthresh Minimum number of tuples in SB for the join phase to kick in
p A page of DR (cached or not)
s A tuple of SR
IIp Inverted index list for relation page p. Contains pointer to match-

ing tuples in SB
M Total memory allocated to SSIJ
Pu Set of blocks that SSIJ must read in its join phase
S Disk average seek time
T Disk average transfer time of a disk page
maxDist Maximum distance (in disk pages) of two pages b1 and b2 such

that reading with one sequential I/O all blocks from b1 to b2 is
cheaper than reading only b1 and b2 with two random I/Os

maxScan Maximum length sequence of disk blocks that SSIJ may read with
a single sequential scan

TABLE I
MAIN SYMBOLS USED

Pinning these index pages is not essential for the operation
of our algorithm. Under more constrained memory environ-
ments, these index pages can be replaced using the same cache
replacement policy as with the pages containing the tuples of
the relation. In such a case, retrieving needed index pages on
demand during the algorithm operation imposes an overhead,
but this overhead is fully amortized due to the batch processing
of input stream tuples (described in Section IV-B).

Our discussion of the algorithms is based on our selected
index. While several parts of the algorithm remain unaffected
regardless of the used index (i.e., the in-memory online
phase, the plan generation for the join phase, the dynamic
memory allocation or the cache replacement policy), presented
optimizations (i.e., the batched traversal of the index) are
specific to our index of choice. Moreover, during the online
phase, the algorithm performs a sort operation based on the
characteristics of the used index. For the case of our B+tree
index, this corresponds to sorting based on the join attribute.
For other types of indexes, this sorting operation depends on
the grouping characteristics of the index. This sorting process
allows sharing index scans between several stream tuples.

IV. SSIJ FRAMEWORK

We now present the SSIJ algorithm. Table I summarizes
some important notation used throughout this paper.
A. Dynamic Memory Partitioning and Used Data Structures

We keep a detailed account of memory usage. The available
memory M for the join operator is partitioned in our algorithm
into five disjoint sets, whose size is not fixed, but rather
dynamically adjusted during the operation of our algorithm.
These five sets include the index, the set of cached relation
blocks, two buffers regarding stream tuples, and an inverted
index. We now describe these sets in more detail while the
relation between these components is pictured in Figure 2.
The index. Our algorithm makes effective use of an index on
the join attribute of the relation.
Cached relation blocks CR. This part of memory contains

blocks of the relation (i.e., leaf pages in our B+tree index)
that have been brought from disk to be joined with the stream.
A utility counter is kept for each block and is used by the
caching policy, as explained later in this section.

Input buffer IB. Stream tuples that have arrived, but have
not started their join operation, are placed in IB.

Stream buffer SB. Any tuple that we check using our index,
and determine that this tuple requires retrieving one or more
blocks of the relation from disk, is stored in the stream
buffer SB. These required relation pages will be read, using
a plan that the algorithm determines, when SBthresh tuples
have accumulated in SB. The size of the stream buffer is a
parameter of SSIJ, and its impact is experimentally evaluated
in Section VI.

Inverted Index II . For each relation disk block that needs to
be read from disk (because some stream tuple in SB required
its presence in memory), we maintain a list with the location
of all matching stream tuples in SB for it. Multiple uses of
the inverted index exist. Besides improving the performance
of the join phase, the index is also important for efficiently
guaranteeing the correctness of the overall process of SSIJ.
A third use of the inverted index will be shortly evident, when
we describe the cache replacement policy.

B. Stream Processing Algorithm

Overview. The algorithm consists of three phases, namely the
pending, online and join phases. In a nutshell, in the pending
phase the algorithm waits for a minimum of IBthresh tuples
to accumulate (or until it receives an END OF STREAM
message) before it moves to the online phase. This occurs in
order to batch process the incoming stream tuples. Compared
to a naive approach that processes individual tuples one-
by-one, a batch process allows SSIJ to take advantages
of common access patterns, which in turn amortizes index
and cache lookup cost. This claim is also supported by the
experimental results in Figure 12. In the online phase, stream
tuples from the input buffer IB are looked up using the index
(Sequence 1 in Figure 2) and joined with in-memory (cached)
blocks containing relation tuples (Sequence 2). Stream tuples
whose join is not completed in the online phase (i.e., they
require relation blocks that are not cached) need to wait for
the join phase, when the corresponding disk blocks are read
using a read plan that our algorithm generates. In Figure 2 the
matching page pi of tuple ti is found in CR and the join of
this tuple is completed during the online phase (Sequence 3a).
Since the matching relation block of tuple tk is not present
in CR, tk is placed in the stream buffer (Sequence 3b). The
join of tk is completed in the join phase when its matching
relation page pk is loaded from disk (Sequences 4,5,6). When
the join phase is completed, the algorithm again moves into
the pending phase.

The main ideas of the SSIJ algorithm are: (1) Batch stream
tuple processing: This involves not only batching the disk
reads required by stream tuples, but also batch index lookups;
(2) Fast joining read (relation) disk blocks with matching

i
p p

k

k
p

Cache
Lookup

Index
Lookup

page p is found in cache i
join of t is completedi

i
t is evicted

Load blocks in CR
Apply caching policy

k
p

k
t

II SB

remove entries from SB and II
with the content of SB using II
Join loaded relation pages

When SB is full generate
plan to load pages in II

i
p

i
t

k
t

k
p

page p is not in cache
t is inserted in the SB

k

k
p t are inserted in the II
k k

k
t

k
p

Tuples t , t require pages p ,pi ik k

i
t

k
t

CR

Relation

IB

1

Index

2

5

4

3a

63b

Fig. 2. SSIJ Overview

Algorithm 1 OnlinePhase
1: Sort the first IBthresh based on the characteristics of the used index
2: Batch scan the index using the sorted sequence, in order to locate the set

MB of matching (joining) relation blocks
3: for each page p ∈ MB already cached do
4: Perform join of p with IBthresh and output result tuples
5: Increment the utility counter of p by the number of stream tuples it

joined with
6: end for
7: for each stream tuple s do
8: Let MBs denote the list of the matching block ids for s, located from

the index
9: if ALL pages in MBs are in CR then

10: Discard s
11: Go to line 7
12: end if
13: for any page p ∈ MBs and NOT in CR (not cached) do
14: Insert into IIp a pointer to s
15: end for
16: Insert s in stream buffer
17: if not enough space and cached pages exist then
18: Remove from cache the page with smallest utility counter
19: end if
20: end for
21: if SBthresh tuples exist in SB then
22: Initiate join phase
23: else
24: Go to pending phase
25: end if

stream tuples; (3) Maintaining in memory the disk pages
that are requested more often, and quickly determining which
pages to maintain; (4) Reading only areas of the relation that
are requested, using an optimal plan that uses a mixture of
sequential and random I/Os; and (5) Dynamically adjusting
the memory of the data structures presented in Section IV-A.

