
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

December, 2017

Semi-Supervised Convolutional
Neural Networks for Human Activity
Recognition
Ming Zeng
Tong Yu
Xiao Wang
Le T. Nguyen
Ole J. Mengshoel, et al.

Available at: https://works.bepress.com/ole_mengshoel/

73/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/73/
https://works.bepress.com/ole_mengshoel/73/


Semi-Supervised Convolutional Neural Networks for Human Activity Recognition

Ming Zeng, Tong Yu, Xiao Wang, Le T. Nguyen, Ole J. Mengshoel, Ian Lane

Carnegie Mellon University, Moffett Field, CA 94043

{ming.zeng, tong.yu, xiao.wang, le.nguyen, ole.mengshoel, ian.lane}@sv.cmu.edu

Abstract—Labeled data used for training activity recognition
classifiers are usually limited in terms of size and diversity.
Thus, the learned model may not generalize well when used
in real-world use cases. Semi-supervised learning augments
labeled examples with unlabeled examples, often resulting in
improved performance. However, the semi-supervised methods
studied in the activity recognition literatures assume that
feature engineering is already done. In this paper, we lift this
assumption and present two semi-supervised methods based on
convolutional neural networks (CNNs) to learn discriminative
hidden features. Our semi-supervised CNNs learn from both
labeled and unlabeled data while also performing feature
learning on raw sensor data. In experiments on three real
world datasets, we show that our CNNs outperform supervised
methods and traditional semi-supervised learning methods by
up to 18% in mean F1-score (Fm).

Keywords-Human Activity Recognition; Deep Neural Net-
works; Semi-Supervised Learning; Convolutional Neural Net-
works

I. INTRODUCTION

Human activity recognition (HAR) is an important ap-

plication area for mobile, on-body, and worn mobile tech-

nologies. Supervised learning for human activity recognition

has shown great promise. Among supervised methods, deep

neural networks (DNNs) have emerged as a method with

much potential, in that they are less dependent on clever

feature engineering and has strong generalization ability [1]

compared to other supervised methods [2], [3].

Unfortunately, the problem of data labeling remains.

Compared to many other machine learning applications, the

problem of data labeling for HAR is substantial, since human

activity data sets typically (i) have few labeled samples and

(ii) are highly personal and varying.

(i) Activity data sets typically have very few labeled

examples for some activities. Thus, they may not charac-

terize well the distribution of test data collected in different

situations than the training data. For example, the labeled

training data may only cover walking at certain speeds. In

reality, humans walk at a range of speeds. They can walk

slowly when being relaxed and can walk very fast when in

a hurry. The problem of limited labels is even more severe

for models with high parameter complexity, such as deep

neural networks.

(ii) Activity data sets are highly personal and varying,

because people may perform the same activity in very dif-

ferent ways. For example, what one person considers jogging

may be very similar to what another person considers fast

walking. With a model trained only on data where a human

walks at normal speed, it is very difficult to correctly predict

the behavior of a human walking in a hurry. Walking in a

hurry can easily be confused with running, especially when

little data of walking in a hurry is collected for training.

To address challenges (i) and (ii), many semi-supervised

learning methods have been proposed to leverage the abun-

dance of unlabeled data and provide higher generalizability.

Although the labeled data of walking in a hurry may be

limited, there are large amounts of unlabeled data recording

the behavior of walking in a hurry. Semi-supervised learning

from both labeled and unlabeled data can thus potentially

provide better predictions for human walking in a hurry,

compared to supervised learning using only labeled data.

When labeled data is limited, we may potentially improve

HAR performance via adjustments to labeled data’s feature

representations with unlabeled data, so-called feature learn-

ing. In contrast, previous semi-supervised HAR approaches

usually rely on handcrafted features [4], [5], [6]. With hand-

crafted features, the benefit of the unlabeled data is limited,

since there is no opportunity for feature learning with the

unlabeled data.

In this paper, we study how to train accurate and gen-

eralizable DNNs with limited labeled data and large scale

unlabeled data for HAR. Specifically, we present two semi-

supervised deep convolutional neural network methods, the

convolutional encoder-decoder (CNN-Encoder-Decoder) and

the convolutional ladder network (CNN-Ladder). The con-

tributions of our work are the following.

• To our best knowledge, this is the first paper to lever-

age unlabeled data in CNNs in HAR applications.

