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Abstract

Supervised deep learning often suffers from the lack of

sufficient training data. Specifically in the context of monoc-

ular depth map prediction, it is barely possible to deter-

mine dense ground truth depth images in realistic dynamic

outdoor environments. When using LiDAR sensors, for in-

stance, noise is present in the distance measurements, the

calibration between sensors cannot be perfect, and the mea-

surements are typically much sparser than the camera im-

ages. In this paper, we propose a novel approach to depth

map prediction from monocular images that learns in a

semi-supervised way. While we use sparse ground-truth

depth for supervised learning, we also enforce our deep

network to produce photoconsistent dense depth maps in a

stereo setup using a direct image alignment loss. In exper-

iments we demonstrate superior performance in depth map

prediction from single images compared to the state-of-the-

art methods.

1. Introduction

Estimating depth from single images is an ill-posed

problem which cannot be solved directly from bottom-up

geometric cues in general. Instead, a-priori knowledge

about the typical appearance, layout and size of objects

needs to be used, or further cues such as shape from shading

or focus have to be employed which are difficult to model in

realistic settings. In recent years, supervised deep learning

approaches have demonstrated promising results for single

image depth prediction. These learning approaches appear

to capture the statistical relationship between appearance

and distance to objects well.

Supervised deep learning, however, requires vast

amounts of training data in order to achieve high accu-

racy and to generalize well to novel scenes. Supplementary

depth sensors are typically used to capture ground truth.

In the indoor setting, active RGB-D cameras can be used.

Outdoors, 3D laser scanners are a popular choice to capture

depth measurements. However, using such sensing devices

bears several shortcomings. Firstly, the sensors have their

Figure 1. We concurrently train a CNN from unsupervised and

supervised depth cues to achieve state-of-the-art performance in

single image depth prediction. For supervised training we use

(sparse) ground-truth depth readings from a supplementary sens-

ing cue such as a 3D laser. Unsupervised direct image alignment

complements the ground-truth measurements with a training sig-

nal that is purely based on the stereo images and the predicted

depth map for an image.

own error and noise characteristics, which will be learned

by the network. In addition, when using 3D lasers, the

measurements are typically much sparser than the images

and do not capture high detail depth variations visible in

the images well. Finally, accurate extrinsic and intrinsic

calibration of the sensors is required. Ground truth data

could alternatively be generated through synthetic render-

ing of depth maps. The rendered images, however, do not

fully realistically display the scene and do not incorporate

real image noise characteristics.

Very recently, unsupervised methods have been intro-

duced [6, 9] that learn to predict depth maps directly from

the intensity images in a stereo setup–without the need

for an additional supplementary modality for capturing the

ground truth. One drawback of these approaches is the well-

known fact that stereo depth reconstruction based on im-

age matching is an ill-posed problem on its own. To this
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end, common regularization schemes can be used which im-

pose priors on the depth such as small depth gradient norms

which may not be fully satisfied in the real environment.

In this paper, we propose a semi-supervised learning ap-

proach that makes use of supervised as well as unsupervised

training cues to incorporate the best of both worlds. Our

method benefits from ground-truth measurements as an un-

ambiguous (but noisy and sparse) cue for the actual depth in

the scene. Unsupervised image alignment complements the

ground-truth by a huge amount of additional training data

which is much simpler to obtain and counteracts the defi-

ciencies of the ground-truth depth measurements. By the

combination of both methods, we achieve significant im-

provements over the state-of-the-art in single image depth

map prediction which we evaluate on the popular KITTI

dataset [7] in urban street scenes. We base our approach

on a state-of-the-art deep residual network in an encoder-

decoder architecture for this task [16] and augment it with

long skip connections between corresponding layers in en-

coder and decoder to predict high detail output depth maps.