For the input buffer, the stream buffer and the inverted
index, we initially reserve one page for each. In the remaining
memory we first load the index (or whichever part of it fits, in
constrained cases) and then we reserve the rest of the blocks
for the relation.

Online Phase. (Algorithm 1) When the online phase kicks
in, the first IBthresh tuples that have accumulated into IB
are sorted based on the characteristics of the used index,
as explained in the previous section (Line 1). This sorting
allows us to share scans of the index and of the cached
relation pages among several tuples (Line 2). For all matching
relation blocks/tuples that are in the cache, the join result is
output immediately (Lines 3-4), so that, if the join operator

Algorithm 2 JoinPhase
1: Apply caching policy. Determine ToKeep and ToRemove lists.
2: Sort matching block ids Pu (e.g., based on disk offset)
3: Generate read plan RP using DP algorithm
4: while RP contains more sequences to read do
5: if not sufficient space for next block sequence then
6: Evict appropriate number of cached pages using ToRemove
7: end if
8: Read next block sequence SN
9: for all blocks b in SN do

10: Join b with stream buffer SB using inverted index
11: if b not in ToKeep then
12: Evict b from cache
13: end if
14: Drop from the II the entries related to b
15: end for
16: end while
17: Flush SB
18: Clear utility counters in cache

is part of a pipeline, we do not stall the pipeline. The utility
counter of any page in CR is increased by one for every
stream tuple of IBthresh that it joins with (Line 5). For each
stream tuple s, let MBs denote its matching blocks (which
were located at Line 2). If all the matching relation blocks
for s are in the cache, then the join for s is complete, and
s can be discarded (Lines 9-10). If some matching relation
blocks for s are not in the cache, the join with these blocks
is not performed immediately, as this would mean that the
algorithm would pause until these blocks are fetched from
disk. Instead, the SSIJ algorithm will process the join of s
with the disk resident matching blocks of the relation at a later
point, during the join phase, in order to better amortize the cost
of required I/O among several stream tuples. Since, at this step,
we have identified the matching disk blocks for s, we record
this information by updating the inverted index, in order to
speed up the join computation when these disk blocks are later
retrieved from disk (Lines 13-15). These disk blocks form the
set Pu of blocks SSIJ must read from disk in the join phase.
Moreover, s is stored in the stream buffer SB (Line 16). If
there is insufficient space for this operation, but cached pages
do exist, then the cached page with the smallest utility counter
is evicted (Lines 17-19). CR improves the performance of the
join and unlike other components of the algorithm (i.e. IB,
SB) its content is not necessary for result correctness.

After the batch of IBthresh has been processed, the algo-
rithm may move to the join phase, if SBthresh tuples exist in
the stream buffer (Lines 21-22), or switch back to the pending
phase (Line 24).

Join Phase. (Algorithm 2) We now present a high level
overview of the algorithm for the join phase of SSIJ. Due to
the multiple operations contained in the join phase, our initial
presentation will proceed assuming the correct functionality
of two of these operations, namely: (a) The operation that
generates the read plan of disk pages to be fetched from disk
(Line 3); and (b) How the cache eviction algorithm works
(Lines 1,6). These two operations will be initially presented as
black boxes, and their details will be introduced immediately
after the overview of the join phase.

During the join phase, we join all stream tuples in the

stream buffer SB with their non-cached matching relation
pages Pu. A key part of this process is how to formulate a
plan for reading the requested matching disk blocks. More
specifically, we need to determine whether the required disk
blocks will be read individually using random I/Os, or in
larger sequences using sequential I/Os. While we defer the
details of this plan generation process for Section IV-D, this
plan generation process requires that the input Pu pages be
sorted based on their physical layout; in the simplest case,
this corresponds to sorting the offsets of the relation blocks
on disk. This is performed in Lines 2-3 of the algorithm.

It is important to note that the read plan may cause some
disk pages to be loaded in spite of the fact that they are not
requested by the stream, as part of a sequentially loaded disk
segment that amortizes the I/O cost. Such “unwanted” disk
blocks that are read because of sequential I/Os are evicted
from cache immediately, since they have zero utility for the
join (i.e., zero utility counters).

During the join phase, the algorithm continuously reads
(Lines 4-16) sequences of disk blocks (based on the generated
read plan). Each sequence of read relation blocks, as directed
by the generated read plan, is fetched from disk and is inserted
into the cache, replacing those cache pages with the lowest
utility counters (Lines 5-7). The details of the replacement
policy are presented in Section IV-C. The read disk blocks are
then used to generate output join tuples by joining with the
appropriate stream tuples, using the II (Line 10). After the
join of the sequences is complete, the corresponding entries
in the II can be safely removed (Line 14). On the other hand,
each joined relation page is evicted or not (Lines 11-13) based
on the decisions of the cache replacement policy (Line 1).
Finally, after all the disk blocks in Pu have been read and
joined, the processed stream buffer tuples are flushed from
memory (as their join is complete), and the utility counters
for all pages in the cache are reset (Lines 17-18).

C. Cache Replacement Policy

There are three situations when a page from the cache
needs to be removed/replaced. The first case is when new
stream tuples arrive during the online phase and need to be
accommodated in the input buffer. In this case, if there is
insufficient space, the cached page from the relation with the
lowest utility counter is evicted.

The other two cases occur during the join phase. On one
hand, when a new sequence of blocks is read from the relation,
if there isn’t enough space in the cache, the appropriate number
of cached blocks with the lowest utility is evicted. On the
other hand, stream tuples continue arriving during the join
phase, and if there is insufficient space to store an incoming
tuple, the algorithm dynamically evicts the relation page with
the smallest utility as long as it’s not in the block sequence
currently being joined.

