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Abstract—In this paper, we propose a novel algorithm for
Single-hidden Layer Feedforward Neural networks training
which is able to exploit information coming from both labeled and
unlabeled data for semi-supervised action classification. We ex-
tend the Extreme Learning Machine algorithm by incorporating
appropriate regularization terms describing geometric properties
and discrimination criteria of the training data representation
in the ELM space to this end. The proposed algorithm is
evaluated on human action recognition, where its performance
is compared with that of other (semi-)supervised classification
schemes. Experimental results on two publicly available action
recognition databases denote its effectiveness.

I. INTRODUCTION

Human action recognition is intensively studied to date
due to its importance in many real-life applications, like
intelligent visual surveillance, human-computer interaction and
games and automatic assistance in healthcare of the elderly
for independent living to name a few. However, it is a
challenging problem, because of the complexity of human
actions. Challenges that action recognition methods should
be able to face include variations in human body proportions
and execution style between individuals, different observation
angles, variations in occlusion levels and in the distance
between the individual and the camera, cluttered backgrounds
and moving cameras. Such variations lead to high intra-class
and, possibly, small inter-class variations for human actions.

Popular action representations describe actions either as
series of successive human body poses, or as collections of
local shape and motion descriptors, or by exploiting holistic
video representations. In the first case, human body silhouettes
are evaluated by applying video frame segmentation tech-
niques or background subtraction. However, such techniques
are inappropriate in real applications involving scenes having
cluttered background where multiple persons appear. he two
remaining approaches do not require video frame segmentation
as a preprocessing step, since they employ video representation
evaluated directly to the color (grayscale) video frames. In the
first case, shape and motion descriptors, like the Histogram of
Oriented Gradients (HOG) and the Histogram of Optical Flow
(HOF) are calculated on Space-Time Interest Points (STIPs)
[1] and videos are represented by adopting the Bag of Features
(BoFs) model [2]. In the later case, action videos are divided
in multiple sub-videos and each sub-video is described by
exploiting its similarity with reference ones in order to obtain
a template-based action video representation [3].

After the determination of an appropriate action video
representation, action classification is usually performed by
adopting supervised classification schemes. This approach has

been extensively studied in the last two decades, leading to
high action classification rates in several action recognition
datasets [4], [26]. However, labeled action training samples
are, usually, difficult or expensive to obtain, since they require
human effort (manual annotation). Therefore, good learning
models using a limited number of labeled action videos are
required. Despite the fact that action recognition has been
extensively studied in the last two decades, there are few semi-
supervised action recognition methods, which can exploit both
labeled and unlabeled action videos in their training process.
We briefly describe such methods in the following Section.

Extreme Learning Machine (ELM) [5] is a, relatively, new
algorithm for fast Single-hidden Layer Feedforward Neural
(SLFN) networks training, requiring low human supervision.
Conventional SLFN training algorithms require adjustment of
the network weights and the bias values, using a parameter
optimization process, like gradient descent. However, gradient
descent learning techniques, like the Backpropagation algo-
rithm, are generally slow and may lead to local minima. In
ELM, the input weights and the hidden layer bias values
are randomly chosen, while the network output weights are
analytically calculated. ELM not only tends to reach a small
training error, but also a small norm of output weights,
indicating good generalization performance [6]. ELM has been
successfully applied to many classification problems, including
human action recognition [7], [8], [9], [12], [13].

In this paper we extend the ELM algorithm in order
to exploit information appearing in both labeled and unla-
beled action videos. This is achieved by introducing a proper
regularization term on the MCVELM optimization process
[10], which is an extension of the ELM network as will
be described in the following Section. The proposed SLFN
network training algorithm has been evaluated on two publicly
available action recognition datasets, namely the KTH and
the UCF50 datasets, where its performance is compared with
that of other supervised and semi-supervised classification
schemes. Experimental results denote the effectiveness of the
proposed approach.

The rest of the paper is structured as follows. Section
II discusses previous work related to the proposed approach.
Section III describes the proposed classification algorithm in
detail. Experimental results evaluating their performance are
illustrated in Section IV. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

As has been previously mentioned, despite the fact that
action recognition has been extensively studied in the last two



decades, there are few methods approaching the problem from
a semi-supervised point of view. Labeled Kernel Sparse Coding
(LKSC) and l1 graphs are proposed in [14], in order to use
unlabeled action videos in a sparsity-based action classification
scheme. Semi-supervised Discriminant analysis with Global
constraint (SDG) is proposed in [15]. SDG incorporates Linear
Discriminant Analysis (LDA), Principal Component Analysis
(PCA) and Locality Preserving Projections (LPP) in one op-
timization scheme, in order to fuse the information appearing
in both labeled and unlabeled action videos.