Our network converges quickly to a good model from little

supervised training data, mainly due to the use of pretrained

encoder weights (on ImageNet [22] classification task) and

unsupervised training. The use of supervised training also

simplifies unsupervised learning significantly. For instance,

a tedious coarse-to-fine image alignment loss as in previous

unsupervised learning approaches [6] is not required in our

semi-supervised approach.

In summary, we make the following contributions: 1) We

propose a novel semi-supervised deep learning approach to

single image depth map prediction that uses supervised as

well as unsupervised learning cues. 2) Our deep learning

approach demonstrates state-of-the-art performance in chal-

lenging outdoor scenes on the KITTI benchmark.

2. Related Work

Over the last years, several learning-based approaches to

single image depth reconstruction have been proposed that

are trained in a supervised way. Often, measured depth from

RGB-D cameras or 3D laser scanners is used as ground-

truth for training. Saxena et al. [24] proposed one of the first

supervised learning-based approaches to single image depth

map prediction. They model depth prediction in a Markov

random field and use multi-scale texture features that have

been hand-crafted. The method also combines monocular

cues with stereo correspondences within the MRF.

Many recent approaches learn image features using deep

learning techniques. Eigen et al. [5] propose a CNN ar-

chitecture that integrates coarse-scale depth prediction with

fine-scale prediction. The approach of Li et al. [17] com-

bines deep learning features on image patches with hierar-

chical CRFs defined on a superpixel segmentation of the

image. They use pretrained AlexNet [14] features of im-

age patches to predict depth at the center of the superpix-

els. A hierarchical CRF refines the depth across individ-

ual pixels. Liu et al. [20] also propose a deep structured

learning approach that avoids hand-crafted features. Their

deep convolutional neural fields allow for training CNN fea-

tures of unary and pairwise potentials end-to-end, exploit-

ing continuous depth and Gaussian assumptions on the pair-

wise potentials. Very recently, Laina et al. [16] proposed

to use a ResNet-based encoder-decoder architecture to pro-

duce dense depth maps. They demonstrate the approach to

predict depth maps in indoor scenes using RGB-D images

for training. Further lines of research in supervised train-

ing of depth map prediction use the idea of depth transfer

from example images [13, 12, 21], or integrate depth map

prediction with semantic segmentation [15, 19, 4, 26, 18].

Only few very recent methods attempt to learn depth

map prediction in an unsupervised way. Garg et al. [6] pro-

pose an encoder-decoder architecture similar to FlowNet [3]

which is trained to predict single image depth maps on an

image alignment loss. The method only requires images of

a corresponding camera in a stereo setup. The loss quan-

tifies the photometric error of the input image warped into

its corresponding stereo image using the predicted depth.

The loss is linearized using first-order Taylor approxima-

tion and hence requires coarse-to-fine training. Xie et al.

[27] do not regress the depth maps directly, but produce

probability maps for different disparity levels. A selec-

tion layer then reconstructs the right image using the left

image and these probability maps. The network is trained

to minimize pixel-wise reconstruction error. Godard et al.

[9] also use an image alignment loss in a convolutional

encoder-decoder architecture but additionally enforce left-

right consistency of the predicted disparities in the stereo

pair. Our semi-supervised approach simplifies the use of

unsupervised cues and does not require multi-scale depth

map prediction in our network architecture. We also do not

explicitly enforce left-right consistency, but use both im-

ages in the stereo pair equivalently to define our loss func-

tion. The semi-supervised method of Chen et al. [1] in-

corporates the side-task of depth ranking of pairs of pixels

for training a CNN on single image depth prediction. For

the ranking task, ground-truth is much easier to obtain but

only indirectly provides information on continuous depth

values. Our approach uses image alignment as a geometric

cue which does not require manual annotations.

