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Abstract: The study of human activity recognition concentrates on classifying human activities and
the inference of human behavior using modern sensing technology. However, the issue of domain
adaptation for inertial sensing-based human activity recognition (HAR) is still burdensome. The
existing requirement of labeled training data for adapting such classifiers to every new person, device,
or on-body location is a significant barrier to the widespread adoption of HAR-based applications,
making this a challenge of high practical importance. We propose the semi-supervised HAR method
to improve reconstruction and generation. It executes proper adaptation with unlabeled data without
changes to a pre-trained HAR classifier. Our approach decouples VAE with adversarial learning
to ensure robust classifier operation, without newly labeled training data, under changes to the
individual activity and the on-body sensor position. Our proposed framework shows the empirical
results using the publicly available benchmark dataset compared to state-of-art baselines, achieving
competitive improvement for handling new and unlabeled activity. The result demonstrates SAA has
achieved a 5% improvement in classification score compared to the existing HAR platform.

Keywords: semi-supervised; auto-encoder; human activity recognition; adversarial learning

1. Introduction

Embedded wearable inertial sensors permit unobtrusive and regular monitoring, mak-
ing human activity recognition an ideal platform for health assessment [1], predicting
depression, cognitive and mental states [2], and monitoring sleep and fitness [3]. Ap-
plications for HAR systems in the actual world include smart homes [4], defenses [5],
astronauts [6], senior care [7], and defense applications. However, as they must now take
into account all unexpected changes in the real-time scenario, the current approaches face
significant difficulties in accurately recognizing activities. Modern gesture recognition
systems have great accuracy and are based on shallow or deep neural network (DNN)
models [8]; however, they still have a significant problem. The pre-trained ML models
are strong enough to handle instance-specific differences in the sensor data due to user
diversity and their changing activity schedules. It is impractical for actual societal-scale
deployment to use the standard method for addressing such heterogeneity, which involves
using instance-specific labeled data to develop individual classifiers. Instead, substan-
tial research has concentrated on automated domain adaptation methods, requiring no
labeled training data. The majority of HAR machine learning methods, including k-nearest
neighbor [9], decision trees [10], and support vector machines [11] in the literature, rely on
heuristic feature extraction to build their models. For 3D sensors, this comprises correlation
(Pearson correlation) between axes, mean and standard deviation for each sensor signal,
and time-domain calculations. The use of transfer learning to alter a training domain model
with only modest amounts of labeled data from the test domain has been proposed in recent
years [12]; the mapping of domain-dependent sensor values to a domain-independent,
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common low-dimensional latent space [13]; and the use of adversarial learning. At the
moment, efforts at HAR are mainly directed toward learning actively—acquiring user
comments about new activities, and detecting changes—finding new activities [14–16].
The model must be rebuilt and retrained when adding a new activity class. Few studies
have looked into the potential for an activity model to emerge automatically with various
activities [17]. However, this capability has the advantage of maintaining the knowledge in
the time-tested business model while reducing the need for manual feature engineering,
manual configuration, and training expenses.

Several supervised [18] and semi-supervised [19] approaches to activity recognition
exist. These models offer good accuracy when given enough training data. However, their
performance suffers when applied to novel and unexplored distributions. Therefore, it is
still difficult for the model to identify a new user’s activities. Most machine learning [14]
and deep learning are not conceptually aware of all activities, but with the proper learning
and models, they may effectively recognize human behavior. Many artificial intelligence
models and cutting-edge techniques [20] are based on deep neural networks.

On the other hand, deep learning needs a lot of data to serve as a label for learning. The
main disadvantage of HAR is that each sensor must be installed and controlled separately.
Additionally, the domain’s experts should only understand and label unlabeled data,
increasing the labeling task. As a result, our strategy ensures that the activity detection
needs are primarily met by better performance than prior methods. This research focuses on
semi-supervised adversarial learning, which combines adversarial learning, deep learning,
and semi-supervised learning (VAE) to ensure that no labels based on previously learned
data can be fully expected. Additionally, there is a chance that this method could enhance
speed by employing fewer tagging classes. The advantages of our approach are as follows:

1. We proposed a semi-supervised model that can adapt without labeled data or changes
in the pre-trained classifier to identify human activity.

