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a b s t r a c t

Discovering a community structure is fundamental for uncovering the links between
structure and function in complex networks. In this paper, we discuss an equivalence of
the objective functions of the symmetric nonnegative matrix factorization (SNMF) and the
maximum optimization of modularity density. Based on this equivalence, we develop a
new algorithm, named the so-called SNMF-SS, by combining SNMF and a semi-supervised
clustering approach. Previous NMF-based algorithms often suffer from the restriction
of measuring network topology from only one perspective, but our algorithm uses a
semi-supervised mechanism to get rid of the restriction. The algorithm is illustrated and
compared with spectral clustering and NMF by using artificial examples and other classic
real world networks. Experimental results show the significance of the proposed approach,
particularly, in the cases when community structure is obscure.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Various complex networks, such as social networks [1], technological networks [2], and biological networks [3], can be
effectively modeled as graphs by regarding each entity as a vertex and each link as an edge. It has been shown that many
real world networks have a structure of modules or communities which are characterized by groups of densely connected
nodes. Generally, a community is a subgraphwhose nodes are more tightly connected with each other than with nodes out-
side the subgraph. However, the intuitivemeaning of a community differs greatly in different networks. This is, for example,
confirmed in the case of the social networks, where communities correspond to social groups with similar interest or back-
ground. In protein–protein interaction networks, it is widely believed that the modular structure can be a functional unit.

Identifying a community structure in special networks has a considerable merit of practice because it gives us insights
into the structure-functionality relationship. Over the years, researchers have introduced a large number of algorithms,
for example, the spectral clustering algorithm [4,5], betweenness-based method [1], NMF-based algorithm [6,7], fuzzy
clustering approach [8] etc. More algorithms for community detection can be referred to Refs. [9,10]. Among thesemethods,
the NMF-based algorithm is a recently introduced method for multivariate data [11,12]. It has received considerable
attention in several disciplines immediately, particularly in the complex network. Literatures [6,7] employed theNMF-based
algorithm for the community and both of them attained good performance. However, designing an efficient algorithm for
community is still highly nontrivial largely due to the following three reasons.

1. Measure for community: there is no consensus criteria formeasuring the community structure,which is amain drawback
in many algorithms. To tackle this difficulty, Newman et al. [13] introduced a modularity function Q which measures
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the quality of a given partition of a network, and it can also be utilized to select an automatically optimal number of
communities based on the maximum Q value. Many algorithms based on such a strategy are proposed in Refs. [5,14,
15], although finding the optimal Q value is an NP-hard problem [14,16]. Recently, Fortunato et al. [17] pointed out the
serious resolution limit of the widely used Q function and claimed that the size of a detected community depends on the
size of the whole network. To overcome the drawbacks of Q function, a new measure, named by modularity density or
D, was presented in Ref. [18].

2. Structure of community: communities may be in complicated shapes. Palla et al. [19] revealed that complex network
models exhibit an overlapping community structure, also called fuzzy community. Furthermore, Ravasz et al. [20] proved
the existence of the hierarchical organization of modularity in metabolic networks. These overlapping and hierarchical
communities are more realistic than average ones. For example, a person in social networks belongs to more than one
community at the same time. However, these complicated structures actually make it harder to contrive appropriately
algorithms for overlapping or hierarchical communities. Now, only a few efficient algorithms [8–10,21] can uncover such
realistic structures.

3. Topology structure of complex networks:measuring the graph topological characteristics of complex network is difficult,
although there are various similaritymeasures presented [22–26]. Usually, topological characteristics cannot be captured
by one or two measure indexs. In Ref. [6], several similarity measures, such as diffusion kernel similarity, shortest path
based similarity, on several well studied networks were evaluated. It is also indicated that different networks require
different similarity or dissimilarity measures. Thus, how tomake themost use of appropriate measures to grasp as much
network structure information as possible is also crucial to community detection.