An efficient implementation of the cache replacement policy
during the join phase is far from trivial. A naive approach
that maintains a sorted list of the page ids in the cache
based on their utility counters, and on demand flushes the

pages with the lowest utility counters, incurs a high cost. In
particular, the repeated insertions in the list can introduce a
large overhead when the amount of memory devoted to SSIJ
is large. Moreover, during the online phase, the utility counters
of the cached blocks are intensively updated, which requires
continuous reorganization of the sorted list. Maintaining the
cache blocks in a priority queue exhibits similar problems.

Our implementation is based on the key observation that we
do not need to actually read a page in Pu in order to calculate
its utility counter, as we have all the necessary information in
the inverted index of each page. Each entry in the II associates
the id of a page that needs to be read from disk with the list
of pointers to matching stream tuples in SB. Thus, the utility
of a page in II is equal to the number of elements in the list
it is associated with.

So, at the start of the join phase we know the utility counter
of (i) all pages currently in the cache, and (ii) all pages Pu

that will be read in the join phase. At this point we have
enough information in order to start making eviction decisions
(Line 1 of Algorithm 2). More specifically, we sort the ids
of the blocks in CR and the ids of matching disk pages Pu

based on their utility. Considering the available memory (i.e.,
memory after subtracting the space needed for the input buffer,
the stream tuples and the index structures), we determine the
sorted subset, denoted ToKeep, of pages from Pu that should
be in cache at the end of the join phase, given their utility.
We also determine the sorted subset, denoted ToRemove, of
block ids that are already in the CR and are going to be
replaced by blocks in ToKeep with higher utility. If, during
the join phase, the size of the cache is reduced due to the
arrival of stream tuples, we can correspondingly increase the
size of ToRemove or reduce the size of ToKeep according
to the utility of pages in these lists. Whenever in Lines 5-7 of
Algorithm 2 we evict some pages, we can simply evict any of
the pages in ToRemove: these pages are not needed for the
rest of the join phase and, given their utility, will not be in
cache at the end of the join phase.

D. Generating An Optimal Read Plan

Basics and Notation. Let Pu denote the set of matching disk
pages that our algorithm wishes to read from disk during the
join phase. Let S denote the average seek time to locate the
start of a random disk block, and let T denote the time to
transfer one block into memory. Then the cost of reading N
disk blocks using sequential I/O is: C(N) = S + T × N .

Assume that we want to read two disk blocks B1 and B2

that physically lie dist blocks apart, but we are not interested
in reading any one of the disk blocks in between them. Based
on our cost model, the cost of reading B1 and B2 using two
random I/Os is 2(S+T), while the cost of reading them using
a single sequential scan is S+T×(dist+1). Thus, a sequential
scan is preferable if dist < 1+ S

T . In our discussion hereafter
we use maxDist = 1 + S

T to denote the maximum distance
in disk blocks between two consecutive pages in Pu where
it would make sense (cost-wise) to combine these pages in a
common sequential scan.

All data read by a single sequential scan need to be brought
into memory, thus forcing a portion of the cache to be
evicted. In order to avoid flushing a large part of the cache, it
seems natural to impose a maximum size maxScan for the
sequential scan.
Prior work on this problem. Seeger et al in [17] formulated
this problem as a single-source nearest neighbor problem,
which can be solved by any nearest neighbor algorithm. Due
to the large running time of such algorithms (i.e., Dijkstra’s
shortest path in a graph with |Pu| nodes and |E| edges
requires O(|Pu|log|Pu| + |E|) time, while in this problem
|E| = O(|Pu| × maxScan)), [17] also proposed a greedy
algorithm for the same problem. In a nutshell, the greedy
algorithm tried to read the desired set of blocks in maximum
sequences of read blocks. Each such sequence was picked
as: (i) to not violate the maximum number of read blocks
at each time, and (ii) to not read in any sequence more than
k-continuous unwanted disk blocks (i.e., blocks not in Pu),
where k is a parameter of the algorithm.

An important observation that [17] made is that the optimal
plan for retrieving the matching relation blocks consists of
block sequences whose first and last blocks are guaranteed to
be pages in Pu. Moreover, one can also demonstrate that the
optimal plan cannot allow overlaps in its read sequences of
blocks (i.e., no block will be read twice by the optimal plan).
Our Contributions. The greedy algorithm of [17] performed
well in practice, but does not have a guaranteed approximation
factor. On the other hand, the running time complexity of
the optimal algorithm of [17] is prohibitive. We thus seek
to devise a more efficient optimal algorithm for the same
problem. Our O(|Pu| × MaxScan) optimal DP algorithm
requires a single array of O(|Pu|) space to operate, thus
yielding an efficient implementation. This improves upon the
corresponding complexities of the optimal algorithm in [17].
Of course, since this is just one of the components of our
algorithm, one can also choose to use the algorithms of [17].
Our DP-Algorithm. Let Pj denote the j-th page in the
ordered (based on their offsets) list of disk pages Pu. Our
optimal DP algorithm computes the minimum cost OPT [Pj]
for reading all pages, in multiple sequences, in the list Pu

starting from Pj . We will consider all possible ways of reading
Pj (starting from it), which equates to all possible sequential
scans of length 1, . . . ,MaxScan that have as their last page a
page in Pu, and then optimally reading the remaining pages in
Pu that were not covered by this scan. Let Pend(Pj ,i) denote
the last page of a scan of i continuous disk blocks starting
from Pj . Then,

OPT [Pj] = min
1≤i≤MaxScan
Pend(Pj,i)∈Pu

{S + T × i + OPT [nPend(Pj ,i)]}

where the notation nPend(Pj ,i) refers to the first page in Pu

after Pend(Pj ,i). Since entries of the dynamic programming
solution are calculated only for sequences ending at disk
blocks in Pu, the overall running time requirements are
O(|Pu|×MaxScan) and the space requirements are O(|Pu|).

E. Handling Updates

In many of the settings for the use of SSIJ the stored
relation contains historical information, and hence it is not
expected to be updated. Nevertheless, in other setups, updates,
insertions and deletions may happen to the relation. In order to
accommodate updates, SSIJ relation blocks have a relatively
low filling factor. The impact of the filling factor on SSIJ
performance is discussed in Section VI-D. Updating B+trees
and other index structures has been studied in detail, e.g., [25].