2. Demonstration of adversarial autoencoder (AAE) efficacy and robustness, so that the
model will be able to comprehend fresh modifications, which are all inescapable in
real-world scenarios.

3. The suggested joint model can directly and automatically structure and learn spa-
tiotemporal characteristics from the unprocessed sensor data without requiring man-
ual feature extraction.

4. This technique may be the most effective state-of-the-art and can probably be used
across various platforms and domains.

The remaining paper sections are arranged as follows. Section 2 contains related work.
The materials and procedures used in the proposed strategy are illustrated in Section 3.
Our experimental setup for the activity recognition method is covered in Section 4 of this
article. In Section 5, the activity recognition performance analysis is explained. Finally, a
conclusive summary is provided in Section 6.

2. Related Work

HAR refers to a set of techniques used to automatically identify the task humans are
executing by examining the video, readings from wearable sensors, or wireless signals
reflected by the human body [21]. Shallow learning and deep learning techniques can
categorize the HAR algorithms. SVM [22], k-nearest neighbors (kNN) [23], linear discrimi-
nant analysis (LDA) [24], and random forest [25] are examples of popular shallow HAR
approaches. By learning to extract features from raw sensor data automatically, deep learn-
ing approaches, such as LSTM [26], CNN [27], convLSTM [28], and CNN-LSTM [29] have
demonstrated impressive improvements in performance compared to their shallow coun-
terparts. These eliminate the need for human experts to provide hand-engineered features.

The decline of cross-subject performance and change in activity schedule [30] is a
significant obstacle when using deep learning for HAR. When testing the trained deep
learning models on individuals not included in the training set, the difference in data distri-
bution between the training and testing sets frequently results in considerable performance
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degradation since different subjects carry out the same tasks in different ways [31]. An
ideal training set would consist of data collected from tens or even hundreds of additional
participants in order to address this problem. However, gathering and classifying data is a
tedious and time-consuming operation.

Domain adaption techniques are rooted in natural language processing and computer
vision [32] and have recently drawn increased attention for HAR applications [33]. These
strategies can be classified as shallow or deep models depending on the feature extrac-
tion technique. Transfer learning strategies aim to align statistics of particular features
between the source and destination domains for shallow models. Although DNN-based
techniques use intermediate representations that are automatically learned by DNNs rather
than manually created features, they nevertheless aim to achieve feature alignment. Several
adversarial learning-based methods have recently tried to implement the new activity
detecting process [34] by automatically identifying characteristics unaffected by the domain
mismatch and (ii) useful for categorizing a particular activity. Model ensemble and feature
concatenation have been proposed in earlier works [35]. for multi-sensor fusion [36]. How-
ever, these works combine a predetermined set of sensors without considering scenarios
in which the fusing of several sensor configurations is required. Missing data imputation
is a common issue focusing on completing the input space’s unobserved activity data.
Wearable sensor data typically involves multiple body locations over an extended time
period and is highly dimensional. Furthermore, the majority of deep-learning based cat-
egorization models for this type of data offer little to no interpretability for the expected
result. Some progress has been made in the challenge of video-based action recognition [37].
The auto-encoder is one class of neural networks capable of learning a condensed repre-
sentation of the input signals. Ref. [38] suggested encoding high-dimensional continuous
data as low-dimensional data by using auto-encoders with several hidden layers, so the
features are retrieved. Ref. [39] features LightGBM as the classifier with stacking denoising
auto-encoder for feature extraction. For instance, the learned features can be stacked using
a stacked auto-encoder, which can then be used to create a classification model [40]. In
their continuous auto-encoder proposal, unsupervised outlier detection can also be carried
out using ensemble learning. To save on computing costs, ref. [41] presented an ensemble
auto-encoder randomly connected with various architectures and connection densities.