3. Approach

We base our approach on supervised as well as unsu-

pervised principles for learning single image depth map

prediction (see Fig. 1). A straight-forward approach is to

use a supplementary measuring device such as a 3D laser

in order to capture ground-truth depth readings for super-

vised training. This process typically requires an accurate
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Figure 2. Components and inputs of our novel semi-supervised loss function.

extrinsic calibration between the 3D laser sensor and the

camera. Furthermore, the laser measurements have several

shortcomings. Firstly, they are affected by erroneous read-

ings and noise. They are also typically much sparser than

the camera images when projected into the image. Finally,

the center of projection of laser and camera do not coincide.

This causes depth readings of objects that are occluded from

the view point of the camera to project into the camera im-

age. To counteract these drawbacks, we make use of two-

view geometry principles to learn depth prediction directly

from the stereo camera images in an unsupervised way. We

achieve this by direct image alignment of one stereo image

to the other. This process only requires a known camera

calibration and the depth map predicted by the CNN. Our

semi-supervised approach learns from supervised and un-

supervised cues concurrently.

We train the CNN to predict the inverse depth ρ(x) at

each pixel x ∈ Ω from the RGB image I . According to the

ground truth, the predicted inverse depth should correspond

to the LiDAR depth measurement Z(x) that projects to the

same pixel, i.e.

ρ(x)−1 !
= Z(x). (1)

However, the laser measurements only project to a sparse

subset ΩZ ⊆ Ω of the pixels in the image.

As the unsupervised training signal, we assume photo-

consistency between the left and right stereo images, i.e.,

I1(x)
!
= I2(ω(x, ρ(x))). (2)

In our calibrated stereo setup, the warping function can be

defined as

ω(x, ρ(x)) := x− f b ρ(x) (3)

on the rectified images, where f is the focal length and b is

the baseline. This image alignment constraint holds at every

pixel in the image.

We additionally make use of the interchangeability of the

stereo images. We quantify the supervised loss in both im-

ages by projecting the ground truth laser data into each of

the stereo images. We also constrain the depth estimate be-

tween the left and right stereo images to be consistent im-

plicitly by enforcing photoconsistency based on the inverse

depth prediction for both images, i.e.,

Ileft(x)
!
= Iright(ω(x, ρ(x)))

Iright(x)
!
= Ileft(ω(x,−ρ(x))).

(4)

Finally, in textureless regions without ground truth depth

readings, the depth map prediction problem is ill-posed and

an adequate regularization needs to be imposed.

3.1. Loss function

We formulate a single loss function that incorporates

both types of constraints that arise from supervised and un-

supervised cues seamlessly,

Lθ (Il, Ir, Zl, Zr) =

λtL
S
θ (Il, Ir, Zl, Zr) + γLU

θ (Il, Ir) + LR
θ (Il, Ir), (5)

where λt and γ are trade-off parameters between super-

vised loss LS
θ

, unsupervised loss LU
θ

, and a regularization

term LR
θ

. With θ we denote the CNN network parameters

that generate the inverse depth maps ρr/l,θ.

Supervised loss. The supervised loss term measures

the deviation of the predicted depth map from the available

ground truth at the pixels,

LS
θ =

∑

x∈ΩZ,l

∥

∥ρl,θ(x)
−1 − Zl(x)

∥

∥

δ

+
∑

x∈ΩZ,r

∥

∥ρr,θ(x)
−1 − Zr(x)

∥

∥

δ
. (6)
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We use the berHu norm ‖·‖δ as introduced in [16] to focus

training on larger depth residuals during CNN training,

‖d‖δ =

{

|d|, d ≤ δ
d2+δ2

2δ , d > δ
. (7)

We adaptively set

δ = 0.2 max
x∈ΩZ

(∣

∣ρ(x)−1 − Z(x)
∣

∣

)

. (8)

Note, that noise in the ground-truth measurements could be

modelled as well, for instance, by weighting each residual

with the inverse of the measurement variance.