We utilize unlabeled data in both feature learning

and model learning using CNN-Encoder-Decoder and

CNN-Ladder architectures for semi-supervised HAR.

• The presented methods can achieve up to 18% F1-score

improvement compared to baseline methods, on three

real-world activity recognition datasets.

• To understand why our methods improve F1-score, we

show the importance of adjusting low level features

based on unlabeled data in semi-supervised HAR. Be-

sides, we visualize the features in the last layers of

CNN-Ladder and CNN to demonstrate that better high-

level features can be learned with unlabeled data added.



II. RELATED WORKS

In this section, we discuss related work on (i) machine

learning in HAR and (ii) semi-supervised learning in HAR.

A. Machine Learning for Activity Recognition

In early studies of HAR [7], machine learning models

using handcrafted features shows good performance. Raw

sensor data is collected from various sensors on mobile

devices. From this collected data, handcrafted features are

designed using domain knowledge. With the handcrafted

features, machine learning models, such as random forest,

naive Bayes, or SVMs, are trained and used in HAR.

Designing handcrafted features requires domain knowl-

edge [8]. Therefore, it is desirable to develop a systematic

feature learning approach to model the time series signals

in HAR [9]. Deep neural networks (DNNs) are emerging

feature extraction approaches to HAR, and they have made

great advances in many domains [10]. They are also applied

to HAR (e.g., [11], [12], [13]). The first HAR deep learning

approach [11] explores unsupervised feature extraction. It

outperforms principal component analysis (PCA) and sta-

tistical features. After that, convolutional neural networks

(CNNs) became popular due to their locality preservation

and translation invariance. A 1D CNN is used to model

sensor modality [12] while a 2D CNN regards the set

of signals as an image and handles multichannel sensor

readings [9]. In order to capture the temporal dependencies

of the sensor data, deep recurrent networks, especially long

short-term memory cells (LSTMs), have achieved promising

performance in HAR [3], [14]. However, due to the com-

plexity of LSTM, they require much labeled data to avoid

overfitting.

B. Semi-Supervised Learning

In semi-supervised learning, the model is trained on both

labeled and unlabeled data [15]. Utilizing unlabeled data

may improve a model’s generalization ability.

Semi-supervised learning has been applied to HAR.

An on-line adaptation method is proposed for semi-

supervised learning for HAR [16]. The self-learning based

approaches [4], [17] iteratively annotate the unlabeled data

and selectively add them to the training dataset. The graph-

based approach [5] connects labeled and unlabeled data

and builds multiple graphs to propagate the labels based

on similarity between features. However, these approaches

treat the label propagation and classification as two sepa-

rate processes. Thus, correlations between labeled data and

unlabeled data may be ignored in the model.

A recent semi-supervised method, ladder networks [18],

can simultaneously train a deep auto encoder on an unla-

beled dataset and a neural network on a labeled dataset.

The ladder network shows superior performance in semi-

supervised image classification for the MNIST and CIFAR-

10 dataset.

III. SEMI-SUPERVISED CNN BASED MODELS

We adopt the CNN since it provides stable latent repre-

sentations at each network level, which preserved locality. It

also has great potential to identify the various salient patterns

of activity signals [9]. We use the multi-sensor based CNN

structure [9] for both our supervised and semi-supervised

learning approaches.

A. CNN for Supervised Learning

Consider a dataset with N labeled sliding windows

(x1, t1),(x2, t2),...,(xN , tN ), where xi is a sliding window

input with length T and ti is the activity label. A CNN

maps the input xi = [xi 1, xi 2, ..xi T ] to hidden values z l
i
=

[z l
i 1

, z l
i 2

, ..., z l
i d

] by convolutional kernels (to be learned in

the training phase), where l denotes the l -th layer (the input

xi is also regarded as 0-th layer, z0 ). The CNN structure

can be represented as:

z(1)
i

, ..., z(L)
i

, yi =CNN(xi ), (1)

where CNN(·) contains at least one temporal convolutional

layer, one pooling layer, and at least one fully connected

layer prior a top-level softmax classifier. Then the supervised

CNN cost function is of the form:

Cs =−
1

N

N∑

i=1

logP (yi = ti |xi ). (2)

It requires a lot of labeled data to train a good CNN model.

B. CNN Encoder-Decoder for Unsupervised Learning

Assume that we also have M unlabeled examples

xN+1, xN+2, ..., xN+M . The CNN-Encoder-Decoder consists

of an encoder mapping f and a decoder mapping g . The

encoder adopts the CNN feed-forward process while the

decoder contains upsampling and convolution operations.