3. Materials and Proposed Method

Systems for recognizing human activity go through data collection, pre-processing,
feature extraction, training, and recognition. A similar procedure is also used in our
approach, but the motivating aspect is new to HAR as of yet. Figure 1 depicts the process
flow for our suggested technique. First, segmentation and filtration are used to pre-process
the sensor data. Then, the feature is automatically extracted as we employ the deep learning
model. The activity is then trained, classified, and recognized. Finally, we reprocessed
and categorized activity that was not annotated. Semi-supervised learning is the term
for this method. The auto-encoder model is what we are employing for this method.
As a mechanism for adversarial learning, we add some perpetuation to the network to
help it create its immune system. So, using the auto-encoder model and semi-supervised
adversarial learning, we describe a method to identify human activities.

3.1. Semi-Supervised Learning

Learning data and labels under supervision is a technique used in many situations or
domains. When solving complex problems, supervised learning employs labeled data to
learn and gain knowledge [42]. The supervised learning process has been implemented
using a variety of deep learning and machine learning techniques. To train, however,
hundreds to millions of learning data points may be given, and categorizing each point
is crucial. Due to these problems, supervised learning cannot be applied in the absence
of enough learning data. This problem can be solved by semi-supervised learning. It
is a method for identifying unlisted data with crucial criteria, such as thresholds, and
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re-learning models using learning data that is already accessible to improve performance
based on the anticipated values of the learned sequences. The semi-supervised approach
lessens manual annotation while creating a self-learning model that eventually builds up a
solid body of knowledge and improves the recognition model’s efficiency or accuracy. The
collection of n labeled data points.

dN = (xi, yi)
l
i=1......n (1)

xi, yi consists of data xi ∈ < from a given sensor space <. We also have access to the
extraction of m data whose labels are unknown.

dM = (xi)
l+u
i=l+1......l+m (2)

3.2. Auto-Encoder

A fundamental AE is a neural network model in which the output replicates the
input. The encoder and decoder are the two components that make up an AE. The encoder
develops the ability to condense the inputs into a smaller subset of encoded features, or
the bottleneck. The decoder learns how to recreate the original input given the encoded
features. Consequently, an AE’s output is a rough reconstruction of its input. Formulating
the encoder phase is Equation (3), where W is the weight matrix and b is the bias vector
for the encoder phase. The decoder phase is expressed in Equation (4), for the labeled
data. Furthermore, Equations (5) and (6) represent the unlabeled data. W is the weight
matrix and b is the bias vector. In this work, the sigmoid function is used as the nonlinear
activation function denoted by the letters f in Equations (1) and (2). In the paragraphs that
follow, we define x, h and x as input layer, hidden layer and output (is approximately the
same as the output of x), respectively.

hdN = f (WidN) + bi (3)

xdN = f
(
WihdN

)
+ bi (4)

hdm = f (Wi dN) + bi (5)

xdm = f (Wihdm) + bi (6)
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3.3. Adversarial Learning

With the addition of minute disturbances or noises to the training data, adversarial
learning is a method to regularize neural networks that enhances their ability to predict the



Sensors 2023, 23, 683 5 of 12

future or approaches to deep learning by increasing the loss of a more profound learning
model. However, according to [43], even minor changes to the deep learning input could
produce very confident wrong decisions. Therefore, the following terms are added by
adversarial learning to its cost function during the training phase of a predictive model
where x and y are the input and two distinct parameters.

log p (Ys
t
∣∣Xs

t + rs
t ; θ) = where rs

t = argmin log p (Ys
t
∣∣Xs

t + rs
t ; θ̂) (7)

According to Equation (7), r in the input data is hostile. A set of the recognition
model’s constant parameters θ̂ is inherited from the θ. The suggested algorithm recognizes
the worst-case perturbations rs

t at each training. In opposition to the present trained model,
adversarial training generates disturbances or random noise that are easily misclassified
in the learning model by changing the input instances, in contrast to other regularization
strategies such as dropout.