At present, most algorithms for community detection focus on the first and the second challenges, but few methods
concentrate on the third one. Based on the discussion above, wewill focus on the identification of the community in complex
networks from the third aspect. In this paper, wewill prove the equivalence of objective functions of symmetric NMF (SNMF)
and the maximum optimization of modularity density. Such an equivalence has an immediate implication: we may use the
NMF to optimize themodularity density D. Based on the equivalence, we propose a SNMF-based semi-supervised clustering
(SNMF-SS) algorithm by a combination of SNMF and a semi-supervised clustering way. Particularly, our algorithm can
simultaneously make use of several similarity measures presented in Refs. [22–26], and grasp topological properties from
different perspectives. However, others can only use one similaritymeasure at one time. By applying the SNMF-SS algorithm
to several widely studied networks and artificial synthesis networks, we can find that the algorithm has better performance
in terms of classification accuracy, robustness and ability to large-scale networks. Comparison with other algorithms also
indicates the superiority of SNMF-SS, particularly, in such graphs whose community structure is obscure.

The paper is organized as follows. In Section 2, we show the equivalence of the optimization of modularity density and
the SNMF. The proposed SNMF-SS algorithm for community discovery is proposed in Section 3. Experimental results appear
in Section 4. Finally, a conclusion is presented in Section 5.

2. Equivalence of modularity density and symmetric nonnegative matrix factorization

Let us begin with the definition of the modularity density function D. In detail, given an undirected network G = (V , E)
consisting of the vertex set V = {v1, . . . , vn} (n is the cardinality of V ) and the edge set E, the modularity density function
D is defined as [18]

D =
m∑

c=1

L(Vc, Vc) − L(Vc, V̄c)

|Vc |
, (2.1)

where {Vc}mc=1 is a partition of the V into m groups, V̄c is the complement of Vc with respect to V , L(Vc, V̄c) =
∑

i∈Vc ,j∈V̄c
Aij

(A = (Aij) is the adjacent matrix of G) and |Vc | is the cardinality of Vc .
The objective function of kernel k-means is to construct am-way partition {Vc}mc=1 with the purpose tominimize the sum

of squared errors [27]

F =
m∑

c=1

∑

vi∈Vc

‖φ(vi) − mc‖2, mc =
∑

vi∈Vc

φ(vi)/|Vc | (2.2)

where ‖ · ‖2 is the Frobeneus norm,mc is the centre of the c-th cluster and φ is a kernel function mapping the vectors onto
a generally higher dimensional space. The squared distance ‖φ(vi) − mc‖2 can be rewritten as

φ(vi) · φ(vi) −
2

∑

vj∈Vc

φ(vi) · φ(vj)

|Vc |
−

∑

vj,vl∈Vc

φ(vj) · φ(vl)

|Vc |2
. (2.3)

As a result, given a kernel matrix K with entry Kij = φ(vi) · φ(vj), the above may be rewritten as

Kii −
2

∑

vj∈Vc

Kij

|Vc |
+

∑

vj,vl∈Vc

Kjl

|Vc |2
. (2.4)
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In Ref. [18], the authors proved the equivalence of the objective functions of maximum optimization D and kernel k-
means

min F ∝ maxD. (2.5)

Now, we show the equivalence of D and SNMF by proving Eq. (2.2) can be solved approximately by the SNMF, similar to
Ref. [28].

Setting Eq. (2.2) as a trace minimization, we can get

min
HTH=I,H≥0

F = Trace(K) − Trace(HTKH), (2.6)

where Trace(K) is the trace of matrix K , I is an identity matrix and

H = (h1, h2, . . . , hm) (2.7)

is the solution to the clustering, consisting ofm nonnegative indicator vectors

hk = (0, . . . , 0, 1, 1, . . . , 1
︸ ︷︷ ︸

|Vk|

, 0, . . . , 0)T/|Vk|1/2, ∀k = 1, 2, . . . ,m. (2.8)

It is easy to validate that hT
khl = 0 when k 6= l, and 1 otherwise. Because the first term in Eq. (2.6) is a constant, we can

conclude that

min F ∝ max Trace(HTKH). (2.9)

Now, what remains to be done is to show that max Trace(HTKH) can be solved by the SNMF. In detail, provided that the
feature matrix K and the number of clusters m are given, the SNMF approximately factorizes the matrix K into a n × m

matrix and its transpose matrix such that

K ≈ HHT, H ≥ 0, (2.10)

where K and H are nonnegative matrices.m is usually much smaller than n so that H is smaller than the original matrix K .
Actually, casting Eq. (2.10) as an optimization form, the objective function can be approximated by minimizing the sum

of squared errors, defined as

min
H≥0

‖K − HHT‖2. (2.11)