Update Semantics. A correct result in the presence of updates
in the relation is obtained when each stream tuple sees a
consistent view of the database: either the relation instance
before or the relation instance after an update is used. The
effect of these semantics is equivalent to considering that the
join of a stream tuple with the relation forms a transaction. The
semantics we propose ensure robust transactional properties
between stream tuples and the relation. Maintaining transac-
tional properties, like isolation, when updating a database table
while it is concurrently being joined with a continuous stream
of tuples has been identified as an open research problem
in the stream processing community [26]. Currently there
are no other generally accepted semantics that would ensure
transactional properties for the entire stream.

Installing Updates. Before SSIJ allows processing any in-
coming updates, the join phase is forced. This prevents result
inconsistencies in situations where a stream tuple has already
produced results during the online phase (using the relation
instance before the pending update) but it requires, in order
to complete the result, a disk block which might be modified
by the pending update before the next join phase is executed.
While installing updates, stream tuples are inserted in the IB
and SSIJ processing is suspended until the update is installed
completely. At this point SSIJ can resume processing or can
allow installation of the next pending update, depending on the
number of stream tuples accumulated in the IB. It is obviously
beneficial to allow updates execution during periods of low
stream arrival rates.

F. Handling Deadlines

Many streaming applications may require that the effect of a
stream tuple is visible in the output before a given time limit.
This time limit is associated with each stream tuple in the
form of a deadline. We now present the minor modifications
to SSIJ in order to consider deadlines.

The stream tuples that are processed during the online phase
are selected from the IB in increasing order of their deadline
value. We maintain the closest deadline for the tuples in the
IB. If fewer than IBthres stream tuples are available in the
IB, the online phase might be triggered in order to prevent
deadline expiration. In a similar manner, we account for the
maximum latency that can be tolerated by a stream tuple in
the SB and we use this value to prompt the join phase.

In the presence of deadlines the online and join phases are
triggered using a simple cost model that associates the number
of blocks to be loaded from disk with their processing time.

Thus, when the tuples in the SB target a number of relation
blocks for which the cost model indicates a processing time
close to the maximum latency, SSIJ triggers the online phase.
During the online phase the tuples in the IB whose deadline
would expire (based on the estimated join time by the cost
model) while SSIJ performs the join phase are processed. 2

Initially the cost model assumes that for each loaded block
SSIJ performs a random I/O operation. This initial model
is further refined during the algorithm’s operation based on
corresponding worst-case costs of previous join phases for a
similar number of retrieved blocks.

Stream latency awareness is a characteristic of SSIJ which
is not shared by the main other existing techniques. We could
not think of simple ways of making MeshJoin deadline aware.

V. COMPARISON TO MESHJOIN

Worst Case Throughput. In order to estimate the throughput
of our algorithm, we need to consider the possible ways that
an incoming stream tuple is processed, while checking for
matching tuples from the relation:
• For those matching tuples from the relation that exist in

the cache, the stream tuple is joined immediately with
zero I/Os.

• If there exist matching tuples from the relation that are
not in the cache, they need to be retrieved from the disk.

As described in Section IV, in our algorithm disk blocks are
not retrieved for every incoming stream tuple, but for batches
of stream tuples, in order to better utilize:
• Common access patterns: The matching tuples of several

stream tuples may be located on the same disk block. The
disk block will be read just once for each batch.

• Physical location of read disk blocks: Using the simple
but precise cost model presented in the previous section,
SSIJ decides whether it is more beneficial to read disk
blocks that are not stored “very far apart” using sequential
scans, or with multiple random I/Os.

The worst case throughput of our algorithm will occur if
(i) No stream tuple is processed using the cache; (ii) Each
stream tuple needs to retrieve different disk blocks from the
other stream tuples (i.e., no overlap exists in the blocks that
need to be read); and (iii) The retrieved disk blocks are
“as far as possible” from each other (we will analyze this
further in the next paragraph). The latter condition implies
that the maximum distance is at least 1 + S

T . Such a distance
or greater will either force our algorithms to read all disk
blocks sufficiently far from each other using random I/Os or,
otherwise, to read multiple “not useful” disk blocks with our
sequential scans.

Let B(DR) denote the number of disk blocks spanning the
relation DR. Let the number of stream tuples batched together
in the stream buffer be Tup(SB) (this number is at least equal
to SBthresh, but may be higher, since we move to the join
phase after an online phase, and not immediately when the

2Note that during the online phase the algorithm does not perform I/O
operations and the delays that are introduced are negligible.

SBthresh tuples are accumulated). The average distance of
consecutive useful disk blocks containing matching tuples for
the stream tuples is then B(DR)

Tup(SR) . Recall that we denote by
maxScan the maximum number of blocks that can be read
by a single sequential scan. Thus, the worst case distance of
consecutive useful disk blocks containing matching tuples is

B(DR)
maxScan . Comparing this ratio to maxDist, the worst case
throughput WCThr of our algorithm is:

WCThr =
Tup(SB)

min{Tup(SB)× (S + T), B(DR)×S
maxScan

+ B(DR)× T}

= max{ 1

S + T
,

Tup(SB)
S×B(DR)
maxScan

+ B(DR)× T
}

= max{ 1

S + T
, MeshJoinThroughput}

The latter equality is produced by setting maxScan equal
to the number of chunks read sequentially by MeshJoin. It is
important to note that in the worst case our algorithm will
exhibit the throughput achieved by MeshJoin. Of course, the
average case may be much better. For example, the stream
tuples may exhibit temporal locality, thus requiring only a
small part of the relation to be read (in contrast to the
entire relation for MeshJoin). Moreover, the cache can help
significantly increase the throughput by reducing the number
of stream tuples for which we need to retrieve their matching
blocks from disk. Finally, due to the dynamic allocation of
memory between the cache pages and the stream tuples, our
algorithm can better adapt to cases of sudden bursts (i.e.,
increased rate) from the stream. On the contrary, MeshJoin
uses a fixed memory budget for both the steam and the relation.
Our experiments validate the above analysis.