Regarding ELM-based classification schemes, many ELM
variants have been proposed in the last few years, each ex-
tending properties of the ELM network in different directions
[16], [17], [18], [19], [20], [21], [22], [23], [10]. From them,
those that are more related to the proposed classification
scheme are the the ones proposed in [23], [10], [24]. In
[23], an optimization-based regularized version of the ELM
algorithm, noted as ORELM hereafter, has been proposed in
order to enhance the generalization performance of the ELM
network and overcome the Small Sample Size problem which
is related to the original ELM optimization problem. By using
a sufficiently large number of hidden layer neurons, the ELM
classification scheme can be thought of as being a two-step
optimization process. The first step corresponds to a non-linear
mapping of the training data to a high-dimensional feature
space, called ELM space hereafter, while the second one
corresponds to linear data projection and classification. Based
on this observation, the optimization problem of the ORELM
network has been extended in order to incorporate the within-
class variance of the training data representation in the ELM
space, leading to increased action classification performance
[10]. This algorithm is noted as MCVELM hereafter. Finally,
a semi-supervised version of the ELM network has been
proposed in [24]. SELM incorporates a regularizer on the
optimization process of the ELM network in order to exploit
information coming from unlabeled data. As will be described
in the following sections, the proposed classification scheme
can be considered as an extension of both the MCVELM and
SELM algorithms, which is able to exploit information coming
from labeled and unlabeled data and, additionally, incorporate
discrimination criteria on the ELM optimization process.

III. PROPOSED METHOD

In this Section, we describe in detail the proposed
(SDELM) algorithm for semi-supervised SLFN network train-
ing. Since, as it has been already mentioned, it is an extension
of ELM, SELM and MCVELM algorithms, we briefly describe
them in the following subsections. Here, we introduce the
notation that will be used in the following subsections.

Let xi i = 1, . . . , l, . . . , N be a set of vectors, each
describing an action video. The first l vectors xi, i = 1, . . . , l
are accompanied with action class labels ci ∈ A, while the
action class of the remaining u = N − l vectors is not a priori
known. We would like to employ these vectors and the corre-
sponding class labels in order to train a SLFN network. For
a classification problem involving the D-dimensional vectors
xi, each belonging to one of the C classes forming the action
class set A, the network should contain D input, H hidden and
C output neurons. The number of the network hidden layer
neurons is usually chosen to be much higher than the number

of action classes, i.e., H ≫ C. The network target vectors
ti = [ti1, ..., tiC ]

T , i = 1, . . . , l, each corresponding to one
labeled vector xi, are set to tij = 1 for vectors belonging to
class j, i.e., when ci = j, and to tij = −1 otherwise.

In ELM-based classification schemes, the network input
weights Win ∈ R

D×H and the hidden layer bias values
b ∈ R

H are randomly chosen, while the output weights
Wout ∈ R

H×C are analytically calculated. Let vj denote the
j-th column of Win, uk the k-th row of Wout and ukj be
the j-th element of uk. For a given hidden layer activation
function Φ() and by using a linear activation function for the
output neurons, the output oi = [o1, . . . , oNA

]T of the ELM
network corresponding to training action vector xi is given by:

oik =
H
∑

j=1

ukj Φ(vj , bj , si), k = 1, ..., C. (1)

Many activation functions Φ() can be employed for the cal-
culation of the hidden layer output, such as sigmoid, sine,
Gaussian, hard-limiting and Radial Basis (RBF) functions. Let
us denote by Φ ∈ R

H×N a matrix containing the hidden
layer output vectors φi, i = 1, . . . , N , each corresponding
to an action vector xi. Let us also denote by Φl ∈ R

H×l a
sub-matrix of Φ containing the network hidden layer outputs
corresponding to the labeled action vectors xi i = 1, . . . , l.