Further, we can rewrite the right term of Eq. (2.9) as

max Trace(HTKH) ∝ −min
H≥0

2Trace(HTKH)

∝ min
HTH=I,H≥0

‖K‖2 − 2Trace(HTKH) + ‖HTH‖2

= min
HTH=I,H≥0

‖K − HHT‖2. (2.12)

Relaxing the orthogonality HTH = I (H is no longer the indicator matrix in Eq. (2.8) from now on), we can assert that SNMF
is equivalent to kernel kmeans clustering by Eqs. (2.9)–(2.11), i.e.,

maxD ∝ min
H≥0

‖K − HHT‖2. (2.13)

This implies that D attains its maximum if and only if the minimum of F is achieved, and F ’s minimum is reached only
if minH≥0 ‖K − HHT‖2 is obtained. Such a relation assures that algorithms based on SNMF can be applied to community
discovery. Thus, we shift our focus to an efficient SNMF-SS algorithm for the community.

3. Method

In this section, the SNMF-SS algorithm, the parameters optimization strategies and complexity analysis are presented.

3.1. SNMF-SS algorithm

Based on the theoretic foundation presented in Section 2, we propose a SNMF-SS for the community detection problem.
In SNMF-SS, domain knowledge is incorporated to guide the clustering. Supervision is provided as two sets of pairwise
constrains on the data objects: must-link constraints CML and cannot-link constraints CCL. Every pair (i, j) ∈ CML implies
that object i and j must belong to the same cluster. Similarly, pair (i, j) ∈ CCL indicates that the two different clusters. The
constraints are accompanied by associated violation cost matrix W . An entry wij ∈ W represents the cost of violating the
constraints between object i and j.

According to Eq. (2.13), the objective function of the SNMF-SS algorithm is constructed as

JSNMF−SS = min
K̄≥0,H≥0

‖K̄ − HHT‖2, (3.1)
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where K̄ = K − αWML + βWCL is the affinity or similarity matrix K with constraints WML = {wij : (i, j) ∈ CML}, WCL =
{wij : (i, j) ∈ CCL}, and α, β are real numbers small enough to ensure K̄ is positively definite (In our experiment, we find that
α ∈ [0, 0.001] and β ∈ [0.03, 0.3] are a good choice). Note that when α = β = 0 SNMF-SS reduces to the NMF algorithm.

A common feature of the algorithms for solving Eq. (3.1) is iteratively updating matrix H to improve the approximation
of HHT to K̄ while maintaining the non-negativeness of matrix entries throughout. SNMF-SS algorithm starts with random
matrixH whose entriesHij ∼ N(0, 1), where N(0, 1) is a Gauss distribution. If an entry of thematrix is negative, its absolute
value is adopted. The update rule for entries Hij of H can be formulated as

Hij = Hij

(
(K̄H)ij

(HHTH)ij

)

. (3.2)

Under such a rule, JSNMF-SS is non-increasing. Iteration continues until JSNMF-SS is lower than a predefined tolerant error, for
example 10−2, or the maximum iteration number, say 103, is reached. From the SNMF K̄ ≈ HHT, a crisp partition H = (Hij)
can be constructed in the following manner: for each node i, Hij∗ = 1 for l∗ = argmax1≤l≤m Hil, and 0 otherwise.

3.2. Parameters optimization

We explain the key techniques one should consider when choosing the appropriate values for parameters to enhance
the performance of SNMF-SS.

• Choosing the number of communities

Likemost other clustering algorithms, the first andmost important parameter of the SNMF-SS approach is the number of
communitiesm. Generally, determiningm in a self-adaptive way without human intervention is a hard problem. There are
various ways for m. Each algorithm has its own strong and weak points. The objective function driven method is a widely
used alternative. It works as: First, a measure, say Q function or D function, is employed to determine an appropriate m.
Second, starts with m = 2, then increasing m until the measure index reaches its peak. The value corresponding to the
optimal of target function is selected as the best choice. One of the major advantages of such strategy is that it casts this
problem in an constrained optimization framework where optimization theory is available. Its performance, however, is
very sensitive to the employed measure. Unfortunately, as mentioned in introduction we have not reached a consensus on
measure index for community. Spectral algorithms determine m via making use of the largest eigenvalue of the adjacency
matrix A of G or the smallest eigenvalue of the Laplacian matrix L = D−A (D = diag(d1, . . . , dn) with di is the degree of the
i-th vertex). Spectral methods achieve a good performance when the eigenspectrum is a step function instead of a straight
line.