Intelligent Cache Management. Both SSIJ and MeshJoin
make use of the available memory for storing stream tuples as
well as parts of the relation. In MeshJoin, the algorithm reads
blocks of the relation (in a sequential round-robin manner) and
uses the records in these blocks to “probe” (via a hash) the part
of memory that contains the stream tuples. Thus, MeshJoin
essentially “caches” the stream, while using the relation to
query this cache for records that join, in a data oblivious
manner. In our algorithm, the situation is reversed. The stream
tuples are used to probe (via the index) the relation in search of
records that join. Thus, we choose to cache the relation blocks
that are retrieved, in hope that these blocks may get reused
in future probes by the stream. Given this simplified, high-
level view of both algorithms, one can observe that MeshJoin
is forced to pin stream tuples in memory, while waiting for
the table scan to complete, otherwise, it will not be able to
compute the exact result of the join. In SSIJ, on the other
hand, we only need to have in the cache the relation blocks
that were requested by the currently processed stream buffer
tuples3. This allows us to choose a smart caching policy that
can be expected to maximize the join throughput. In a nutshell,

3Per Section III, keeping upper level index nodes also helps.

Parameter Default Value

Index used B+tree with tuples stored at leaf nodes

Join key domain size Integer in [0,250000]

Key value distribution in DR Uniform

Key value distribution in SR Zipfian

Size of relation 10GB

Number of stream tuples 20M

Filling factor of data pages 80%

Disk block size 8192 bytes

Stream buffer size 400000 for memory = 1% of the relation
1000000 otherwise

Input buffer size 250000

Tuples per block 64

MaxScan 200

TABLE II
DEFAULT PARAMETERS IN EXPERIMENTS

for MeshJoin, caching is dictated by the algorithm operation
and caching decisions cannot be tuned or improved, while in
SSIJ intelligent caching can be used to improve performance.

VI. EXPERIMENTS

In this section, we present an extensive experimental study
of SSIJ in a direct comparison to the existing MeshJoin
algorithm, over several real-life and synthetic data sets when
varying a large number of parameters. We also present an
analysis of the impact of various algorithm parameters on the
performance of SSIJ. Additionally, we provide a comparison
of SSIJ with index join algorithms supplied by commercial
and open source database systems.

Methodology, Techniques and Parameter Settings. The
throughput rate is a raw performance metric that indicates
how many stream tuples can be processed in the time unit.
In order to measure the throughput rate for both SSIJ and
MeshJoin, we use a constant arrival rate for the stream
tuples throughout a run and try executing the join using each
algorithm for the generated stream. The reported numbers
indicate the maximum rate that each algorithm can handle,
by repeating the experiment with gradually increasing arrival
rates, without memory overflow. For MeshJoin we used the
code provided to us by the authors of [5]. Table II presents the
default parameter settings in our experiments. The parameters
of the MeshJoin algorithm were computed as described in [5].

Data Sets. We experimented with synthetic and real data
sets and present in this section a representative set of results.
A detailed description of the synthetic and real data set is
presented below.

Synthetic Data. For the synthetic data, the join attribute
values of the data stream follow a zipf distribution. We present
results for several skew values, varying from 0 (corresponding
to a uniform distribution) to high skew values. We also
experimented with different shapes of the zipfian distribution.
Each zipfian distribution is assigned one of 2 possible shapes:
(1) “NoPerm” is the typical zipfian distribution, where smaller
domain values are assigned higher probabilities; and (2) “Ran-
dom” is a zipfian distribution, where the domain values are
randomly permuted resulting in placing the hot-spots of the
distribution at random places over the domain.

 0

 5000

 10000

 15000

 20000

 25000

0 0.25 0.5 0.75 1

R
at

e
(T

up
le

s/
se

co
nd

)

Skew

SSIJ
MeshJoin

Fig. 3. Throughput, NoPerm Zipf

 0

 5000

 10000

 15000

 20000

 25000

0 0.25 0.5 0.75 1

R
at

e
(T

up
le

s/
se

co
nd

)

Skew

SSIJ
MeshJoin

Fig. 4. Throughput, Random Zipf

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6 7 8 9 10S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

SSIJ skew 1
SSIJ skew .75
SSIJ skew .5

SSIJ skew .25
SSIJ skew 0

MeshJoin

Fig. 5. Throughput, NoPerm Zipf

Temporal Locality. Several features of our SSIJ algorithm
have been evaluated for data sets exhibiting temporal locality.
In these data sets the join values of the stream tuples within a
time period fall mostly within a subset of the relation domain.
We created such a data set as following: The relation contains
80 million tuples uniformly distributed from 0 to 5 million.
The stream contains 40 million tuples and it is split in 20
intervals of 2 million tuples. Each interval i, i ∈ [0, 19] has a
zipf distribution with skew 1 in [i∗250, 000, (i+1)∗250, 000].
Thus, each stream interval requires localized reads on disk
limited to a number of blocks equal to 5% of the relation.

TPC-H. We also experimented using the TPC-H data
set, which we created using a scale factor of 100.
The data generator that we used is available at http:
//www.tpc.org/tpch/. TPC-H is a well known deci-
sion support benchmark. More precisely, table Part, which
describes products, and table LineItem, which contains order
details are used. In table LineItem there is an entry corre-
sponding to each product included in every order. The Part
table has 20 million records. We used the Part relation as the
disk resident relation, while the first 10 million tuples of the
LineItem relation were used as the streaming relation. The
two relations are joined on the product id column. The goal
of such a join would be to augment the sales data with the
product description, for each product used in the order, before
adding it to the warehouse.

Weather Reports. Finally, we also used a real data set
containing cloud information stored in summary weather re-
ports (this data set was also used in [5] and is available
at: http://cdiac.ornl.gov/epubs/ndp /ndp 026b
/ndp026b.htm). We first created the disk resident relation
by combining meteorological data corresponding to months
April and August, while the stream data was extracted by com-
bining data files from December. The disk relation contained
20 million tuples, while the streaming relation contained 6
million tuples. The tuples in both the disk based relation and
the stream were 128 bytes long. Tuples from the stream and the
relation joined if they both corresponded to the same longitude
measurement and the value domain for the join attribute is the
interval [0,36000].
Main Findings. The main findings of our study can be
summarized as follows: (1) SSIJ supports high throughput
rates; (2) The throughput increases as the available memory
increases; (3) The throughput increases with more skewed
streaming data; (4) SSIJ substantially outperforms MeshJoin

and state of the art techniques included in relational engines;
and (5) The sensitivity analysis confirms our theoretical anal-
ysis in Sections IV and V and indicates suitable values for
SSIJ parameters by exploring their domain.