Our encoder-decoder structure is similar to a denoising au-

toencoder (DAE) [19]. In the training, noise is injected into

each layer in the network (including the input layer). The

CNN-Encoder-Decoder minimizes the difference between

the clean input xi and the reconstructed decoder output x̂i .

Therefore, we have the cost function:

C (0)
r =

λ

M

N+M∑

i=N+1

||x̂i −xi ||
2
2, (3)

where x̂i is the reconstructed input. The decoder in the

CNN-Encoder-Decoder [20] contains upsampling for max-

pooling decoding and another convolutional operation for

deconvolution. The upsampling uses the memorized max-

pooling indices from the corresponding encoder feature

map(s) to produce sparse feature maps(s) as an input of the

convolutional layer in the CNN-Encoder-Decoder [20]. Then

the sparse features are convolved with a trainable decoder

filter bank to produce dense features.
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Figure 1: Structure of the CNN-Encoder-Decoder (left) and CNN-Ladder (right) applied to HAR. CNN-Ladder has two

kinds of connections: lateral connections include g (l )(·, ·) and reconstructed cost function C (l )
r . Vertical connections contain

clean encoder path (x → z(i ) → y), noisy encoder (x̃ → z̃(i ) → ỹ) path and decoder path (ẑ(3) → ẑ(i ) → x̂). The noisy encoder

and clean encoder share the same mapping function f . The function g is the denoising function, which is for reconstructing

the clean input from high-level representation, ẑ(3). When we only consider the vertical connections and the lateral cost in

the bottom C (0)
r , the CNN-Ladder reduces to the CNN-Encoder-Decoder model (left).

C. Semi-Supervised CNN-Encoder-Decoder for HAR

We combine the supervised CNN and CNN-Encoder-

Decoder to perform semi-supervised learning for HAR.

Besides a set of labeled pairs {(xi , ti ) |1 ≤ i ≤ N }, semi-

supervised learning [15] uses unlabeled data {xi |N +1 ≤ i ≤

N +M } to help in training a classifier.

In the case of a semi-supervised CNN-Encoder-Decoder,

there are three paths for the labeled and unlabeled data: The

clean encoding, noisy encoding, and the decoding:

z(1)
i

, ..., z(L)
i

=Encoderclean(xi ) (4)

x̃i , z̃(1)
i

, ..., z̃(L)
i

=Encodernoi s y (xi ) (5)

x̂i =Decoder(z̃(L)
i

). (6)

Both labeled and unlabeled clean data pass through the

clean encoder path to compute hidden variables in the middle

layers, z l
i
. For the noisy encoder path, both labeled and

unlabeled data are corrupted by Gaussian noise and then

transformed to a more abstract representation, z̃ l
i
, by the

noisy encoder. For labeled data (x̃i ,1 ≤ i ≤ N ), we carry

out the prediction for labeled data on the top-level softmax

classifier based on cross entropy cost. The predicted label

is denoted by ỹi . For the noisy unlabeled data (x̃i , N +1 ≤

i ≤ N + M), the decoder tries to reconstruct it (x̂i ) to be

the same as the corresponding clean input (xi ). We use

square error to evaluate this reconstruction error. The clean

and noisy encoder paths share the same parameters, only

the inputs are different in Fig 1. (When we only consider

the vertical connections and the lateral cost, CNN-Ladder in

Fig 1 reduces to CNN-Encoder-Decoder.)

The CNN-Encoder-Decoder the cost function involves

the supervised cross entropy cost from labeled data in the

supervised CNN and the unsupervised denoising square error

cost between the clean input and its noisy reconstruction

output. Thus the cost function is

Ce =Cs +λC (0)
r

=−
1

N

N∑

i=1

logP (ỹi = ti |xi )+
λ

M

N+M∑

i=N+1

||x̂i −xi ||
2
2, (7)

where the supervised cost Cs is the averaged cross entropy

of the noisy output ỹi matching the target ti given the input

xi . The unsupervised cost Cr is the averaged square error

between the reconstruction output x̂i and the clean input xi .

By using a semi-supervised CNN-Encoder-Decoder, we can

potentially learn the network and features simultaneously

from the data.