Here, we propose a different divisive approach, which spares some computation in the early stage of algorithm. Initially,
a ml-way partition of a graph is computed, where ml ≥ 2 is derived from the given dissimilarity matrix. Then keep
on increasing ml until the new partitioning cannot improve the D function. Given a dissimilarity matrix S = (Sij), ml

is constructed as: we first obtain the maximum dissimilarity degree in S, i.e., Smax = maxSij∈S . Based on the maximum
dissimilarity degree, a set is builded within which each pairwise data has maximum dissimilarity, i.e., SSmax ⊆ V , ∀i, j ∈
SSmaxSi,j = Smax. Finally, ml = |SSmax |, clearly, ml ≥ 2. Our experimental results indicate that good performance will be
attained by relaxing DSmax to DSmax − δ, where δ > 0 is a fluctuation factor.

Note that SNMF-SS starts with randommatrixH , so different implementationsmay not certainly return identical results.
We determinem by repeating the algorithm for certain times, i.e., 50 times and select one solution with maximum D.

• Similarity and dissimilarity

Even though the appropriate choice of WCL and WML based on similarity and dissimilarity matrices is not crucial to the
final result of the SNMF-SS, it provides away to incorporate additional a prior knowledge into algorithm. If there is no a priori
knowledge to be used, then SNMF-SS is equivalent to SNMF i.e., WCL = 0 and WML = 0. Given a similarity or dissimilarity
matrix S = (Sij) and a threshold h̄ = maxSij∈S Sij,WML = (Wij) is obtained asWij = eSij−h̄ if Sij ≥ h̄ and 0 otherwise. It is easy
to see that Wij = 1 if and only if Sij = maxSij∈S Sij. The construction ofWCL is analogous toWML.

There are various similarity or dissimilarity measures which can be used [22–26], In SNMF-SS, we take diffusion kernel

feature matrix [22] for K , the shortest path based similarity [23] for WCL, and the adjacency matrix based similarity [24] for
WML. Of course, other measures can also be adopted.

3.3. Computational complexity

The computational complexity of the SNMF-SS algorithm is investigated in this subsection. First, we focus on the space
complexity. Given a graph G = (V , E), a |V | × |V | adjacent matrix A is needed to store G. WML and WCL can be directly
obtained from matrix A, which does not increase the space complexity. The space complexity for the factor matrix H is
O(|V |m), where m is the number of clusters. Since m < |V |, the memory complexity of SNMF-SS is O(|V |2), linear to the
number of edges.

The SNMF-SS algorithm contains two major components: computing a partition using SNMF with given m and
determining the optimalm. To compute a partition, SNMF terminates when the JSNMF-SS is lower than a predefined threshold
or its maximum iteration γ is reached. In each iteration, all these elements in factor matrix H are updated according to
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Fig. 1. Test of various algorithms on computer generated networks with fixed community number. Each points is an average over 100 realizations of the

networks.

Eq. (3.2). To finish it, matrices K̄H andHHTH should be computed beforehand. The time complexity for calculating K̄H ,HHTH

are O(|V |2m) and min{O(|V |4m2),O(|V |2m4)}, respectively. Since m ≪ |V |, then min{O(|V |4m2),O(|V |2m4)} = O(|V |2m4)
holds. Thus, the time complexity for computing a partition based on SNMF is O(|V |2m4γ ). To determine the optimal m,
we just keep increasing m to the point where the D value is never increased. In the worst case, m starts with 2. Thus, the
time complexity of SNMF-SS is O(|V |2m5γ ), which shows that the computational complexity depends on the maximum
iteration number, size of network and the number of clusters. When γ is a constant, the time complexity can be simplified
to O(|V |2m5), which demonstrates that SNMF-SS is a time-consuming approach. Actually, our algorithm runs much faster
than the theoretic time because of the sparsity of complex networks.