All experiments reported in this section were performed on
a personal computer with an Intel Core i7 processor clocked
at 2.80GHz and with 8GB of memory running Linux (kernel
version 2.6.31-15). The code for both algorithms was compiled
using the gcc 4.4.1 compiler. All the I/O operations on the disk
resident relation, for both algorithms, are performed using raw
I/O in order to bypass the operating system buffering.
A. Synthetic Data Sets

Sensitivity to Data Skew. In this set of experiments we vary
the skew of the zipfian distribution of the join attribute values
that appear in the streaming relation from 0 (uniform distri-
bution) up to a high skew value of 1. The available memory
was set to 7.5% of the stored relation size. In Figures 3 and 4
we plot the maximum obtainable throughput for the NoPerm
and Random shapes of the zipfian distribution and for different
levels of skew. The SSIJ algorithm increases its throughput
significantly and it behaves equally well with the randomly
permuted distribution, which is a very challenging data set.
The throughput of our algorithm increases significantly, due
to the increased cache hit ratio. On the contrary, the through-
put of the MeshJoin algorithm does not change much with
the increasing skew, since MeshJoin does not exploit in its
algorithm the data skew (its performance actually degrades
slightly, which is consistent with the findings of its authors).
Sensitivity to the Available Memory. In Figures 5 and 6
we repeat the previous experiment but vary the size of the
available memory from 1% to 10% of the relation size and
for different values of skew. For MeshJoin, the only presented
line is for skew=0 (which, as indicated by Figures 3 and 4,
represents its best case). We note that the SSIJ algorithm
takes advantage of the available memory for caching additional
blocks of the stored relation and achieves up to 6 times higher
throughput than MeshJoin. SSIJ considerably improves its
performance as the value of the skew parameter increases.
What is equally important though is that the rate supported
by SSIJ even in seriously memory constrained environments
(close to or more than 3000 tuples per second for 1% available
memory) makes it the only feasible solution for a wide range
of existing and future applications.
1:K Joins. In this experiment we control the number K of

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9 10S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

SSIJ skew 1
SSIJ skew .75
SSIJ skew .5

SSIJ skew .25
SSIJ skew 0

MeshJoin

Fig. 6. Throughput, Random Zipf

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

MeshJoin k=1
MeshJoin k=100
MeshJoin k=300

SSIJ k=1
SSIJ k=200
SSIJ k=400

Fig. 7. Testing 1:K Joins

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8 9 10

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

SSIJ cloud
SSIJ TPCH

MeshJoin cloud
MeshJoin TPCH

Fig. 8. Throughput, TPC-H and Cloud Data

 0

 5000

 10000

 15000

 20000

 25000

 30000

.5GB 1GB 1.5GB

R
at

e
(T

up
le

s/
se

co
nd

)

Size of the relation

SSIJ
DBMS A
DBMS B

Fig. 9. Comparison with DBMS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 3 4 5 6 7 8 9 10

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

adaptive
No Cache

20% Cache
70% Cache

50% Cache

Fig. 10. Relation-Stream Memory Allocation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 3 4 5 6 7 8 9 10

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size (% of Relation Size)

LRU SSIJ LFU

Fig. 11. Evaluating the Caching Policy

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 100 200 300 400 500 600 700

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Threshold for the OnlinePhase (* 1000)

Fig. 12. Sensitivity to IBthresh

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Threshold for the Join Processing (* 1000)

Fig. 13. Sensitivity to SBthresh

the stored relation tuples that join with one stream tuple. The
disk relation contains 80 million tuples. The domain of the
join attribute is from [1, 80,000,000

K] and each value appears
exactly K times. For each K value, the stream contains 20
million tuples with a zipfian NoPerm distribution with skew 1
and the same domain as in the relation. Figure 7 depicts the
throughput of each algorithm, when varying the size of the
available memory. Again, SSIJ outperforms MeshJoin in all
cases, supporting rates up to 3 times higher for 1:1 joins, and
rates up to 9 times higher for 1:400 joins, with the performance
benefits increasing with more available memory.

B. TPC-H Benchmark and Cloud Data Set

For the TPC-H experiment, the tables Part (which describes
products) and LineItem (which contains order details) are
used. This setting corresponds to a common scenario where
an operational store ships information on new orders to a
data warehouse. We also experimented with the Cloud data
set. Performance of the joins is shown in Figure 8, as the
available memory increases. Again, the benefits of SSIJ are
very significant, especially for smaller memory sizes.

C. Comparison with Index Nested Loops

We now examine if the available out of the box relational
join operators provided by relational engines are suitable for

solving the problem of joining a stream with a relation. As the
experiments in Figure 9 show, the answer is no. In this section
we compare the service rate of SSIJ against the service rate
of an index-based join algorithm provided by a leading open
source (DBMS A) and by a leading commercial (DBMS B)
database system. In this setup both the stream and the relation
have an uniform distribution in the interval [0,250000]. The
relational database system manages the stream as an in-
memory relation with the size equal to 1 million tuples. The
relation is stored on disk and it is indexed using a B+Tree.
The buffer pool size allocated to the database system is equal
to 1GB. For configuring the database engine we ensured the
system uses all relevant optimizations: the stream is stored in
memory, the index is included in the query plan, the statistics
are accurate and there is no transaction overhead. We measure
the time to perform the index join between the stream and the
relation and we compute the number of joined stream tuples
per second. In this experiment we vary the size of the relation
for all algorithms. The memory budget allocated to SSIJ ’s
operation is set to 10% of the relation size, and ranges from
50MB to 150MB. Our findings in Figure 9 show that SSIJ
performs at least 3 times (and up to 24 times) faster than a
join operator provided by a DBMS, even though the latter uses
from 6 up to 20 times more memory buffers for the join and
has the full stream loaded in memory in advance.

