
Semi-Supervised Clustering via Learnt

Codeword Distances

Dhruv Batra1 Rahul Sukthankar2,1 Tsuhan Chen1

www.ece.cmu.edu/~dbatra rahuls@cs.cmu.edu tsuhan@cmu.edu

1Carnegie Mellon University 2Intel Research Pittsburgh

Abstract

This paper focuses on semi-supervised clustering, where the goal is to

cluster a set of data-points given a set of similar/dissimilar examples. These

examples provide instance-level equivalence/in-equivalence constraints (e.g.,

similar pairs belong to the same cluster while dissimilar pairs belong to dif-

ferent clusters), but in order to aid final clustering we must propagate them to

feature-space level constraints (i.e., how similar are two regions in the feature

space?). An increasingly popular approach to accomplish this is by learning

distance metrics over the feature space that are guided by the instance-level

constraints. Inspired by the success of recent bag-of-words models, we uti-

lize codewords (or visual-words) as building blocks. Our proposed technique

learns non-parametric distance metrics over codewords from these equiva-

lence (and optionally, in-equivalence) constraints, which we are then able to

propagate back to compute a dissimilarity measure between any two points

in the feature space. There are two significant advances over previous work.

First, unlike past efforts on global distance metric learning which try to trans-

form the entire feature space so that similar pairs are close, we transform

modes in data distribution or pockets of the feature space. This transforma-

tion is non-parametric and thus allows arbitrary non-linear deformations of

the feature space. Second, while most Mahalanobis metrics are learnt using

Semi-Definite Programming (SDP), our proposed solution is developed as a

Linear Program (LP) and in practice, is extremely fast. Finally, we provide

quantitative analysis on image datasets (MSRC, Corel) where ground-truth

segmentation is available, and show that our learnt metrics can significantly

improve clustering accuracy.

1 Introduction

Traditionally, unsupervised clustering algorithms have been used to ‘discover’ the struc-

ture in the data [9]. However, recent works [10, 11, 20] are beginning to look at semi-

supervised clustering where the focus is to allow a user to ‘direct’ the clustering algorithm

to a desired output, through minimal supervision. Interestingly, computer vision has wit-

nessed a parallel in the field of image segmentation, with unsupervised segmentation tech-

niques now primarily used as an initial preprocessing step to generate superpixels [2,7] or

multiple segmentations [8]. Methods employing varying degrees of supervision have been

proposed: from semi-supervised or interactive segmentation through scribbles, strokes or

bounding boxes [15,18] to completely supervised segmentation requiring pixel-annotated

ground-truth images [2, 7, 17]. A recent work [12] fits somewhere between the two ex-

tremes, and works with partial equivalence constraints.

This paper focuses on semi-supervised clustering, where the goal is to cluster a set of

data-points given a set of similar/dissimilar examples. These examples provide instance-

level equivalence/in-equivalence constraints (e.g., similar pairs belong to the same cluster

while dissimilar pairs belong to different clusters), but in order to aid final clustering we

must propagate them to feature-space level constraints (i.e., how similar are two regions

in the feature space?). An increasingly popular approach to accomplish this is by learning

distance metrics over the feature space which are guided by the instance-level constraints.

Inspired by the success of recent bag-of-words models, we utilize codewords (or visual-

words) as building blocks. Our proposed technique learns non-parametric distance met-

rics over codewords from these equivalence (and optionally, in-equivalence) constraints,

which we are then able to propagate back to to compute a dissimilarity measure between

any two points in the feature space. While this dissimilarity measure is not a valid metric

and thus cannot be used with a distance-based clustering technique (e.g. kmeans), our

experiments confirm that it is a useful measure for an affinity-based clustering technique

(e.g. normalized cuts [16]).

Semi-supervised distance metric learning has been the focus of a significant number

of recent works (e.g., [1, 3, 20, 22]). For a comprehensive overview of distance metric

learning and a thorough comparative analysis of recent works, the reader is referred to a

few excellent surveys [6, 21]. Xing et al. [20] learn a global Mahalanobis distance metric

for the feature space, and formulate this problem as a constrained convex optimization,

which minimizes the distance between similar data-points, while keeping dissimilar pairs

sufficiently far apart. Bar-Hillel et al. [1] also learn a Mahalanobis metric with the same

objective function but different constraints. While that doesn’t change the class of the

optimization problem, they show empirical improvements in speed. Goldberger et al.

(NCA) [5] and Weinberger et al. (LMNN) [19] learn Mahalanobis metrics to maximize

the classification accuracies achieved by the k-nearest neighbour (kNN) classifier. One

significant drawback of all these works is that they learn a global distance metric and the

same transformation is applied to the data irrespective of its location in the feature space.