D. Semi-Supervised CNN-Ladder for HAR

The semi-supervised Convolutional Ladder Network

(CNN-Ladder) contains two kinds of connections: the ver-

tical connections and the lateral connections (Fig 1). The

vertical connections have clean and noisy encoders (Eq 4,

Eq 5) and a decoder. The reconstruction ẑ(l )
i

in the decoder

is not only inferred from the upper layer ẑ(l+1)
i

, but also

estimated from its corresponding layer in the noisy encoder.

The estimation is a linear function ẑ(l ) = g (z̃(l ), ẑ(l+1)), where

z̃(l ) is the lateral noisy signal in the encoder and ẑ(l+1) is the

reconstruction of its upper layer by batch normalization [18].

These vertical skip-connections enable us to find better



middle-level representations compared to regular encoder-

decoder structures.

To improve the middle-level features reconstruction in

the CNN-Encoder-Decoder, we also force the intermediate

layers in the decoder to be similar to the corresponding

layers in the encoder. In other words, the cost function of

CNN-Ladder is

Cl =Cs +

L∑

l=0

λl C (l )
r =−

1

N

N∑

i=1

logP (ỹi = ti |xi )

+
1

M

N+M∑

i=N+1

L∑

l=0

λl ||ẑ
(l )
i

− z(l )
i
||

2
2 (8)

If we train neural networks on limited unlabeled data,

learned hidden features may have high variance and can be

unstable. With the constraints from the lateral connection,

the CNN-Ladder makes every layer, C (l )
r , contribute to the

cost function. As a result, more stable hidden features can

be learned from large amount of unlabeled data. Stable

hidden features can generate accurate representation of the

middle level features, and lead to precise recognition of

complicated activities. For example, jumping jack activity

prediction relies on stable and accurate representation of sub-

components (spreading hands and legs, and clapping hands).

IV. EXPERIMENTS

We validate our HAR approaches on three public datasets.

First, we compare our methods to other neural network

methods for HAR in a supervised learning setting. Second,

we compare our methods to traditional semi-supervised

learning methods for HAR. Third, we conducted experi-

ments with varying amounts of labeled and unlabeled data,

to understand the usability of our methods. Fourth, we dis-

cuss why our methods perform better than traditional semi-

supervised learning methods in utilizing the unlabeled data

for semi-supervised HAR. Deep learning (CNN, Pretrained

CNN, Pseudo-label CNN, CNN-Encoder-Decoder, CNN-

Ladder) is performed on a server equipped with a Tesla K20c

GPU and 64G memory. The traditional learning algorithms

(LR, Self-training) are run on the same server with an Intel

Xeon E5 CPU. The implementation of CNN-Ladder is based

on the Ladder Networks.1

A. Datasets

The raw sensor data is segmented by a common sliding

window technique. The window size is 2 seconds with 50%

overlap. Data within each window is denoted as an example.

All the results are averaged using leave-one-subject-out cross

validation. To ensure that labeled training data includes all

the activity classes, we construct balanced labeled training

datasets. The datasets used are as follows.

1https://github.com/CuriousAI/ladder

The ActiTracker [21] dataset contains 6 daily activities

collected in a controlled laboratory environment. The activ-

ities are “jogging,” “walking,” “ascending stairs,” “descend-

ing stairs,” “sitting” and “standing.” The data are recorded

from 36 users, with a 20Hz sampling rate resulting in

1,098,207 examples. After segmentation, there are around

110,000 examples (sliding windows). The number of exam-

ples for testing varies from 1,000 to 5,000.

The PAMAP2 dataset [22] consists of 12 lifestyle

activities (“walking,” “lying down,” “knees bending,” etc.)

by 9 participants. Accelerometer, gyroscope, magnetometer,

temperature, and heart rate data are recorded from inertial

measurement units located on the hand, chest and ankle

over 10 hours, resulting in 52 dimensions. The number

of examples is 3,850,505. To have a temporal resolution

comparable to the ActiTracker dataset, we downsampled the

data to 33.3Hz, resulting in around 33,000 examples. The

number of examples of test data in each experiment is around

4,500.

The mHealth dataset [23] contains recordings from

10 participants while performing 12 physical activities,

including daily life activities (“standing,” “lying down,”

etc.) and exercise activities (“cycling,” “jogging,” etc). Ac-

celerometers, gyroscopes, magnetometer and ECG data are

recorded from inertial measurement units placed on a par-

ticipant’s chest, right wrist and left ankle. The data has

43,744 examples with 23 dimensions. In our experiment,

we downsampled the data to 20Hz, resulting in around

8,000 examples. The number of examples used for testing

is around 1,000.