D. Sensitivity Analysis

We now evaluate the performance of SSIJ when we vary
its parameters and the experiments presented in this section
indicate the optimal settings for SSIJ. Additional experiments
(not included due to the lack of space) show the range of
values for which the algorithm has optimal performance to be
robust across different data distributions. On the other hand,

for different relation sizes the shape of the graphs (for SBthres

and IBthres, Figure 13 and Figure 12) remains the same but
the values on the X axes are shifted left or right.

Dynamic Allocation Impact. memory budget of SSIJ is al-
located to relation pages (including the B+tree relation index
nodes) and the stream tuples, as described in Section IV-A.
We now investigate the impact of this allocation. We measure
the throughput of non-adaptive variants of SSIJ that use
several different fixed allocation ratios to divide the memory
between the relation and the stream, including a variant (No-
Cache) where only the internal nodes of the B+tree index are
cached. We compare them to each other and to SSIJ, which
dynamically allocates the memory budget during its execution.

The trade-off of memory allocation in this context is the
following: Allocating space to the relation saves disk I/O
operations, which leads to faster processing of the stream
tuples. At the same time, less space is allocated to the input
buffer, which may not be able to accommodate incoming
tuples while the algorithm is in its join phase.

In our experiment, whose results are shown in Figure 10, we
focus on the case when the stream exhibits temporal locality, as
described previously. In such an environment, when the range
of values of the stream tuples changes, existing cache contents
are less useful, leading to more reads from disk and potentially
the need for greater input buffering. Thus, a fixed allocation
scheme fails to keep up with the incoming tuples while a
dynamic scheme allows SSIJ to evict these (less useful) cache
pages making room for the input buffer. Once the quality of
the cache content is improved the stream requires fewer I/O
operations, which leads to a decreasing size of the IB and
more memory space allocated to the CR.

Our findings can be summarized as follows: (i) Allocating
memory for caching disk pages increases the performance
of the algorithm. When 20%, 50% and 70% of the memory
is allocated to the relation cache, the algorithm can support
increasing throughput, and always higher compared to the
case when no relation blocks are cached; (ii) The algorithm
supports a significantly higher stream arrival rate when the
memory budget is dynamically allocated between the relation
and the stream. Moreover, the impact of the adaptive memory
allocation increases as the memory size increases.

Another benefit of adaptive memory allocation is that it
allows SSIJ to support bursts of arrival rates significantly
higher than the nominal maximum supported rate, for nontriv-
ial lengths of time. Specifically, let us focus on the previous
setup, when the adaptive algorithm works in “steady state”
(i.e., after the cache has been warmed up for each stream
interval, so that the algorithm is exhibiting localized disk I/Os).
Table III shows the maximum duration of a “burst” of arrivals
that the algorithm can support when the burst rate is from 10%

Burst Rate Increase 10% 25% 50% 70%(% of max rate)
Burst Duration (ms) 700 562 400 225

TABLE III
DURATION OF BURSTS

up to 70% higher than the nominal maximum supported rate.
This experiment corresponds to Figure 10 where the nominal
rate for this setting is equal to 480,000 tuples per second.
Given a fixed memory budget, SSIJ is the only algorithm that
supports bursts of arrivals higher then the nominal maximum
supported rate; Mesh Join requires an increase in the allocated
memory [5], [4].
Cache Replacement Policy. Figure 11 shows the impact of
the cache replacement policy used by our algorithm for the
same setup as the one in Figure 5, where the stream follows a
zipf distribution with skew 1. We compare our caching policy
with the Least Recently Used (LRU) technique. LRU considers
blocks that are read during the join phase as more recent than
the cached relation blocks, thus evicting useful relation blocks,
which leads to inferior performance.
Sensitivity to the IBthresh Parameter. We set the data
distributions of the relation and the stream as in Figure 10.
We allocate a memory budget equal to 10% of the size of the
relation and we vary the size of the online phase threshold
parameter IBthresh. Figure 12 shows that increasing the
number of stream tuples that are batched during the processes
of scanning the index up to a point can significantly improve
the performance of our algorithm.
Sensitivity to SBthresh Parameter. The SBthresh parameter
influences the performance of our algorithm as shown in
Figure 13. The stream follows a zipf distribution with skew
value 1. The memory allocated for this experiment is equal
to 1% of the relation size. All other parameters are set as
in Table II. By increasing SBthresh, the cost of fetching the
disk blocks during the join phase is amortized among a larger
number of stream tuples, leading to improved performance.
For a large range of values, this cost remains almost constant.
However, when the size of the buffer becomes a significant
portion of the memory budget, then the performance of the
algorithm is adversely affected. This happens not only because
the join phase is delayed to such an extent that new incoming
stream tuples in the input buffer cannot fit in memory (even
after evicting the cache contents), but also because fewer pages
fit in the cache.
Sensitivity to Filling

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8 9 10

S
up

po
rt

ed
 R

at
e

(T
up

le
s

pe
r

S
ec

on
d)

Memory Size(% of Relation Size)

ff 0.6 ff 0.8 ff 1

Fig. 14. Skew 1, ff = filling factor

Factor. In order to
accommodate updates,
SSIJ relation blocks
have a relatively low
filling factor. In this
experiment we demon-
strate the effect that
the filling factor of leaf
nodes in our used data
structure has on the throughput of our algorithm. In Figure 14
we plot the results when the stream relation key values follow
a zipfian NoPerm distribution with skew of 1. The default
value of the filling factor in all the other experiments was
set to a modest value of 0.8. We can see that the value of
the filling factor may have a large impact on the throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

T
u

p
le

s
p

e
r

se
co

n
d

maxScan(blocks)

Fig. 15. Sensitivity to MaxScan

 0

 5000

 10000

 15000

 20000

 25000

 0 25 50 75 100 125 150

S
u

p
p

o
rt

e
d

 R
a

te
 (

T
u

p
le

s
p

e
r

S
e

co
n

d
)

Deadline (seconds)

Fig. 16. Processing Deadlines

of our algorithm. This is not unexpected, as a smaller filling
factor means that fewer tuples fit within a disk block, with an
immediate effect on the caching benefit of each disk page as
well as on the number of blocks that need to be read to satisfy
matching requests by stream tuples.
Sensitivity to MaxScan. In Figure 15 we show the effect of
maxScan parameter. The stream follows a zipf distribution
with skew value 1. The memory allocated for this experiment
is equal to 1% of the relation size. All other parameters
are set as in Table II. As expected, the algorithm has poor
performance for small values of maxScan since disk blocks
are fetched without exploiting the opportunities for sequential
scans. However, very large sizes of maxScan may lead to
reads that evict a large number of useful relation pages.
Processing Deadlines. In Figure 16 we investigate how the
maximum supported rate of SSIJ varies when the algorithm
is asked to process each stream tuple within a given deadline.
In this experiment the size of the relation is equal to 5GB and
the join attribute follows an uniform distribution. The stream
follows a zipf distribution with skew 1. The memory budget
allocated to SSIJ in equal to 7.5% of the relation size.