In the case of multi-modal distribution of classes, learning such a distance metric can

actually result in accuracies worse than those achieved by euclidean distance [22]. More

recently, Yang et al. [22] and Chang et al. [3] have proposed methods that learn local

distance metrics.

This paper makes two significant contributions. First, unlike past works on global

distance metric learning which try to transform the entire feature space so that similar

pairs are close, we transform modes in data distribution or pockets of the feature space.

This transformation is non-parametric and thus allows arbitrary non-linear deformations

of the feature space. Second, while most of the previous works are formulated as general

constrained convex programs or semi-definite programs (SDP), our proposed solution

is developed as a linear program (LP) and in practice, is extremely fast. Finally, we

provide quantitative analysis on image datasets (MSRC [17], Corel [7]) where ground-

truth segmentation is available, and show that our learnt metrics can significantly improve

clustering accuracy.

The rest of this paper is organized as follows: Section 2 formalizes the problem state-

ment and presents our approach; Section 3 presents results on synthetic data and segmen-

tation results; and Section 4 concludes the paper with discussions.

2 Proposed Approach

Our problem statement is as follows: given

• a dataset of N points {xi | xi ∈ R p, i ∈ [N]} (where we define [N]
def
= {1,2, . . . ,N}),

• a set of similar pairs S =
{
(xi,x j) | xi and x j are similar

}
,

• and (optionally), a set of dissimilar points D =
{
(xi,x j) | xi and x j are dissimilar

}
,

we want to learn a distance metric that minimizes the distance between similar pairs,

while keeping the dissimilar pairs sufficiently apart. The next few sections develop the

form of distances we work with.

2.1 Codeword Posteriors

The first step in our algorithm to “over-segment” the data, through an unsupervised clus-

tering algorithm. Following the notation popularized by bag-of-words models [13], we

refer to these initial set of cluster centres as “codewords”. We use a publicly-available

implementation of k-means/x-means by Pelleg and Moore [14] to perform this initial un-

supervised clustering. Our next step is to compute the posterior codeword distributions,

which can be thought of as a soft assignment of a data-point to the cluster centres. For-

mally, for some data-point i,

πi(υ) = Pr(υ | xi) (1)

∝ Pr(xi | υ) Pr(υ) ∀υ ∈ [k], (2)

where the first term is the likelihood of a feature vector given a codeword (υ), and is

modelled using an exponential kernel of euclidean distance:

Pr(xi | υ) ∝ e
−

d2(xi,υ)
σ

2 . (3)

It should be noted that in the above relation we have overloaded the term υ to be both the

index of the codeword, and the corresponding feature vector in R p. The second term in

Equation 2, i.e., the marginal over the codewords could be assumed to be uniform. How-

ever, since this quantization is the result of a clustering process, we model this marginal

by the observed “popularity” of codewords at the end of the clustering process:

Pr(υ) =
#members in cluster υ

#data points
. (4)

We can also extract joint codeword posteriors for an ordered pair of data-points (i, j)
through an independence assumption:

πi j(υi,υ j) = Pr(υi, υ j | xi, x j) (5a)

= Pr(υi | υ j, xi, x j) Pr(υ j | xi, x j) (5b)

= Pr(υi | xi) Pr(υ j | x j) . (5c)

Intuitively, this means that we assume that the soft assignment of one data-point to cluster

centres tells us nothing about the way another data-point is assigned.

2.2 Distance metric

We define:

π̃i
def
= [πi(1) . . . πi(k)]T and, (6)

W =
(
wa,b

)
k×k

W = W T
, (7)

to be the vector holding marginal codeword posterior for data-point i and the matrix hold-

ing all possible pairwise distances between codewords. It should be noted, that wab is

not the euclidean distance between these codewords, but a parameter that we would like

to learn from data. We describe how these parameters are learnt in the next section, but

with the help of such a distance matrix and the codeword posteriors, we can define the

“expected distance” between any two points in the feature space as:

Eπi j
[d(xi,x j)] = π̃

T
i W π̃ j. (8)

Consider a random experiment where the data-points (say i, j) are assigned (indepen-

dently) to codewords (say a,b) with probabilities described by their codeword posteriors

(i.e. π̃i and π̃ j). For any particular trial, the distance between these data-points can be

found by looking up the relevant entry in W (i.e. wab). The above expression (Eqn 8)

holds the expected distance between these two samples over all such quadratic assign-

ments. It should be noted that while W is a distance matrix, the expression above is not a

valid distance metric (because the distance of a point to itself is not necessarily zero), and

should just be treated as a measure of dissimilarity. The reason for working with this for-

mulation is that it helps set up an efficient optimization problem to learn these codeword

distances. Our experiments (Section 3) confirm that this dissimilarity does in fact capture

statistics consistent with the provided equivalence/inequivalence constraints.