There are two central features that distinguish our algorithm from previous NMF-based approaches [6,7]. First, these
methods just directly implement NMFwithout detailed explanation as towhyNMF can be used for the community detection
problem, but our algorithm is based on the equivalence of D and SNMF. Second, Previous NMF-based algorithms make use
of one similarity measure at a time to capture the topology structure of networks, which throws away useful information
contained in other measures. Our algorithm removes such a restriction via a semi-supervised strategy.

4. Experimental results

In this section, the SNMF-SS algorithm is applied to a class of widely used artificial networks and well studied real-
world networks with an immediate purpose to test the performance of SNMF-SS. Firstly, we put an emphasis on extracting
reasonable communities and determining the correct number of communities; Secondly, we concentrate on the resolution
limit problem. The SNMF-SS is coded using the MATLAB version 6.5.

4.1. Performance on discovering community structure

4.1.1. The GN benchmark

Firstly, as a controlled test of how well SNMF-SS performs, we have generated networks with a known community
structure to see if the algorithm can recognize and discover the structure.

This network setwas originally designedbyGirvan andNewman (GN) andhas beenwidely used to test a lot of community
detection algorithms [1,6,8,9,18,29]. Each network has 128 nodes divided into 4 communities of 32 vertices each. The links
are distributed randomly with a constant probability Zin for a link to occur for each pair of intra-community nodes and
another constant probability Zout for each pair of outer-community nodes so as to keep the average degree of a node at 16.
For each Zout , 100 networks are generated. Obviously, as the Zout increases, the community structure is more vague. The
average results on 100 networks are summarized in Fig. 1, which is a plot of classification accuracy (the fraction of nodes
that are classified into their correct communities) as function of Zout . From Fig. 1, we can see that the NMF algorithm [6],
spectral algorithm [22] and our algorithm have good performances when Zout ≤ 7. However, when Zout ≥ 8 networks
are more and more difficult to be dealt with, our algorithm is superior to the NMF algorithm, for instance, for 100 random
networks with Zout = 10, on average about 53% of nodes are classified correctly by our algorithm, while only about 42%
of nodes by the NMF algorithm. A possible explanation about the results in Fig. 1 is that when Zout ≤ 7, the community
structure in networks is so obvious that one simple measure index, such as spectral index, adjacent index, can grasp the
topology structure easily. When Zout ≥ 8, the community structure is not obvious enough to be measured by one measure
index. That’s why our algorithm obviously outperforms the NMF algorithm under Zout ≥ 8 only.

To test the robustness of SNMF-SS, we adopted the samemethod in Ref. [29] to construct asymmetric network; i.e., three
of four groups in the benchmark test are merged to form a series of test networks, each with one large group of 96 nodes
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Table 1

Benchmark performance for symmetric and asymmetric group detection measured as fraction of correct assignments, average over 100 network

realizations with the standard deviation in parentheses.

Group Zout Compression [29] Q [36] D [18] SNMF-SS

Symm. 6 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

7 0.97 (0.01) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)

8 0.87 (0.08) 0.89 (0.05) 0.91 (0.03) 0.90 (0.04)

Node asymm. 6 0.99 (0.01) 0.85 (0.04) 0.99 (0.01) 0.97 (0.01)

7 0.96 (0.04) 0.80 (0.03) 0.98 (0.02) 0.93 (0.02)

8 0.82 (0.10) 0.74 (0.04) 0.94 (0.03) 0.89 (0.05)

Link Symm. 2 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00)

3 1.00 (0.00) 0.96 (0.03) 1.00 (0.00) 0.99 (0.01)

4 1.00 (0.01) 0.74 (0.10) 0.99 (0.01) 0.96 (0.03)

A
B

C D

Fig. 2. The results of NMF-algorithm, k-means algorithm and our algorithm applied to karate club network. (A): Zacharyaŕs karate club network. Square

nodes and circle nodes represent the instructoraŕs faction and the administratoraŕs faction, respectively. This figure is from Newman and Girvan [1]. (B):

The NMF algorithm divides the network into 2 parts. (C): k-means discovers 3 communities. (D): Our algorithm found two kinds of partition with m = 2

andm = 4, respectively.

and one small group of 32 nodes. These asymmetrically sized networks are harder for both the Q optimization algorithm,
clustering compression algorithm and the SNMF-SS algorithm. The results show that the fraction of correct assignments
discovered by SNMF-SS is slightly lower than the D-valuemethod [18], and larger than the Q optimization algorithm, which
indicates that SNMF-SS can identify the underlying community structure. Finally, we conducted another set of benchmark
test using the link asymmetric networks [29] composed of two groups eachwith 64 nodes butwith different average degrees
of 8 and 24 links per node. For these networks, we use Zout = 2, 3, 4, for which the SNMF-SS algorithm has a comparable
result with D-value algorithm and can detect community structure. Note that even though our algorithm is inferior to the
D-value algorithm and the compression algorithm, our result is also acceptable since the maximum deviation is 0.003 (see
Table 1).