After calculating the network output weights Wout, a test
action vector xt ∈ R

D can be introduced to the trained network
and be classified to the class corresponding to the maximal
network output, i.e.:

ct = arg max
j

otj , j = 1, ..., C. (2)

A. The ELM algorithm

ELM has been proposed for supervised classification [5].
It assumes that the predicted network outputs O ∈ R

C×l are
equal to the desired ones, i.e., oi = ti, i = 1, ..., l. Given this
assumption, Wout can be analytically calculated by solving
for:

W
T
outΦl = T, (3)

where T ∈ R
C×l is a matrix containing the network target

vectors. The network output weights minimizing ∥WT
outΦl −

T∥2F are given by:

Wout = Φ
†
l T

T , (4)

where Φ
†
l =

(

ΦlΦ
T
l

)−1

Φl is the generalized pseudo-inverse

of ΦT
l .

B. The MCVELM algorithm

MCVELM algorithm has also be proposed for supervised
classification [10]. MCVELM solves the following optimiza-
tion problem:

Wout = argmin
Wout

1

2
∥S

1

2
wWout∥

2

F +
λ

2

l∑

i=1

∥ξi∥
2

2, (5)

s.t. : W
T
outφi = ti − ξi, i = 1, ..., l, (6)

where ξi ∈ R
C is the error vector corresponding to training

vector xi and λ is a parameter denoting the importance of



the training error in the optimization problem. Sw denotes the
within-class scatter matrix of the training vectors in the ELM
space is given by:

Sw =

C
∑

j=1

l
∑

i=1

βij(φi − µj)(φi − µj)
T , (7)

where βij is an index denoting if vector xi belongs the to class
j, i.e., βij = 1, if ci = j and βij = 0 otherwise. µj ∈ R

H

is the mean vector of class j in the ELM space. In the case
where the number of vectors belonging to different classes
vary, the contribution of each class to the calculation of Sw

can be appropriately weighted. In addition, in the case where
the training data form multimodal classes in the ELM space,
i.e., classes formed by multiple subclasses, Sw can be modified
in order to describe the within-subclass variance of the training
data. By solving the optimization problem (5), Wout is given
by:

Wout =

(

ΦlΦ
T
l +

1

c
Sw

)−1

ΦlT
T . (8)

C. The SELM algorithm

SELM solves the following optimization problem:

Wout = argmin
Wout

∥WT
outΦl −T∥2F , (9)

s.t. :
N
∑

i=1

N
∑

j=1

wij∥W
T
outφi −W

T
outφj∥

2

2
= 0, (10)

where wij is a value denoting the similarity between φi and
φj . By solving (9), Wout is given by:

Wout = ((J+ λL)Φ)
†
JT

T , (11)

where J = diag(1, 1, . . . , 0, 0) with the first l diagonal entries
as 1 and the rest 0, L is the Graph Laplacian matrix [25]
encoding the similarity between the training vectors.

D. The proposed Semi-supervised Discriminant ELM algo-
rithm

In this paper, we propose to solve the following optimiza-
tion problem for the calculation of the network output weights
Wout:

Wout = argmin
Wout

1

2
∥S

1

2

XWout∥
2

F +
λ1

2

l∑

i=1

∥ξi∥
2

2 (12)

s.t. : W
T
outφi = ti − ξi, i = 1, ..., l, (13)

N∑

i=1

N∑

j=1

wij∥W
T
outφi −W

T
outφj∥

2

2 = 0. (14)

By substituting (13) in (12) and taking the equivalent dual
problem of (12) with respect to (14), we obtain:

JD =
1

2
∥S

1

2

XWout∥
2

F +
λ1

2
∥WT

outΦl −T∥2F

+
λ2

2
Tr

(

W
T
outΦLΦ

T
Wout

)

. (15)

Since action class discrimination in the projection space is
handled by the second term in (15), SX is chosen to describe
action class compactness properties. That is, SX can be

either the within-(sub)class matrix (7) expressing (sub)class
compactness in the ELM space, or the total scatter matrix ST

[11], given by:

ST =
C
∑

j=1

N
∑

i=1

(φi − µ)(φi − µ)T , (16)

where µ ∈ R
H is the mean vector of the entire training

set in the ELM space. ST expresses the compactness of the
entire training set in the ELM space. We should note here that
the adoption of a matrix SX = I in (12), corresponds to an
extension of the ORELM algorithm to semi-supervised SLFN
network training.