Unsupervised loss. The unsupervised part of our loss

quantifies the direct image alignment error in both direc-

tions

LU
θ =

∑

x∈ΩU,l

|(Gσ ∗ Il)(x)− (Gσ ∗ Ir)(ω(x, ρl,θ(x)))|

+
∑

x∈ΩU,r

|(Gσ ∗ Ir)(x)− (Gσ ∗ Il)(ω(x,−ρr,θ(x)))| ,

(9)

with a Gaussian smoothing kernel Gσ with a standard devi-

ation of σ = 1 px. We found this small amount of Gaussian

smoothing to be beneficial, presumably due to reducing im-

age noise. We evaluate the direct image alignment loss at

the sets of image pixels ΩU,l/r of the reconstructed images

that warp to a valid location in the second image. We use

linear interpolation for subpixel-level warping.

Regularization loss. As suggested in [9], the smooth-

ness term penalizes depth changes at pixels with low inten-

sity variation. In order to allow for depth discontinuities

at object contours, we downscale the regularization term

anisotropically according to the intensity variation:

LR
θ =

∑

i∈{l,r}

∑

x∈Ω

∣

∣

∣
φ (∇Ii(x))

⊤
∇ρi(x)

∣

∣

∣
(10)

with φ(g) = (exp(−η |gx|), exp(−η |gy|))
⊤

and η = 1
255 .

Supervised, unsupervised, and regularization terms are

seamlessly combined within our novel semi-supervised loss

function formulation (see Fig. 2). In contrast to previous

methods, our approach treats both cameras in the stereo

setup equivalently. All three loss components are formu-

lated in a symmetric way for the cameras which implicitly

enforces consistency in the predicted depth maps between

the cameras.

3.2. Network Architecture

We use a deep residual network architecture in an

encoder-decoder scheme, similar to the supervised ap-

proach in [16] (see Fig. 3). Taking inspiration from non-

residual architectures such as FlowNet [3], our architecture

Layer Channels I/O Scaling Inputs

conv172 3 / 64 2 RGB

max pool132 64 / 64 4 conv1

res block121 64 / 256 4 max pool1

res block211 256 / 256 4 res block1

res block311 256 / 256 4 res block2

res block422 256 / 512 8 res block3

res block511 512 / 512 8 res block4

res block611 512 / 512 8 res block5

res block711 512 / 512 8 res block6

res block822 512 / 1024 16 res block7

res block911 1024 / 1024 16 res block8

res block1011 1024 / 1024 16 res block9

res block1111 1024 / 1024 16 res block10

res block1211 1024 / 1024 16 res block11

res block1311 1024 / 1024 16 res block12

res block1422 1024 / 2048 32 res block13

res block1511 2048 / 2048 32 res block14

res block1611 2048 / 2048 32 res block15

conv211 2048 / 1024 32 res block16

upproject1 1024 / 512 16 conv2

upproject2 512 / 256 8 upproject1

res block13

upproject3 256 / 128 4 upproject2

res block7

upproject4 128 / 64 2 upproject3

res block3

conv331 64 / 1 2 upproject4

Table 1. Layers in our deep residual encoder-decoder architecture.

We input the final output layers at each resolution of the encoder

at the respective decoder layers (long skip connections). This fa-

cilitates the prediction of fine detailed depth maps by the CNN.

includes long skip connections between the encoder and de-

coder to facilitate fine detail predictions at the output reso-

lution. Table 1 details the various layers in our network.

Input to our network is the RGB camera image. The en-

coder resembles a ResNet-50 [11] architecture (without the

final fully connected layer) and successively extracts low-

resolution high-dimensional features from the input im-

age. The encoder subsamples the input image in 5 stages,

the first stage convolving the image to half input resolu-

tion and each successive stage stacking multiple residual

blocks. The decoder upprojects the output of the encoder

using residual blocks. We found that adding long skip-

connections between corresponding layers in encoder and

decoder to this architecture slightly improves the perfor-

mance on all metrics without affecting convergence. More-

over, the network is able to predict more detailed depth

maps than without skip connections.
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Figure 3. Illustration of our deep residual encoder-decoder architecture (c1, c3, mp1 abbreviate conv1, conv3, and max pool1, respectively).