B. Experimental Setup

We consider these supervised learning baselines:

• Logistic Regression (LR) [7]: We using traditional

logistic regression for supervised learning in combina-

tion with statistical features (mean, standard deviation,

correlation, max, min).

• Supervised Convolutional neural network

(CNN) [9]: The structure of the supervised CNN

is the same as the clean path in our CNN-Ladder.3

We also study traditional semi-supervised learning baselines.

• Unsupervised Pretrained CNN [24]: The pretrained

CNN uses the unlabeled data to initialize the network

parameters. We use an unsupervised pretraining method

similar to multi-layer perceptron (MLP) pretraining. In

the first step, the pretrained CNN uses the unlabeled

data to perform encoding and decoding with the CNN

structure to initialize the parameters of the network.

• Self-training method with logistic regression (Self-

training) [4]: In self-training, an LR classifier is first

trained using (a small amount of) labeled data. Then

3Network structure: convv:40:5:1:1-maxpool:2:2-convv:50:3:1:1-
maxpool:2:2-convv:20:3:1:1-convv:50:1:1:1-fc. [18]



Previous

Papers1 2 3
This
Paper

Data LR CNN LR CNN

ActiTracker (Accuracy) 78.101 90.882 89.27 93.84

PAMAP2 (Fm ) - 93.703 86.86 92.24

Table I: We reproduce the results of LR and CNN on

ActiTracker and PAMAP2, reported in [Kwapisz et al. 2011,

Zeng et al. 2014, Hammerla et al. 2016]. We show the

results under the previous papers’ settings. On ActiTracker,

the results are in accuracy. On PAMAP2, the results are in

Fm .

we use the trained LR model to predict the labels of

unlabeled data. In each iteration, predictions with high

confidence are added to the labeled training set, where

these predictions are now considered as the labels. In

our experiments, the confidence threshold is 0.95.

• Pseudo-label [25]: The pseduo-label approach is es-

sentially a self-training method. The predicted labels of

the unlabeled data are used in a fine-tuning phase to

improve the recognition performance.

A result is averaged across all leave-one-subject-out cross

validation experiments. Thus, in each experiment, we use

one user for test and the rest of the users for training. We

evaluate the results using mean F1-score because the activity

datasets are highly biased. The F1-score is a harmonic mean

of precision and recall. The mean F1-score, Fm , is the mean

F1-score across all the classes:

Fm =
2 ·precision · recall

precision+ recall
(9)

where for a given class

precision=
T P

T P +F P
, recall=

T P

T P +F N
.

Here, F P and F N are counts of False Positives and False

Negatives, respectively.

Table I shows that our baseline of supervised CNN

is comparable to the results in previous papers. We also

evaluate our CNN baseline on all users, instead of using the

setting in the previous works. The mean F1 scores are 79.54,

75.38 and 92.83 on ActiTracker, PAMAP2 and mHealth,

respectively.

C. Comparing with Supervised Methods

We compare our methods to several supervised methods,

to study how our methods utilize unlabeled data in HAR.

The baseline methods LR and CNNs do not use unlabeled

data.

1We only carry out 10-fold cross validation for [Kwapisz et al. 2011].
2We only carry out 10-fold cross validation for [Zeng et al. 2014].
3User 6 is for the test set, user 5 is for the validation set and the rest of

the users are used for the training set [Hammerla et al. 2016].

The results are shown in Table II. On all the three

datasets, CNN-Encoder-Decoder and CNN-Ladder perform

consistently better than LR and CNN. In particular, CNN-

Ladder achieves 17.64%, 3.59%, 9.65% improvements in

mean F1-score on the three datasets, compared to the best

of LR and CNN. Second, CNN-Ladder has higher Fm score

than CNN-Encoder-Decoder on the three datasets.

Those results suggest that CNN-Encoder-Decoder and

CNN-Ladder can effectively make use of the unlabeled data,

to significantly improve accuracy. CNN-Ladder performs

better than CNN-Encoder-Decoder, perhaps because better

hidden features are trained. In CNN-Ladder, the loss func-

tion considers the difference between each layer of CNN and

its decoder, while CNN-Encoder-Decoder only considers the

difference between the final reconstructed output and the

original input.