4.1.2. Karate club network

The famous karate club network introduced by [30] is widely used as a test example for methods of identifying
communities in networks [1,8,14,9]. The network consists of 34members of a karate club as nodes and 78 edges representing
friendship between members of the club which was observed over a period of two years. Due to a disagreement between
the clubaŕs administrator and the clubaŕs instructor, the club split into two smaller ones.

The computational results for this experiment are summarized in Fig. 2, which shows the community structure found by
NMF algorithm [8], k-means algorithm (www.fmt.vein.hu/softcomp) and our algorithm, respectively. The colored vertices
are those critical ones may be misclassified. We can see that the NMF algorithm divides the network into two parts, and k-
means the algorithm divides it into three parts. However, our algorithm finds thatm = 2(a+b, c+d) andm = 4(a, b, c, d).
Note that there are somenodes, say node 3,may belong to different communitieswith various algorithms.Maybe such nodes
play a ‘bridge’ role in two ormore communities in networks. Comparedwith the real network, our result is more reasonable.
It is noted that our partition is consistent with the D-value algorithm [18].
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4.1.3. Journal index network

The journal index network employed in Ref. [17] consists of 40 journals as nodes from 4 different fields: physics,
chemistry, biology, and ecology and 189 edges connecting nodes if at least one article from one journal cites an article
in the other journal during 2004. Ten journals with the highest impact factor in the 4 different fields were selected.

Like literature [18], we also partition the network into 1–5 modules, but as such,m = 4 achieves the maximum Q value.
Our experiment results for this network is presented in Fig. 3. Both the NMF algorithm [8] and our algorithm can attain the
optimal partitioning in the left graph of Fig. 3, which is consistent with that in Ref. [17] where hub Physical Review Letters

(PRL) is categorized into the chemistry cluster. For this mistake, there are two reasons possibly. First, the structural role that
PRL plays in the un-weighted journal networks is that of a chemistry journal and it is closely linked to biology and somewhat
ecology. Second, algorithms based on NMF are difficult to converge in definite iterations under the condition thatm is small.
As shown in the right one of Fig. 3, the minimum tolerant error ratio (JSNMF-SS/‖K̄‖2) is >0.5, which indicates both the NMF
algorithm and SNMF-SS do not converge to local optimal or a saddle with predefined maximum iterations. However, this
does not tamper with the ability to recognize underlying structure.

4.2. Performance on tolerating resolution limit problem

Modularity optimization algorithms are criticized for the serious resolution limit problem [17]. However, a clear
advantage of the SNMF-SS overmodularitymaximizationmethods is its higher resolution. There are three reasons to explain
it. Firstly, literature [18] has showed that the D value improves the resolution limit at large extent. Thus, the equivalence
relation between SNMFandD assures that SNMF-SS has the similar ability to escape from it; secondly, SNMF-SS canmakeuse
of other prior knowledge to grasp network topological properties; thirdly, compared with approaches based on modularity
maximization, algorithm based on NMF is driven by the minimum error instead of Q value.

4.2.1. The LFR benchmark

The GN benchmark [1] is a popular choice for testing community structure identification. It is, however, not an
appropriate alternative for resolution limit analysis due to several caveats: all nodes of the graph have essentially the same
degree, the communities are all of the same size, and the network is small. Thus, the Lancichinetti, Fortunato, and Radicchi
(LFR benchmark) [31] is adopted because it can produce communitieswith both small and large sizes. It has the similar spirit
of the GN benchmark, but is considerably more realistic. It allows the user to specify distributions both for the community
sizes and the degree distribution, then generates vertices and communities by sampling from those distributions. The LFR
generators then rewire the graph in order to constrain the average ratio of intra-community adjacencies to total adjacencies.
The ratio is denoted by µ. At µ = 1, all the edges are intra-community. Of course, LFR is also not a perfect benchmark since
the intended natural communities are often fractured into several unintended sub-communities at small values of µ. It is
difficult to evaluate community detection algorithms with such a deceptive ground truth [32].