Skip connections from corresponding encoder layers to the decoder facilitate fine detailed depth map prediction.

Figure 4. Type 1 residual block resblock1

s
with stride s = 1. The

residual is obtained from 3 successive convolutions. The residual

has the same number of channels as the input.

Figure 5. Type 2 residual block resblock2

s
with stride s. The resid-

ual is obtained from 3 successive convolutions, while the first con-

volution applies stride s. An additional convolution applies the

same stride s and projects the input to the number of channels of

the residual.

We denote a convolution of filter size k × k and stride s

by convk
s . The same notation applies to pooling layers, e.g.,

max poolks . Each convolution layer is followed by batch

normalization with exception of the last layer in the net-

work. Furthermore, we use ReLU activation functions on

the output of the convolutions except at the inputs to the sum

operation of the residual blocks where the ReLU comes af-

ter the sum operation. resblocki
s denotes the residual block

of type i with stride s at its first convolution layer, see

Figs. 4 and 5 for details on each type of residual block.

Smaller feature blocks consist of 16s maps, while larger

blocks contain 4 times more feature maps, where s is the

output scale of the residual block. Lastly, upproject is the

upprojection layer proposed by Laina et al. [16]. We use the

fast implementation of upprojection layers, but for better il-

lustration we visualize upprojection by its ”naive” version

(see Fig. 6).

4. Experiments

We evaluate our approach on the raw sequences of the

KITTI benchmark [7] which is a popular dataset for sin-

Figure 6. Schematic illustration of the upprojection residual block.

It unpools the input by a factor of 2 and applies a residual block

which reduces the number of channels by a factor of 2.

gle image depth map prediction. The sequences contain

stereo imagery taken from a driving car in an urban sce-

nario. The dataset also provides 3D laser measurements

from a Velodyne laser scanner that we use as ground-truth

measurements (projected into the stereo images using the

given intrinsics and extrinsics in KITTI). This dataset has

been used to train and evaluate the state-of-the-art methods

and allows for quantitative comparison.

We evaluate our approach on the KITTI Raw split into 28

testing scenes as proposed by Eigen et al. [5]. We decided

to use the remaining sequences of the KITTI Raw dataset

for training and validation. We obtained a training set from

28 sequences in which we even the sequence distribution

with 450 frames per sequence. This results in 7346 unique

frames and 12600 frames in total for training. We also cre-

ated a validation set by sampling every tenth frame from the

remaining 5 sequences with little image motion. All these

sequences are urban, so we additionally select those frames

from the training sequences that are in the middle between 2

training images with distance of at least 20 frames. In total

we obtain a validation set of 100 urban and 144 residential

area images.

4.1. Implementation Details

We initialize the encoder part of our network with

ResNet-50 [11] weights pretrained for ImageNet classifica-

tion task. The convolution filter weights in the decoder part

are initialized randomly according to the approach of Glo-

rot and Bengio [8]. We also tried the initialization by He

et al. [10] but did not notice any performance difference.
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We predict the inverse depth and initialize the network in

such a way that the predicted values are close to 0 in the

beginning of training. This way, the unsupervised direct

image alignment loss is initialized with almost zero dispar-

ity between the images. However, this also results in large

gradients from the supervised loss which would cause diver-

gence of the model. To achieve a convergent optimization,

we slowly fade-in the supervised loss with the number of

iterations using λt = βe
−10
t . We also experimented with

gradually fading in the unsupervised loss, but experienced

degraded performance on the upper part of the image. In or-

der to avoid overfitting we use L2 regularization on all the

model weights with weight decay wd = 0.00004. We also

apply dropout to the output of the last upprojection layer

with a dropout probability of 0.5.