The Algorithm 1 illustrate the pseudo-code for the overall process of our proposed
method. Based on this algorithm we performed the experiment using the python coding.

Algorithm 1: Semi-supervised auto-encoder model with adversarial training

Step 1. Initialize the network
Step 2. Reset: inputs = 0, activations = 0
Step 3. Initialize the inputs
Step 4. Create encoder and decoder

hdN = f (WidN) + bi
xdN = f

(
WihdN

)
+ bi

Step 5. Predict and calculate the loss function

a. Calculate seq2seq loss
b. Calculate class loss using cross-entropy

Step 6. Add random perturbations,
log p (Ys

t
∣∣Xs

t + rs
t ; θ) = where rs

t = argmin log p (Ys
t
∣∣Xs

t + rs
t ; θ̂)

Step 7. Calculate loss function by adding adversarial loss
Step 8. Optimize the model based on AdamOptimizer
Step 9. Recognize unlabeled data based on Algorithm 1

hdm = f (Wi dN) + bi
xdm = f

(
Wihdm

)
+ bi

Step 10. Add recognized dataset to original training dataset
Step 11. Retrain the model

4. Experimental Configuration

This section presents the complete results for both training and recognition. The
assignment and processing of numerous design hypotheses come first. The proposed
model is then trained using labeled and unlabeled data; the outcomes are compared to
the outputs of the currently existing models. Finally, the experimental examination of the
suggested approach is carried out using the CASAS dataset. This publicly available dataset
can be downloaded free from the UCI Machine learning Repository.

To obtain the HAR dataset, a series of tests were run. For this work, 30 individuals
with ages ranging from 19 to 48 were chosen. Each participant was given instructions on
how to conduct themselves while sporting a Samsung Galaxy S II smartphone on their
waist. The six chosen ADLs were walking, walking upstairs and downstairs, sitting, lying
down, and standing. Each participant went through the process twice: on the first trial, the
smartphone was fixed to the left side of the belt; on the second, the user chose where to put
it. Additionally, there is a 5 s break between each task where people are instructed to rest.
This promotes repeatability (every activity is attempted at least twice) and relaxation.
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4.1. Parameter Setting

The suggested technique was trained and tested using scikit-learn and the TensorFlow
GPU1.13.1 library. The resulting data was pre-processed and sampled in sliding windows
that overlapped and had a fixed width of 200 ms and a window length that ranged from
0.25 s to 7 s. Our technique was tested using an i7 CPU with 16 GB of RAM, a GTX Titan
GPU running on CUDA 9.0, and the cuDDN 7.0 library. To use as little memory as possible,
the CPU and GPU were utilized. A training set, a validation set, and a testing set comprised
the three components of the dataset. The remaining 30% of data was used for testing, with
the remaining 70% going toward training. The k-fold CV was used to validate the data
(cross-validation). To verify, we employed 10-fold cross-validation (K = 10).

V =
1
p ∑10

p=1 E (error) (8)

In order to reduce overfitting, the dropout rate was adjusted during training to 0.5,
removing unneeded neurons from each hidden layer. Training loss can also be decreased
by using random initialization and optimizing training parameters. Cross-entropy and L2
normalization were incorporated to prevent overfitting and make the model stable.