By solving for θJ2

θWout
= 0, Wout is given by:

Wout =

[

Φ

(

1+
λ2

λ1

L

)

Φ
T +

1

λ1

SX

]−1

ΦlT
T . (17)

As can be seen in (16) the adoption of the proposed
optimization scheme for the calculation of Wout leads to
the determination of network output weights exploiting both
information appearing in unlabeled training data (expressed
by the Graph Laplacian matrix L) and discrimination criteria
(expressed by the matrix SX ). It should be noted here that,
the calculation of SX and L in the ELM R

H , rather than the
input space R

D, has the advantage that nonlinear relationships
between the training vectors xi can be described.

IV. EXPERIMENTS

In this Section, we present experiments conducted in order
to evaluate the performance of the proposed action classifica-
tion algorithm. We have used two publicly available datasets
to this end, namely the KTH and UCF50 databases. Compre-
hensive description of the databases used in our experiments
are provided in the following subsections.

We employ the Action Bank [3] for action video represen-
tation. The dimensionality of the 14964-dimensional Action
Bank vectors has been reduced by applying PCA, so that
98% of the energy is preserved, resulting to 91- and 467-
dimensional feature vectors for the KTH and the UCF50 cases,
respectively. We compare the performance of the proposed
SDELM algorithm with that of ELM [5], ORELM [23]1, kernel
Support Vector Machine employing RBF kernel (kSVM)2, ker-
nel Laplacian SVM employing RBF kernel (LapSVM) [25]3

and SELM [24] classifiers. The sigmoid activation function
has been used for all the ELM-based classification schemes.
The optimal parameter values for all the algorithms have been
determined by applying a grid search strategy using the values
λ = 10r for ORELM and SELM, C = 10r and σ = 10r

for kSVM, γA = 10r, γI = 10r and σ = 10r for LapSVM
and λ1 = 10r, λ2 = 10r for the proposed SDELM algorithm
using the values r = −6, . . . , 6. The number H of the network
hidden layer neurons has been set equal to H = 500 and
H = 1000 for all the ELM-based classification schemes on the
KTH and the UCF50 cases, respectively. Finally, we compare
the performance of the proposed action recognition method

1http://www.ntu.edu.sg/home/egbhuang/elm codes.html
2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
3http://manifold.cs.uchicago.edu/manifold regularization/manifold.html



Fig. 1. Video frames from the KTH action database for the four different

scenarios.

with that of other methods evaluating their performance on
the above-mentioned databases.

A. The KTH action database

The KTH action database consists of 600 videos depicting
25 persons, performing six actions each [26]. The actions
appearing in the database are: ’walking’, ’jogging’, ’running’,
’boxing’, ’hand waving’ and ’hand clapping’. Four different
scenarios have been recorded: outdoors (s1), outdoors with
scale variation (s2), outdoors with different clothes (s3) and
indoors (s4), as illustrated Figure 1. The persons are free to
change motion speed and direction between different action
realizations. The most widely adopted experimental setting on
this data set is based on a split (16 training and 9 test persons)
that has been used in [26].

B. The UCF50 action database

The UCF50 action database consists of 6680 realistic
videos taken from YouTube, each belonging to one of 50
action classes. The database is very challenging, due to large
variations in camera motion, subject appearance and pose,
subject scale, view angle, cluttered background, illumination
conditions, etc. For all the 50 categories, the videos are
grouped into 25 groups, where each group consists of more
than 4 action clips. The video clips in the same group may
share some common features, such as the appearance of the
same person, similar background, similar view angle, and so
on. The most widely adopted experimental setting on this
database is the 5-fold group-wise cross-validation procedure.
That is, the videos are split on five sets, each containing 5
groups. On each fold of the cross-validation procedure, the
videos belonging to 4 sets, i.e., 20 groups, are used for training
and the videos belonging to the remaining set are used for
testing. This procedure is performed 5 times, one for each test
set. Example video frames from this database are illustrated in
Figure 2.

C. Experimental Results

The mean action classification rates for the ELM, ORELM,
kSVM algorithms and the proposed SDELM algorithm em-
ploying Sw and ST for supervised action classification, i.e.,
by exploiting the available labeling information for the entire
training set, are illustrated in Table I. As can be seen, the
proposed SDELM algorithm outperforms all the competing

Fig. 2. Video frames from the UCF50 action database.

ones in both databases. The confusion matrix obtained for the
KTH database is illustrated in Figure 3. In Table I, we also
provide the mean training times for all the algorithms. All
the experiments have been conducted on a 2.4GHz, 16GB,
64-bit Windows 8 PC, using a MATLAB implementation. As
can be seen, the proposed DELM algorithm is computationally
efficient, since its learning speed is comparable with that of
ELM and ORELM, while the learning process kSVM is quite
slow, since it is requires gradient descend based optimization.