D. Comparing with Traditional Semi-supervised Methods

We compare our methods to traditional semi-supervised

methods, to study how our methods can utilize the same

unlabeled data to achieve more accurate predictions.

The comparisons between Pretrained CNN, Self-Training,

Pseudo-Label, CNN-Encoder-Decoder, and CNN-Ladder are

shown in Table II. It can be observed that CNN-Encoder-

Decoder and CNN-Ladder perform better than Pretrained

CNN, Self-Training, and Pseudo-Label. Specifically, CNN-

Ladder achieves about 16.46%, 4.11%, 8.5% improvements

in mean F1-scores on the three datasets, compared to the

best of Pretrained CNN, Self-Training, and Pseudo-Label.

One disadvantage of Self-Training and Pseudo-Label that

we observed is that these iterative methods need careful

selection of the confidence threshold. If the confidence

threshold is not appropriately selected, some unlabeled data

will be assigned wrong labels and the errors will propagate

in later iterations. However, in semi-supervised CNNs, no

confidence threshold is needed and all available unlabeled

data are input together with labeled data to train the models.

Without using confidence thresholds, training neural network

requires less domain knowledge and is much easier com-

pared to training Self-Training and Pseudo-Label models.

E. Varying Amount of Labeled Data

In this section, we study the performance of our models

trained with varying amounts of labeled data. We evaluate

the Fm score of supervised CNN, CNN-Encoder-Decoder

and CNN-Ladder trained on 50, 100, 200, 500, and 1,000

labeled examples. The rest of the samples in the training set

are regarded as unlabeled.

Figure 2 shows the Fm trend when we vary the number

of labeled examples. There are three observations. First,

the Fm scores of supervised CNN, CNN-Encoder-Decoder

and CNN-Ladder generally improve when we have more

labeled examples. Second, with the same number of labeled

examples, CNN-Encoder-Decoder, and CNN-Ladder usually



Supervised Semi-Supervised Our Semi-Supervised Improvement

LR CNN
Pretrained

CNN
Self-Training Pseudo-Label

CNN-Encoder
-Decoder

CNN-Ladder ∆Supervised
∆Semi-

Supervised

ActiTracker 39.34 48.68 49.86 41.52 46.00 63.58 66.32 17.64 16.46

PAMAP2 51.31 50.22 48.54 47.86 50.79 52.68 54.90 3.59 4.11

mHealth 57.73 59.73 60.88 59.43 60.31 66.61 69.38 9.65 8.50

Table II: The Fm score of supervised methods (LR and CNN), traditional semi-supervised methods (Self-training and

Pseudo-label) and our presented methods (CNN-Encoder-Decoder and CNN-Ladder). We circle the best Fm scores from

supervised, semi-supervised and our semi-supervised approaches, respectively. Both of our methods (CNN-Encoder-Decoder,

CNN-Ladder) are significantly better compared to the CNN and the Pretrained CNN with p-value < 0.05.
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Figure 2: The Fm scores of CNN, CNN-Encoder-Decoder, and CNN-Ladder, with varying number of labeled examples. The

Fm scores of supervised CNN on all labeled training examples are also shown as red lines.

achieves higher Fm scores than CNN. Third, when CNN-

Ladder is learned from 1,000 examples, its mean Fm score is

already very competitive with supervised CNN learned from

more than 100,000, 10,000, and 8,000 labeled examples from

ActiTracker, PAMAP2 and mHealth, respectively. These

results indicate that compared to CNN, CNN-Ladder can

achieve similar accuracy but with much smaller number of

labeled examples.

F. Varying Amount of Unlabeled Data

We now study the performance of our models trained

with varying amounts of unlabeled data. We evaluate the

Fm score of supervised CNN, CNN-Encoder-Decoder, and

CNN-Ladder trained on 50 labeled examples and varying

amounts of unlabeled examples. On ActiTracker, the num-

ber of unlabeled examples varies from 100 to 50,000. On

PAMAP2 and mHealth, the number varies from 100 to

10,000, as these two datasets are relatively small.

Figure 3 shows the experimental results. With an in-

creasing amount of unlabeled data, the Fm score typically

impoves for both CNN-Encoder-Decoder and CNN-Ladder.

This suggests that better latent features in the auto-encoder

can be trained with more unlabeled examples and help adjust

the latent CNN features, thereby improving accuracy.