L = −1
k ∑n

k=1 ym
t ·logys′

t + Γ·‖W‖, (9)

where W stands for the weighting parameter and k for the batch size, the label is ym
t ; and

the recognized output is ym
t . By reducing the amount of the weighting parameters, L2

normalization avoids overfitting. Adding minute disturbances or noises to the network
with training data increases the loss of a more profound learning model for regularization
that improves the recognition ability. Adversarial training is a technique for regularizing
neural networks that enhances the neural network’s prediction performance and may even
approach deep learning. If the adversarial input is given by rs

t , then the perturbations are
given by, which is written as

rs
t = argmin log p (Ys

t
∣∣Xs

t + rs
t ; θ̂) (10)

In order to achieve the most significant performance, we aimed to select the optimal
hyperparameters, such that the learning rate, L2 weight, and difference all decreased. We
utilized a learning rate of 0.005 with a batch value of 100 for each epoch to train the model.
Learning begins at 0.001. The training is completed when the outputs are stable, which
takes about 12,000 epochs. The Adam optimizer is a parameter-free adaptive moment
estimator that produces adaptive learning rates. There are two dimensions: 128 for the
input and 256 for the output, and 8 hidden layers. Gradient clipping was changed to 5 to
lower the gradient crossing threshold. An Adam optimizer was used.

4.2. Evaluation Parameter Setting

The model’s performance was assessed using accuracy, F1-score, and training duration.
The confusion matrix, where the row denotes the anticipated class and the column indicates
the actual class, can be used to calculate these. The computational recognition accuracy of
human activity recognition was assessed using the precision and recall parameters. The
percentage of correctly identified instances from perceived activity occurrences is known
as precision. A recall is the percentage of cases that were identified adequately out of all
the instances. The weighted average of precision and recall between [0, 1] is known as an
F-score, and a number closer to 1 indicates the more incredible performance

Precision :
1
N

(
N

∑
m=1

TPm

TPm + FPm
× 100

)
(11)
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Recall :
1
N

(
N

∑
m=1

TPm

TPm + FNm
× 100

)
(12)

F− score :
2× Precision× Recall

Precision + Recall
(13)

Accuracy =
1
N

(
N

∑
m=1

TPm + TNm

TPm + TNm + FPm + FNm
× 100

)
(14)

Through the confusion matrix, these terminologies were evaluated for true positive
(TP), false positive (FP), and false-negative (FN) results. Each dataset was divided into
three groups: a training set, a validation set for parameter optimization, and a test set for
final assessment.

5. Activity Recognition Results, Analysis and Evaluation

The experimental findings are discussed and examined in this section. The dataset
was used to locate all actions. In the context of a smart home, the contemporaneous and
interspersed activities that happen the most frequently are referred to as presiding activi-
ties. Concurrent activity recognition, interleaved activity recognition, and the recognition
average are the three sections that make up the analysis section. The general recogni-
tion accuracy is then contrasted with the other state-of-the-art approaches, including the
CNN [44], the long short-term memory (LSTM) [45], and synchronized long short-term
memory (Syn-LSTM) [46].

The recognition confusion matrix of the proposed method is shown in Figure 2. Ac-
cording to the confusion matrix, the average F-score for recognition is over 0.98, indicating
that the average accuracy is high and desirable.
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As previously said, the accuracy is generally decent despite the sparse data. The
walking activity to be true is 98% walking upstairs and walking downstairs is 97% and
98%, respectively. The sitting and the lying down possess similar accuracy with 97% and
96%. The sitting and lying down signal changes are very similar until and unless going
into depth-hidden layers. Standing activity recognition accuracy is almost 99%. Walking
and walking upstairs/downstairs are inherently more accessible to recognize than other
activities as their signal changes are more or equal to the walking threshold. This dataset
only has limited data and instances, so it is a bit easy to recognize, and accuracy is high
enough, i.e., a large number of datasets could obtain the actual and accurate recognition
distribution. The main aim of the proposed method is to recognize human activity and find
and prove the algorithm.