2.3 Setting up the Linear Program

We would like to learn this distance matrix W such that the distance between similar pairs

(i.e., the pairs in S) is minimized. Clearly, some constraints are required to keep the entire

dataset from collapsing onto a point. In a manner similar to the formulation of Xing et

al. [20], we constrain this problem by requiring the distance between all dissimilar pairs

to be greater than 1 (any non-trivial distance metric that violates this property can just

be scaled to become feasible, while still remaining a valid metric). In order for W to

actually be a distance matrix, we also need other constraints: symmetry, non-negativity

and triangle inequality.1 Overall, our optimization problem may be written as:

min
W

∑
(xi,x j)∈S

π̃
T
i W π̃ j (9a)

s.t. π̃
T
i W π̃ j ≥ 1,∀(xi,x j) ∈ D (9b)

W = W T
, wii = 0, wi j ≥ 0 (9c)

wi j +w jk ≥ wki, ∀(i, j,k). (9d)

1Strictly speaking, we learn pseudo-metrics not metrics, since wi j may achieve its lower bound (of 0).

The objective function and all constraints are linear in W and thus this problem can be

solved by standard LP solvers. If a set of dissimilar pairs (D) is not explicitly known (e.g.,

in a partial equivalence knowledge scenario [12]), then all pairs belonging to different

codewords are used for the constraints in Equation 9b. Overall, this program has O(k2)

variables (or
(

k
2

)
free variables), O(N2) lower bounds on distance between data-points in

the worst case, and 3
(

k
3

)
, or O(k3) triangle inequality constraints. Thus the size of this

optimization problem scales quadratically with the size of dataset, and cubically with the

number of codewords. In practice, very few codewords (5 – 30) are required, and off the

shelf LP solvers (like CPLEX) are fast enough.

3 Experimental Setup and Results

3.1 Synthetic Data

In order to better understand this algorithm, we first report results on synthetic data: “Four

Gaussians”, and “Two Moons”, as shown in Figure 1. The number of codewords (chosen

automatically by the x-means algorithm [14]) for these datasets was 4 and 10, respectively.

For the “Four Gaussians” dataset, two experiments were conducted: in the first, the two

clusters in the same row were considered ‘similar’; in the second, the two diagonal clus-

ters were considered ‘similar’ (XOR problem). For the “Two Moons” dataset, the goal

was to discover the two moons as two different clusters. The set of similar points for all

three experiments was constructed by randomly choosing 1% of all possible pairs, and our

distance metric was learnt as described above. The normalized cuts algorithm [16] was

used to generate two clusters using our learnt dissimilarity measure, and the euclidean dis-

tance. Figure 1 shows the final clustering results achieved using both distance metrics for

these three experiments. For the first two experiments (on the “Four Gaussians” dataset),

euclidean distance clustering results oscillate between the one shown in row 4 of Figure 1

and its symmetric form. Thus, euclidean distance can be expected to work half the time

for the first task (same row), but never for the second task (XOR problem). In the “Two

Moons” dataset, euclidean distance results in confusion in the centre region. Our learnt

distances result in the correct clustering for all three experiments. It should be noted that

no global linear transformation of the feature space (e.g., those used by [1, 5, 19, 20]) can

be successful in the second and third experiments.

3.2 Semi-Supervised Segmentation

We perform quantitative evaluation of our method for the task of semi-supervised seg-

mentation. We work with the 21-class MSRC [17] and the 7-class Corel [7] datasets, and

assume that the “true clustering/segmentation” is given by the class labels. Pixel-level

ground-truth annotations for these datasets are available and this allows us to measure the

performance of our method in terms of clustering accuracy. Our experimental setup is as

follows: given an input image, we extract superpixels using normalized cuts [4]. Thus,

an image represented as a collection of superpixels, forms the equivalent of a dataset of

points {xi | i ∈ [N]} from our discussion in section 2. The reason for working with a col-

lection of superpixels instead of pixels is that it ensures a locally smooth assignment, and

also speeds up the algorithm. The features extracted from these superpixels are simple

colour features (average RGB and HSV). We randomly split this collection of superpixels

(a) Data + constraints (b) Data + constraints (c) Data + constraints

(d) L2 distances (e) L2 distances (f) L2 distances

(g) L2 clustering (h) L2 clustering (i) L2 clustering

(j) Learnt expected dis-

tances

(k) Learnt expected dis-

tances

(l) Learnt expected dis-

tances

(m) Learnt clustering (n) Learnt clustering (o) Learnt clustering

Figure 1: [Best viewed in colour] Synthetic data results: The first two columns correspond

to the “Four Gaussian” dataset (with different similarity constraints); the third column

corresponds to the “Two Moons” dataset. Only a subset of the similarity constraints are

shown.

into training, validation and testing sets, while maintaining similar distribution of classes.