G. The Impact of Adjusting Features in Different Layers

We now study the importance of adjusting different layers

in CNN-Ladder with unlabeled data. Specifically, we adjust

the λl of CNN-Ladder in Equation 8 to observe the impact

of making the latent features between CNN and autoencoder

more or less similar, in different layers. We run a set of

experiments for different layers l , where l ∈ {0,1, · · · ,L}. In

each experiment, we emphasize layer l by setting λl = 1

and λk = 0.1, where k ∈ {0,1, · · · , l − 1}∪ {l , l + 1, · · · ,L}. In

our CNN-Ladder, L = 9.

The resulting Fm scores when varying the weights of

different layers of CNN-Ladder are shown in Figure 5. A

high Fm score can typically be achieved by setting a large λl

for the layers representing low-level features. This indicates

that low-level features of the neural networks can be much

improved by using the unlabeled data.

In contrast, utilizing the unlabeled data for low-level

features is missed in traditional semi-supervised learning

methods for HAR, such as Self-Training. Self-Training uses

the unlabeled data only after feature engineering is already

done. That is, the handcrafted features are independent from

whether unlabeled data is available or not. In a similar way,

low-level features of traditional neural network methods,

such as CNN, may be not as good as the low-level features

of CNN-Ladder in the semi-supervised HAR.

H. How Does CNN-Ladder Achieve Higher Fm?

As discussed in Section IV-G, CNN-Ladder can adjust

low-level features with unlabeled data, while traditional

semi-supervised methods’ low-level features are independent

from unlabeled data. This section seeks to better understand
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Figure 3: The Fm scores of CNN-Ladder and CNN-Encoder-Decoder, with 50 labeled examples and varying amount of

unlabeled examples. The Fm scores of supervised CNN on a large number of labeled examples are also shown as red lines.

The result of CNN-Ladder is significantly better than the CNN approach with p-value < 0.05.
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Figure 4: The visualizations of the low-level features of traditional CNN and CNN-Ladder using PCA. The black dots are

labeled data of jogging activity from users in the training set. The red dots are unlabeled data of the same activity from a

different user not in the training set. Although the red and black dots belong to the same class, they are badly scattered in

the traditional CNN. In CNN-Ladder, the red dots are more concentrated around the black dots.

how CNN-Ladder’s low-level features help achieve high Fm

scores in HAR.

We visualize the features in the last layer of (i) CNN-

Ladder with unlabeled data versus (ii) CNN without unla-

beled data. PCA is used to reduce the dimensionality of the

data, and only the eigen-vectors with the largest two eigen-

values are selected as axes in Figure 4. To understand how

CNN-Ladder benefits from varying low-level features, we

show two cases where CNN-Ladder achieves high Fm score

while CNN does not.

In the prediction of jogging activity for User 11, the

features in the last layer of CNN-Ladder with unlabeled

data and CNN without unlabeled data are shown in Figure

4(a) and 4(b). In this case, CNN fails to predict the jogging

activity of different users as the same activity. This is

caused by the varying behaviors of different users, especially

when the labeled examples are limited as shown in Figure

4(a). Interestingly, in the two-dimensional visualization of

features in CNN-Ladder in Figure 4(b), the test examples

concentrate in the region where the labeled data locate.

Using the low-level feature representations trained with addi-

tional unlabeled data, the jogging activities of different users

become similar, even with differences in jogging behaviors

between different users. Figure 4(c) and 4(d) show another

similar case for User 30.
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Figure 5: The impact of making different layers’ latent

features of CNN and autoencoder very similar in CNN-

Ladder. Utilizing the unlabeled data starting from very low-

level features is very important in semi-supervised HAR,

but beyond the scope of traditional semi-supervised learning

methods.

The visualization results indicate that with unlabeled data,

CNN-Ladder can learn discriminative high-level features

even when labeled training data is very limited. Conse-

quently, it is easier for CNN-Ladder to achieve higher Fm .



V. CONCLUSION

We study the CNN-Encoder-Decoder and CNN-Ladder

architectures for semi-supervised human activity recogni-

tion. The experimental results demonstrate that our proposed

methods can achieve significant Fm improvements, com-

pared to supervised learning methods and traditional semi-

supervised learning methods. We carefully study how CNN-

Ladder achieves higher Fm in human activity recognition.

The empirical results show that it is very helpful to use

unlabeled data to better learn low-level features in CNNs

human activity recognition.
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