We have also performed semi-supervised action classifica-
tion on the KTH and UCF50 databases. We have ordered the
training data forming the action classes of the KTH and UCF50
databases by using a random permutation of their indices
and used 1% and 5% of them as labeled and the remaining
samples as unlabeled data. The action classification rates
obtained by following this process and applying the SELM,
LapSVM and the proposed SDELM algorithms employing
I, Sw and ST are illustrated in Table II. As can be seen,
the proposed SDELM algorithm outperforms both the SELM
and the LapSVM algorithms in most cases. Furthermore, it
can be seen that the ELM-based classification schemes are
computationally more efficient compared to the LapSVM algo-



TABLE I. ACTION CLASSIFICATION RATES AND MEAN TRAINING TIMES FOR SUPERVISED CLASSIFICATION ON THE KTH AND THE UCF50 ACTION

DATABASES.

KTH UCF50
Accuracy Training Time Accuracy Training Time

ELM 90.74% 89.8ms 60.6% 2.3s

ORELM 99.07% 98.4ms 56.28% 1.3522s

kSVM 98.15% 420ms 57.9% 30.864s

SDELM (Sw) 98.61% 192.7ms 61.21% 1.475s

SDELM (ST ) 99.54% 164.4ms 60.94% 1.096s

TABLE II. ACTION CLASSIFICATION RATES AND MEAN TRAINING TIMES FOR SEMI-SUPERVISED CLASSIFICATION ON THE KTH AND UCF50
DATABASES.

KTH UCF50
l = 6 (1 per action class) l = 18 (3 per action class) l = 0.01N l = 0.05N

Accuracy Training Time Accuracy Training Time Accuracy Training Time Accuracy Training Time

SELM 71.76% 106.7ms 82.87% 105.5ms 11.25% 4.7824s 17.01% 4.8281s

LapSVM 82.41% 203.9ms 91.2% 223.4ms 14.43% 30.8646s 31.54% 17.9869s

SDELM (I) 80.56% 115.1ms 90.74% 116.8ms 14.38% 3.6857s 32.2% 3.7191s

SDELM (Sw) 80.09% 134.9ms 90.74% 145.1ms 16.54% 1.5262s 32.12% 1.7585s

SDELM (ST ) 77.31% 126.6ms 91.2% 137ms 16.5% 1.3159s 33.12% 1.3091s

Fig. 3. Confusion matrix for supervised action classification on the KTH

database.

TABLE III. COMPARISON RESULTS ON THE KTH DATABASE.

Accuracy

Method [27] 94.3%

Method [28] 94.5%

Method [29] 94.5%

Method [30] 94.5%

Method [3] 98.2%

SDELM (ST ) 99.54%

rithm. The confusion matrix obtained by applying the proposed
SDELM algorithm, employing ST , on the KTH database for
the case of l = 0.05NI is illustrated in Figure 4.

Finally, we compare the performance of the proposed
action classification scheme with that of others evaluating
their performance on the KTH and UCF50 databases in
Tables III, IV, respectively. As can be seen, the proposed
SDELM algorithm combined with the Action Bank action
video representation leads to state-of-the-art performance in
both databases.

Fig. 4. Confusion matrix for semi-supervised action classification on the

KTH database (l = 0.05NI ).

TABLE IV. COMPARISON RESULTS ON THE UCF50 DATABASE.

Accuracy

Method [31] 38.8%

Method [2] 47.9%

Method [3] 57.9%

SDELM (Sw) 61.21%

V. CONCLUSION

In this paper, we proposed an extension of the ELM al-
gorithm for semi-supervised SLFN network training. The pro-
posed algorithm both exploits information coming from both
labeled and unlabeled data and incorporates discrimination
criteria describing compactness properties of the training set in
the ELM space in the ELM optimization process. The proposed
algorithm has been evaluated in human action recognition
where its performance has been compared with that of other
(semi-)supervised classification schemes. Experimental results
on two publicly available datasets denote that it is able to
provide state-of-the-art performance for both supervised and



semi-supervised action classification.
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