To train the CNN on KITTI we use stochastic gradient

descent with momentum with a learning rate of 0.01 and

momentum of 0.9. We train the variants of our model for at

least 15 epochs on a 6 GB NVIDIA GTX 980Ti with 6 GB

memory which allows for a batch size of 5. We stop train-

ing when the validation loss starts to increase and select the

best performing model on the validation set. The network

is trained on a resolution of 621×187 pixels for both input

images and ground truth depth maps. Hence, the resolution

of the predicted inverse depth maps is 320×96. For eval-

uation we upsample the predicted depth maps to the reso-

lution of the ground truth. For data augmentation, we use

γ-augmentation and also randomly multiply the intensities

of the input images by a value α ∈ [0.8; 1.2]. The inference

from one image takes 0.048 s in average.

4.2. Evaluation Metrics

We evaluate the accuracy of our method in depth predic-

tion using the 3D laser ground truth on the test images. We

use the following depth evaluation metrics used by Eigen et

al. [5]:

RMSE:

√

1
T

∑T
i=1 ‖ρ(xi)−1 − Z(xi))‖

2
2,

RMSE (log):

√

1
T

∑T
i=1 ‖log(ρ(xi)−1)− log(Z(xi)))‖

2
2,

Accuracy:

∣

∣

∣

∣

{

i∈{1,...,T}

∣

∣

∣

∣

max

(

ρ(xi)
−1

Z(xi)
,

Z(xi)

ρ(xi)
−1

)

=δ<thr

}∣

∣

∣

∣

T ,

ARD: 1
T

∑T
i=1

|ρ(xi)
−1−Z(xi)|
Z(xi)

,

SRD: 1
T

∑T
i=1

|ρ(xi)
−1−Z(xi)|

2

Z(xi)

where T is the number of pixels with ground-truth in the

test set.

In order to compare our results with Eigen et al. [5] and

Godard et al. [9], we crop our image to the evaluation crop

applied by Eigen et al. We also use the same resolution of

the ground truth depth image and cap the predicted depth

at 80 m [9]. For comparison with Garg et al. [6], we ap-

ply their evaluation protocol and provide results when dis-

carding ground-truth depth below 1 m and above 50 m while

capping the predicted depths into this depth interval. This

means, we set predicted depths to 1 m and 50 m if they

are below 1 m or above 50 m, respectively. For an ablation

study, we also give results for our method evaluated on the

uncropped image without a cap on the predicted depths, but

set the minimum ground-truth depth to 5 m.

4.3. Results

4.3.1 Comparison with the State-of-the-Art

Table 2 shows our results in relation to the state-of-the-art

methods on the test images of the KITTI benchmark. For

all metrics and setups, our system performs the best. We

outperform the best setup of Godard et al. [9] by 1.16 m (ca.

14%) in terms of RMSE and by 0.035 (ca. 16%) for its log

scale at the cap of 80 m. When evaluating at a prediction

cap of 50 m, our predictions are in average 1.586 m more

accurate in RMSE than the results reported by Garg et al.

[6]. The benefit of adding the unsupervised loss is larger

for the 0-80 m evaluation range where the ground truth is

sparser for far distances.

We also qualitatively compare the output of our method

with the state-of-the-art in Fig. 7. In some parts, the pre-

dictions of Godard et al. [9] may appear more detailed and

our depth maps seem to be smoother. However, these de-

tails are not always consistent with the ground truth depth

maps as also indicated by the quantitative results. For in-

stance, our predictions for the thin traffic poles and lights of

the top frame in Figure 7 appear more accurate. We provide

additional qualitative results in the supplementary material.