Regarding analysis, the proposed algorithm is more reliable and competent than the
existing method. The Figure 3 represents the percentage of cases that were identified
correctly as activity instances. The precision of 98.4420% and recall of 98.6231% is received
from the proposed model to determine the activity correctly.
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We have performed the validation to minimize the error and remove the unwanted
activity that leads to increase accuracy. The 10-fold cross-validation is used for the model
validation, whose deviation is measured referring epochs and batch sizes. Table 1 displays
the mean and standard deviation after 10,000 iterations of changing the batch size hyperpa-
rameter. Similar results are shown in Table 2 for the epochs parameter when the batch size
is 100, and the mean and standard deviation are computed. The choice of window size is
also important for system accuracy; technically, a window size range of 500 ms to 5000 ms
will be useful. Table 3 displays the mean and standard deviation of accuracy and error.

Table 1. Mean and standard deviation of variable range batch size on 10,000 epochs.

Epochs 1000 5000 8000 10,000

Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ)

0.9300 ± 0.0125 0.9245 ± 0.0321 0.9386 ± 0.0621 0.9421 ± 0.0221
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Table 2. Mean and standard deviation of different epochs on 100 batch size.

Batch Size 10 30 60 100

Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ) Mean (µ) ± SD (σ)

0.9561 ± 0.065 0.9602 ± 0.0423 0.9631 ± 0.04125 0.9531 ± 0.0431

Table 3. 10-fold cross-validation result.

Mean (µ) ± SD (σ) Accuracy Mean (µ) ± SD (σ) Error

UCI 0.9410 ± 0.0522 0.3215 ± 0.0121

Figure 4 depicts the accuracy and loss curve. The graphs’ relatively small difference
between training and testing accuracy demonstrates the model’s efficacy. The dropout
approaches, adversarial training, and semi-supervised learning are advantageous since the
difference between training and test loss is also relatively small: Method 98.34, as proposed
with an average inaccuracy of 0.1571, had an average accuracy of 98.154%, illustrating the
effectiveness of the suggested strategy in comparison to the current framework, including
the HMM [33], LSTM [34], and sync-LSTM [35] techniques (algorithms). The F1-score is
higher than 0.98, as shown in Figure 5. Although the sync-LSTM is equally accurate to our
approach, it is unable to handle fresh or unannotated data.
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6. Conclusions

By thoroughly comparing a semi-supervised adversarial auto-encoder with recently
introduced activity recognition techniques such as deep learning and its variants, the
work presented in this paper demonstrates a workable solution for detecting human
activities. However, these strategies do not address the novel and new data in the sequence.
On annotated and routine activity detection, many methods have been studied. Few of
them, nevertheless, have made an effort to find intricate and unannotated activity. The
proposed method recognized unannotated human behavior from the data gathered from
the sensors by semi-supervised learning capability. The adversarial learning technique
improves learning capacity by introducing slight disturbances or noises to the network.
The challenges in recognizing human activity still include accuracy, processing complexity,
complex activity, and unannotated activity. Nevertheless, the accuracy is 98%, and the
precision and recall are also high, yielding an f1 score of greater than 0.98.

However, due to sensor timing, noise interference, and limited data, the accuracy
is not equal or tends to be 100%. The current best-performing model encounters many
real-time difficulties while interacting with various datasets. Essential factors affecting
model performance include the number of activities carried out, sensor kinds, sensor
deployment, population size, and time periods. Since tiny windows might not contain all
the information and wide windows might result in overfitting and overload, window size
also significantly impacts model performance. Identifying and processing the unannotated
data is advantageous for extremely unbalanced datasets.

The suggested method uses reduced pre-processing time and manual feature extrac-
tion to automatically extract spatio-temporal information and identify unannotated activity.
The proposed method can be improved and upgraded in the future to distinguish more
complicated, multiuser, and multivariate actions. Additionally, we may benefit from edge
computing, cloud computing, and IoT services to process a lot of data efficiently. Finally,
different settings and domains, such as sign language identification, cognitive capacities,
etc., can be employed in our approach. As a result, the strategy we recommend is a better,
state-of-the-art one for HAR.
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