All possible pairs of superpixels belonging to the same class from the training set are pro-

vided as input (S) to our algorithm and distance metrics are learnt. In order to compare

our proposed method with current state-of-art techniques, the following experiments were

performed:

Euclidean (Euc) + Ncut. In this experiment, the set S was ignored, and distance between

two data-points was simply defined to be the euclidean distance between their correspond-

ing feature vectors. The normalized cuts algorithm (based on this distance matrix) was

then used to cluster the data-points (superpixels).

LMNN + Ncut. For this experiment, we learn distances using the Large Margin Nearest

Neighbour (LMNN) algorithm proposed by Weinberger et al. (LMNN) [19]. It should be

noted that this algorithm requires more information/supervision than the other methods.

It needs labels for all training data-points, and thus cannot be used for problems with

partial equivalence constraints (e.g., [12]). From the point of view of a scribble-based

interactive segmentation system, this means that in addition the scribbles, a user would

also be required to provide a mapping from the scribbles to cluster/object IDs. For this

experiment, the training set of superpixels (along with their ground-truth labels) were

provided to the algorithm, and a Mahalanobis distance over this feature space was learnt.

Normalized cuts (based on this distance matrix) was used to cluster all the data-points.

Xing + Ncut. In this experiment, the set S was provided as input to the method proposed

by Xing et al. [20] and a Mahalanobis metric was learnt. Normalized cuts (based on this

distance matrix) was used to cluster the data-points.

NPCD + Ncut. In this experiment, non-parametric codeword distances (NPCD) were

learnt using the proposed algorithm, and normalized cuts based on the expected distance

matrix was used to cluster the data-points.

For all of the above experiments, the affinity matrix (required by Ncut) was generated

via an exponential kernel over the distance/dissimilarity measure. To measure clustering

performance, we use the clustering accuracy metric proposed by Xing et al. [20]. For a

two-cluster clustering problem, it is defined as:

Accuracy = ∑
i> j

1{1{ci == c j} == 1{ĉi == ĉ j}}

0.5n(n−1)
, (10)

where 1{·} is an indicator function that is 1 if its input argument is true (and 0 otherwise),

ci and ĉi are the true and predicted cluster labels for data-point i, and n is the number of

testing samples. Basically, this metric gives an estimate of the probability that for two ran-

domly drawn points, our clustering agrees with the ground-truth clustering (on whether

these points are in the same or different clusters). As discussed by Xing et al. [20], in

the case of multi-class clustering, this metric tends to give inflated scores because a priori

most pairs will be in different clusters, and almost any clustering will predict that. Thus,

we report normalized clustering accuracies which weigh inter-cluster and intra-cluster

clustering accuracies equally. As described above, the similarity and dissimilarity rela-

tionships are taken from a subset of the superpixels in each image (training set), a disjoint

subset is used as a validation set and the accuracy measure (Eqn. 10) is computed only

over pairs from the remaining superpixels (test set). Each image is treated independently;

the training set from an image only affects the processing of that single image. The two

parameters in our algorithm: number of codewords k, and scaling coefficient in the ex-

ponential kernel σ are chosen such that validation set accuracy is maximized. For both

Clustering Accuracy (%)

Euc + Ncut Xing + Ncut LMNN + Ncut NPCD + Ncut

MSRC 56.5 ± 0.7 69.7 ± 0.7 67.8 ± 0.7 72.9 ± 0.7

Corel 59.5 ± 1.1 74.0 ± 1.1 69.8 ± 1.1 75.7 ± 1.1

Table 1: Clustering accuracies for the 21-class MSRC and the 7-class Corel datasets.

NPCD significantly outperforms baseline methods.

(a) 2% (b) 6%

Figure 2: Effect of annotations on size of S

the datasets, we work with a random train-val-test split of (20%-40%-40%), which results

in the set S containing approximately 2% of all pairwise constraints (that could be con-

structed among the given set of superpixels). Figure 2 help us develop an intuition for the

scale of this ratio, by showing two scribbled images, and the size of the resultant similar-

ity set S. We note that this level of annotation can be provided by a user with minimal

effort through an interactive system.