The rate supported by SSIJ is equal to 550 tuples per
second when each tuple is processed within a 10 seconds
deadline. As we increase the deadline value up to 2 minutes
the supported rate also increases, up to a rate of 22000 tuples
per second. In the presence of tight deadlines, SBthres is
never reached and the join phase is triggered by the stream
tuples’ expiration time. For tight deadlines the effect is the
same as having a small SBthres value which, as explained in
the experiment of Figure 13, decreases the supported rate. This
is significantly better than existing alternatives. In particular,
for the same setup MeshJoin gives tuples delays of more than
9 minutes while supporting a rate of only 5500 tuples per
second. For comparison, for a rate of 5500 tuples per second,
SSIJ can keep deadlines of 1 minute. Additionally, the work
in [6] which specifically targets reducing latency can result in
latencies even longer than MeshJoin.

VII. CONCLUSIONS

We investigate the problem of efficiently joining a streamed
relation with a stored one. The problem is motivated by
the ETL processes of active data warehouses and also by
applications of data streams and by the need to combine
sensor and historical data. We propose SSIJ, a new semi-
streaming exact join algorithm that supports very fast streams
and exploits very well the (small or large) available memory.

The operator easily supports pipelined execution plans, which
is important in many DSMS applications [20] and online ETL
processes. Our experiments demonstrate that SSIJ consistently
outperforms existing techniques in terms of the maximum
sustainable throughput of the join, for a variety of synthetic
and real data sets. The benefits of the proposed algorithm
increase with increased levels of skew, which is typically
observed in real data sets. Future work includes extending the
algorithm’s applicability to even faster streams via principled
load shedding for result approximation.
ACKNOWLEDGMENTS: We would like to thank the au-
thors of [4] for making their code available to us.

REFERENCES

[1] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit. Wiley
Publishing, Inc., 2004.

[2] T. Barclay, R. Barnes, J. Gray, and P. Sundaresan, “Loading Databases
Using Dataflow Parallelism,” SIGMOD Record, vol. 23, no. 4, 1994.

[3] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos, “Cubetree: Orga-
nization of and Bulk Incremental Updates on the Data Cube,” in ACM
SIGMOD, 1997, pp. 89–99.

[4] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.-E.
Frantzell, “Supporting streaming updates in an active data warehouse,”
ICDE, pp. 476–485, 2007.

[5] N. Polyzotis et al., “Meshing streaming updates with persistent data in
an active data warehouse,” IEEE TKDE, vol. 20, no. 7, pp. 976–991,
2008.

[6] A. Chakraborty and A. Singh, “A partition-based approach to support
streaming updates over persistent data in an active data warehouse,”
IEEE Intern. Symposium on Parallel and Distributed Processing, 2009.

[7] D. Burleson, “New Developments in Oracle Data Warehousing,” 2004.
[8] O. Corp., “On-time data warehousing with oracle10g - information at

the speed of your business,” August 2003.
[9] R. J. Santos and J. Bernardino, “Real-time data warehouse loading

methodology,” in IDEAS, 2008, pp. 49–58.
[10] C. White, “Intelligent Business Strategies: Real-time Data Warehousing

Heats up,” DM Review, 2002.
[11] W. Labio and H. Garcia-Molina, “Efficient Snapshot Differential Algo-

rithms for Data Warehousing,” in VLDB, 1996, pp. 63–74.
[12] W. Labio, J. Wiener, H. Garcia-Molina, and V. Gorelik, “Efficient

Resumption of Interrupted Warehouse Loads,” in ACM SIGMOD, 2000.
[13] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom, “Perfor-

mance Issues in Incremental Warehouse Maintenance,” in VLDB, 2000.
[14] J. M. Cheng, D. J. Haderle, R. Hedges, B. R. Iyer, T. Messinger,

C. Mohan, and Y. Wang, “An efficient hybrid join algorithm: A db2
prototype,” in ICDE, 1991.

[15] R. P. Kooi, “The optimization of queries in relational databases,” Ph.D.
dissertation, 1980.

[16] M. Elhemali et al., “Execution strategies for sql subqueries,” in SIGMOD
’07.

[17] B. Seeger, P.-A. Larson, and R. McFayden, “Reading a set of disk
pages,” in VLDB, 1993.

[18] S. Chandrasekaran et al., “Telegraphcq: Continuous Dataflow Process-
ing,” in ACM SIGMOD, 2003.

[19] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
A Stream Database for Network Applications,” in SIGMOD, 2003.

[20] D. Carney et al., “Monitoring Streams: A New Class of Data Manage-
ment Applications,” in VLDB, 2002.

[21] S. Babu and J. Widom, “Continuous queries over data streams,” SIG-
MOD Rec., vol. 30, no. 3, pp. 109–120, 2001.

[22] S. Chandrasekaran and M. Franklin, “Remembrance of streams past:,”
in VLDB. VLDB, 2004, pp. 348–359.

[23] R. Bayer and E. M. McCreight, “Organization and Maintenance of Large
Ordered Indices,” Acta Inf., vol. 1, pp. 173–189, 1972.

[24] P. O’Neil and D. Quass, “Improved Query Performance with Variant
Indexes,” in ACM SIGMOD, 1997, pp. 38–49.

[25] T. Johnson and D. Shasha, “The performance of current b-tree algo-
rithms,” ACM Trans. Database Syst., vol. 18, no. 1, 1993.

[26] N. Tatbul, “Streaming data integration: Challenges and opportunities,”
in NTII, 2010.