For several different values of µ ∈ {0.50, 0.6, 0.7, 0.8, 0.9}, we generated 50 instances for each of LFR benchmark
graphs. Based on the algorithm presented in [31], we generate each graph whose node degree was taken from a power law
distribution with exponent 2 and community size from a power law distribution and with exponent 1. Each graph has 1000
vertices, average degree 15, maximum degree 50, maximum for the community sizes 50 and minimum for the community
sizes 5. Such a long-tailed distribution results in a much larger variance than the respective means.
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Fig. 4. Test of various algorithm on the LFR benchmark. Each point is an average over 50 instances.

A B

Fig. 5. The distributions of natural community sizes and discovered community sizes with different µ. (A): µavg = 0.9, (B): µavg = 0.6.

Since the community structure in these networks is known, we introduce a normalized mutual information index as a
measure of similarity between two partitions P and P ′ [33]

I(P, P ′) =
−2

|P|∑

i=1

|P ′|∑

j=1

Nij log
(

NijN

Ni.N.j

)

|P|∑

i=1

Ni. log
(

Ni.

N

)

+
|P ′|∑

i=1

N.j log
(

N.j

N

)
, (4.1)

where N is a |P| × |P ′| matrix with entry Nij denotes the number of nodes in the real community i that appear in the found
community j, Ni. is the sum of the i-th row of N and the sum over column j is denoted by N.j.

The average results on 50 networks are summarized in Fig. 4, which is a plot of mutual information as function of the
µavg. Careful contrast of Figs. 1 and 4 shows that all these algorithms have a much better accuracy in the GN benchmark
than that of the LFR benchmark. The reason is that since the number of clusters is given and the community size is fixed,
the GN benchmark is friendly to many algorithms. However, when the size of the graph starts to dwarf the sizes of the
natural communities, the problem becomes much harder. Agreeing with the resolution limit argument, algorithms based
on the optimization of the Q value are not able to resolve most of the natural communities. From Fig. 4, we can see that
the peak value of GN algorithm is around 0.5 at µavg = 0.9, however, others can obtain a better performance. In detail,
SNMF-SS algorithm can achieve its peak above 0.70 at µavg = 0.9, spectral clustering roughly 0.68 and NMF 0.57. Since µavg
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A B

Fig. 6. The results of the SNMF-SS algorithm applied to the collaboration network. (A): D value versus m, (B): The communities found by our algorithm,

where a circle denotes a cluster, with size varying roughlywith the number of vertices in the cluster and the line represents the number of edges connecting

different clusters.

determines the ratio of the inner edges to outer edges, it becomes harder and harder to detection communities correctly as
µavg decreases. Spectral clustering has a good performance when the community structure is clear, while its performance
decreases greatly as µavg decreases. Furthermore, we can also see that, compared with these four algorithms, the SNMF-SS
algorithm gains the best performance.

In addition to the classification accuracy,we are also interested in comparing the distributions of the sizes of communities
discovered by algorithms to the original distributions used in LFR generation. Fig. 5 contains these results. The target line
is the empirical cumulative distribution function (CDF) for the natural community sizes sampled by LFR. The other lines
are empirical CDF’s for the sizes of communities discovered by NMF, spectral clustering and SNMF-SS. When µavg = 0.9,
communities in such networks are likely to be cliques, not necessarily cliques. However, the sizes of the communities are
not equal, which makes it hard to be detected. Still, SNMF-SS can resolve 70.08% vertices correctly, while NMF and spectral
clustering can only obtain 56.98%, 66.96% respectively. When µavg = 0.6, the communities are not as well defined, which
increases the difficulty for the algorithm in discovering the correct community. From the right panel of Fig. 5, we see that
the spectral clustering can find much smaller community sizes than NMF and SNMF-SS, but it also discovers much larger
community sizes. From Fig. 5, it is easy to discover that roughly 0.5% of the vertices are classified by spectral clustering into
communities that are even smaller than the smallest natural community. This problem also appeared in Ref. [32]. However,
both the SNMF-SS and NMF can get rid of this case. Furthermore, the CDF of community sizes found by our algorithm is
much closer than those by NMF and spectral clustering.