4.3.2 Ablation Study

We also analyze the contributions of the various design

choices in our approach (see Table 3). The use of the un-

supervised loss term on all valid pixels improves the per-

formance compared to the variant with unsupervised term

evaluated only for valid pixels without available ground

truth. When using the L2-norm on the supervised loss in-

stead of the berHu norm, the RMSE evaluation metric on

the ground-truth depth improves on the validation set, but is

worse on the test set. The L2-norm also visually produces

noisier depth maps. Thus, we prefer to use BerHu over L2,

which reduces the noise (see Fig. 8) and performs better on

the test set. We also found that our system benefits from

both long skip connections and Gaussian smoothing in the

unsupervised loss. The latter also results in slightly faster

convergence. Cumulatively, the performance drop without

long skip connections and without Gaussian smoothing is

0.119 in RMSE towards our full approach.

6652



RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.25
2

δ < 1.25
3

Approach cap lower is better higher is better

Eigen et al. [5] coarse 28×144 0 - 80 m 7.216 0.273 0.228 - 0.679 0.897 0.967

Eigen et al. [5] fine 27×142 0 - 80 m 7.156 0.270 0.215 - 0.692 0.899 0.967

Liu et al. [20] DCNF-FCSP FT 0 - 80 m 6.986 0.289 0.217 1.841 0.647 0.882 0.961

Godard et al. [9] 0 - 80 m 5.849 0.242 0.141 1.369 0.818 0.929 0.966

Godard et al. [9] + CS 0 - 80 m 5.763 0.236 0.136 1.512 0.836 0.935 0.968

Godard et al. [9] + CS + post-processing 0 - 80 m 5.381 0.224 0.126 1.161 0.843 0.941 0.972

Ours, supervised only 0 - 80 m 4.815 0.194 0.122 0.763 0.845 0.957 0.987

Ours, unsupervised only 0 - 80 m 8.700 0.367 0.308 9.367 0.752 0.904 0.952

Ours 0 - 80 m 4.621 0.189 0.113 0.741 0.862 0.960 0.986

Garg et al. [6] L12 Aug 8x 1 - 50 m 5.104 0.273 0.169 1.080 0.740 0.904 0.962

Ours, supervised only 1 - 50 m 3.531 0.183 0.117 0.597 0.861 0.964 0.989

Ours, unsupervised only 1 - 50 m 6.182 0.338 0.262 4.537 0.768 0.912 0.955

Ours 1 - 50 m 3.518 0.179 0.108 0.595 0.875 0.964 0.988

Table 2. Quantitative results of our method and approaches reported in the literature on the test set of the KITTI Raw dataset used by Eigen

et al. [5] for different caps on ground-truth and/or predicted depth. Best results shown in bold, second best in italic.

RMSE RMSE (log) δ < 1.25 δ < 1.25
2

δ < 1.25
3

Approach lower is better higher is better

Supervised training only 4.862 0.197 0.839 0.956 0.986

Unsupervised training only (50 m cap) 6.930 0.330 0.745 0.903 0.952

Only 50 % of laser points used∗ 4.808 0.192 0.852 0.958 0.986

Only 1 % of laser points used∗ 4.892 0.202 0.843 0.952 0.983

No long skip connections and no Gaussian smoothing∗ 4.798 0.195 0.853 0.957 0.984

No long skip connections∗ 4.762 0.194 0.853 0.958 0.985

No Gaussian smoothing in unsupervised loss∗ 4.752 0.193 0.854 0.958 0.986

L2-norm instead of BerHu-norm in supervised loss 4.659 0.195 0.841 0.958 0.986

Our full approach∗ 4.679 0.192 0.854 0.959 0.985

Our full approach 4.627 0.189 0.856 0.960 0.986

Table 3. Quantitative results of different variants of our approach on the KITTI Raw Eigen test split [5] (without cropping and capping the

predicted depth, ground truth minimum depth is 5 m). Approaches marked with ∗ are trained with the unsupervised loss only for the pixels

without available ground truth. Best results shown in bold.