Comparison. Table 1 compares the performance of our proposed non-parametric code-

word distances (NPCD) with these baselines. For both the datasets (MSRC and Corel),

test set clustering accuracy averaged over all images is reported, and 95% confidence

intervals were determined through analysis of variance (ANOVA). We can see that on

both the datasets, our proposed method outperforms all three baselines. Figure 3 shows a

few example segmentations achieved by our method, compared to the euclidean distance

based segmentations. We can see that in the case of multi-coloured objects (which can be

thought of as a multi-modal distribution in colour space), euclidean distance based seg-

mentation tends to cut along colour boundaries which are in fact not object boundaries.

Our method, on the other hand, is able to learn, e.g. in the case of the ‘sign’ in row 1, that

the distance between ‘blue’ and ‘white’ is low and is thus able to keep them both in the

same cluster, while separating them from the ‘brown’ regions of the background. A sim-

ilar example is shown in row 6, where euclidean distance based segmentation is unable

to keep ‘black’ regions of the sheep (head and feet) in the same segment as the rest of its

body, because it is understandable that those two colours are far in the feature space. Our

algorithm, however, can learn that those two regions of space are actually close by, and

thus does a better job of segmenting the sheep.

Figure 3: [Best viewed in colour] Example segmentation results on MSRC: column 2

shows the ground-truth segmentaiton; column 3 shows segmentations achieved by eu-

clidean distances; and column 4 shows segmentations achieved by our learnt distances.

4 Conclusions

We focus on semi-supervised clustering, where unlike unsupervised clustering, the goal

is not to ‘discover’ structures in the data, but to develop tools that would allow a user

to guide the clustering algorithm towards a desirable output with minimal input. We

develop a new algorithm for this task by learning non-parametric distance metrics between

codewords (in the feature space). Unlike past works on global distance metric learning,

which learn a global linear transformation of the feature space, we transform modes in

data distribution or pockets of the feature space. This transformation is non-parametric

and thus allows arbitrary non-linear deformations of the feature space. On synthetic data,

we were able to visualize the need for such non-linear transformations (XOR task and

Two Moons), and show how our method is successfully able to handle these cases. We

also pose interactive segmentation as a semi-supervised clustering problem, and show

that our method outperforms state-of-art metric leaning techniques on standard datasets

(MSRC, Corel).

Acknowledgments

We thank Geoff Gordon, Carlos Guestrin, Devi Parikh, and Yaser Sheikh for helpful

discussions, and acknowledge the computing resource support from Intel Research Pitts-

burgh and the VMR Lab.

References

[1] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric from

equivalence constraints. JMLR, 6:937–965, 2005.

[2] D. Batra, R. Sukthankar, and T. Chen. Learning class-specific affinities for image labelling.

In CVPR, 2008.

[3] H. Chang and D.-Y. Yeung. Locally smooth metric learning with application to image re-

trieval. ICCV, 2007.

[4] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition.

In CVPR, 2005.

[5] J. Goldberger, S. T. Roweis, G. E. Hinton, and R. Salakhutdinov. Neighbourhood components

analysis. In NIPS, 2004.

[6] N. Grira, M. Crucianu, and N. Boujemaa. Unsupervised and semi-supervised clustering: a

brief survey. MUSCLE European Network of Excellence, 2004.

[7] X. He, R. Zemel, and D. Ray. Learning and incorporating top-down cues in image segmenta-

tion. In ECCV, 2006.

[8] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single image. In ICCV,

2005.

[9] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression data: A survey. IEEE

Transactions on Knowledge and Data Engineering, 16(11):1370–1386, 2004.

[10] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level

constraints: Making the most of prior knowledge in data clustering. In ICML, 2002.

[11] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel

approach. In ICML, 2005.

[12] S. Kumar and H. Rowley. Classification of weakly-labeled data with partial equivalence rela-

tions. ICCV, 2007.

[13] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for bag-of-features image classification.

In ECCV, 2006.

[14] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number

of clusters. In ICML, 2000.

[15] C. Rother, V. Kolmogorov, and A. Blake. “Grabcut”: interactive foreground extraction using

iterated graph cuts. ACM Transactions on Graphics, 23(3):309–314, 2004.

[16] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–905, 2000.

[17] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and

context modeling for multi-class object recognition and segmentation. In ECCV, 2006.

[18] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background cut. In ECCV, 2006.

[19] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest

neighbor classification. In NIPS. 2006.

[20] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to

clustering with side-information. In NIPS. 2003.

[21] L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical Report,

Michigan State University, 2006.

[22] L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric

learning. In AAAI, 2006.