4.2.2. Collaboration network

Finally, a large-scale co-authorship network of scientists working on network theory and experiment, as published in
Ref. [34]. The network has a total of 1589 vertices and 2742 weighted, undirected edges. The weights are derived from the
number of joint publications, if authors i and j share a paper where both authors and the paper has t total co-authors, this
contributes by 1

t
to the total weight of the edge. It makes no sense to find a partition based on thewhole network since there

are 396 connected subgraphs. Thus, we extracted the giant component of the networks consisting of 379 scientist and 914
links.

Applying the SNMF-SS algorithm to this network again, the modularity density D value varies with the cluster number
m presented in Fig. 6(A). It is easy to find that the modularity density has a strong peak at 28 communities with a value of
D = 77.58419, while the optimum m discovered by [35] is 30. The reason is that the main goal of [35] is to uncover the
fuzzy communities.

Since the network is too large, it is not convenient to figure a diagram showing the concrete clustering results. To reduce
the level of complexity to one that can be interpreted by the human eye, we have reduced the network to only groups in
Fig. 6(B). In this panel, we have drawn each cluster as a circle, with their size varying roughly with the number of vertices
in the cluster. Different colors on circles have no additional meanings just for convenience. The line between clusters i and j

represents the number of edges connecting themwith the thickness shows the number of edges. The thicker the line is, the
more the edges are.

Since the actual communities are unknown in the collaboration network as the LFR benchmark, we cannot compute
the mutual information and compare CDF as the last subsection. Here, we turn our focus to the small communities found
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Table 2

Parameters about the 15 clusters whose edge numbers are smaller than the
√
914/2 ≈ 20, where Vsize , Ein , Eout , Dc are the number of vertices, the number

of edges in this cluster, edges leave from this cluster, contributing to the D value.

No Vsize Ein Eout Dc

1 13 18 7 2.230769e+000

2 10 15 7 2.300000e+000

3 10 17 2 3.200000e+000

4 9 18 2 3.777778e+000

5 9 17 2 3.555556e+000

6 8 15 4 3.250000e+000

7 8 16 4 3.500000e+000

8 7 10 2 2.571429e+000

9 6 8 3 2.166667e+000

10 6 11 2 3.333333e+000

11 6 9 2 2.666667e+000

12 5 10 6 2.800000e+000

13 5 10 5 3.000000e+000

14 4 6 2 2.500000e+000

15 3 3 1 1.666667e+000

Sum 109 (0.2860) 183 (0.2002) 51 (0.0558) 42.5189 (0.5480)

by SNMF-SS. According to Ref. [17], modularity maximization algorithms may fail to resolve communities with fewer than√
L/2 edges, where L is the number of edges in entire network. However, SNMF-SS can tolerate the resolution limit problem

at large extent. From Fig. 6(B), we can easy find that there are few large communities while there are much more small
communities. In detail, our algorithm can find 15 small communities whose edge numbers are less than

√
914/2 ≈ 20 as

shown in Table 2. FromTable 2,we can conclude that the 15 small clusters consume 28.60% vertices from the second column.
There are 20.02% edges among the clusters and 5.58% between clusters, which indicates that the 15 small However, only
54.80% of the contribution is presented by the 15 ones that shows that the rest of the 13 large clusters are also valid. Such
an experiment indicates that the SNMF-SS algorithm can tolerate the resolution limit problem by discovering communities
smaller than

√
L/2.

5. Conclusion

In this paper, we introduce a semi-supervised clustering for community detection in complex networks by nonnegative
matrix factorization, and this algorithm can choose the proper number of clusters and discovery community structure
correctly. There are two central features in our algorithm. First, we further the theoretic result in Ref. [18] by showing
the equivalence of the objective functions of SNMF and modularity density D. Second, previous methods make use only of
one similarity measure to capture the topology structure of networks, which throws away useful information contained in
other measures. Our algorithm removes such restriction via semi-supervised strategy.

We would like to close this paper by posing two interesting problems. First, algorithms based on NMF are time-
consuming, especially for large-scale networks. Second, as we see in experiment 3, the absolute error of NMF-based
algorithms is too large for small m (the number of clusters). Thus, designing a method which can solve these two issues
will be very practical.
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