To show that our approach benefits from the semi-

supervised pipeline, we also give results for purely super-

vised and purely unsupervised training. For purely super-

vised learning, our network achieves less accurate depth

map prediction (0.235 higher RMSE) than in the semi-

supervised setting. In the unsupervised case, the depth maps

include larger amounts of outliers such that we provide re-

sults for capped depth predictions at a maximum of 50 m.

Here, our network seems to perform less well than the un-

supervised methods of Godard et al. [9] and Garg et al. [6].

Notably, our approach does not perform multi-scale image

alignment, but uses the available ground truth to avoid local

optima of the direct image alignment. We also demonstrate

that our system does not suffer severely if the ground truth

depth is reduced to 50% or 1% of the available measure-

ments. To this end, we subsample the available laser data

prior to projecting it into the camera image.

Our results clearly demonstrate the benefit of using a

deep residual encoder-decoder architecture with long skip

connection for the task of single image depth map pre-

diction. Our semi-supervised approach gives additional

training cues to the supervised loss through direct image

alignment. This combination is even capable of improving

depth prediction error for the laser ground-truth compared

to purely supervised learning. Our semi-supervised learn-

ing method converges much faster (in about one third the

number of iterations) than purely supervised training.

4.3.3 Generalization to Other Datasets

We also demonstrate the generalization ability of our model

trained on KITTI to other datasets. Fig. 9 gives qualitative

results of our model on test images of Make3D [23, 25]

and Cityscapes [2]. We also evaluated our model quanti-

tatively on Make3D where it results in 8.237 RMSE (m),
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RGB GT [5] [20] [6] [9] ours

from [9] from [9] from [9] from [9] from [9]
Figure 7. Qualitative results and comparison with state-of-the-art methods. Ground-truth (GT) has been interpolated for visualization.

Note the crisper prediction of our method on objects such as cars, pedestrians and traffic signs. Also notice, how our method can learn

appropriate depth predictions in the upper part of the image that is not covered by the ground-truth.

RGB full sup. only L2 half GT

Figure 8. Qualitative results of variants of our semi-supervised learning approach on the KITTI raw test set. Shown variants are our full

approach (full), our model trained supervised only (sup. only), our model with L2 norm on the supervised loss (L2) and using half the

ground-truth laser measurements (half GT) for semi-supervised training.

Figure 9. Qualitative results on Make3D (left 2) and Cityscapes

(right).

0.190 Log10 error (see [16]) and 0.421 ARD. Qualitatively,

our model can capture the general scene layout and objects

such as cars, trees and pedestrians well in images that share

similarities with the KITTI dataset. Further qualitative re-

sults can be found in the supplementary material.

5. Conclusions

In this paper, we propose a novel semi-supervised deep

learning approach to monocular depth map prediction.

Purely supervised learning requires a vast amount of data.

In outdoor environments, often supplementary sensors such

as 3D lasers have to be used to acquire training data. These

sensors come with their own shortcoming such as specific

error and noise characteristics and sparsity of the measure-

ments. We complement such supervised cues with unsuper-

vised learning based on direct image alignment between the

images in a stereo camera setup. We quantify the photocon-

sistency of pixels in both images that correspond to each

others according to the depth predicted by the CNN.

We use a state-of-the-art deep residual network in an

encoder-decoder architecture and enhance it with long skip

connections. Our main contribution is a seamless combina-

tion of supervised, unsupervised, and regularization terms

in our semi-supervised loss function. The loss terms are de-

fined symmetrically for the available cameras in the stereo

setup, which implicitly promotes consistency in the depth

estimates. Our approach achieves state-of-the-art perfor-

mance in single image depth map prediction on the popular

KITTI dataset. It is able to predict detailed depth maps on

thin and distant objects. It also estimates reasonable depth

in image parts in which there is no ground-truth available

for supervised learning.

In future work, we will investigate semi-supervised

learning for further tasks such as semantic image segmenta-

tion. Our approach could also be extended to couple monoc-

ular and stereo depth cues in a unified deep learning frame-

work.
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