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Abstract

This paper proposes a new machine learning method for constructing ranking
models in document retrieval. The method, which is referred to as SSRANK, aims
to use the advantages of both the traditional Information Retrieval (IR) methods
and the supervised learning methods for IR proposed recently. The advantages in-
clude the use of limited amount of labeled data and rich model representation. To do
so, the method adopts a semi-supervised learning framework in ranking model con-
struction. Specifically, given a small number of labeled documents with respect to
some queries, the method effectively labels the unlabeled documents for the queries.
It then uses all the labeled data to train a machine learning model (in our case,
Neural Network). In the data labeling, the method also makes use of a traditional IR
model (in our case, BM25). A stopping criterion based on machine learning theory is
given for the data-labeling process. Experimental results on three benchmark data
sets and one web search data set indicate that SSRANK consistently and almost al-
ways significantly outperforms the baseline methods (unsupervised and supervised
learning methods), given the same amount of labeled data. This is because SSRANK
can effectively leverage the use of unlabeled data in learning.

Key words:
Information Retrieval, Machine Learning, Data Mining, Learning to Rank,
Semi-Supervised Learning,

* Corresponding author. Tel: +86-25-8368-6268; Fax: +86-25-8368-6268; Email:
zhouzh@nju.edu.cn

Preprint submitted to Information Processing & Management 7 December 2008



1 Introduction

Recently, supervised machine learning methods have been applied to ranking
function construction in document retrieval (Joachims, 2002; Burges et al.,
2005; Gao et al., 2005; Cao et al., 2006; de Almeida et al., 2007; Cao et al.,
2007; Xu and Li, 2007; Yue et al., 2007). This approach offers many advan-
tages, because it employs a rich model for document ranking. For instance, it
is easy to add new ‘features’ into the ranking model. In fact, recent investiga-
tions have demonstrated that supervised learning approach works better than
the conventional IR methods for relevance ranking. On the other hand, the
machine learning approach also suffers from a drawback that traditional IR
approaches such as BM25 and Language Modeling do not. That is, it needs a
large amount of labeled data for training and usually the labeling of data is ex-
pensive. (In that sense, the traditional IR methods are ‘unsupervised learning
methods’).

One question arises here: can we leverage the merits of the two approaches
and develop a method that combines the uses of the two? This is exactly the
issue we address in this paper. Specifically, we propose a method on the basis
of semi-supervised learning. To the best of our knowledge, there has been no
previous work focusing on this problem.

A ranking function based on unsupervised learning can always be created
without data labeling. Such a function can work reasonably well. Thus, the
problem in this paper can be recast as that of how to enhance the ranking
accuracy of a traditional IR model by using a supervised learning method and
a small amount of labeled data. On the other hand, supervised learning for
ranking usually requires the use of a large amount of labeled data to accurately
train a model, which is very expensive. The addressed problem can also be
viewed as that of how to train a supervised learning model for ranking by using
a small amount of labeled data and by leveraging a traditional IR model.

The key issue for our current research, therefore, is to design a method that can
effectively use a small number of labeled data and a large number of unlabeled
data, and can effectively combine supervised learning (e.g., RankNet) and
unsupervised learning (e.g., BM25) methods for ranking model construction.

Our method, referred to as SSRANK (Semi-Supervised Rank), naturally uti-
lizes the machinery of semi-supervised learning to achieve our goal. In training,
given a certain number of queries and the associated labeled documents, SS-
RANK ranks all the documents for the queries using a supervised learning
model trained with the labeled data, as well as using an unsupervised learn-
ing model. As a result, for each query, two ranking results of the documents
with respect to the query are obtained. SSRANK then calculates the relevance



score of each unlabeled document for each query, specifically, the probability
of being relevant or being in a high rank of relevance. It labels the unlabeled
documents if their relevance scores are high enough. With the labeled data,
a new supervised learning model can be constructed. SSRANK repeats the
process, until a stopping criterion is met. In this paper, we propose a stopping
criterion on the basis of machine learning theory.

Experimental results on three benchmark data sets and one web search data
set show that the proposed method can significantly outperform baseline meth-
ods (either a supervised method using the same amount of labeled data or an
unsupervised method).

The setting of SSRANK is somewhat similar to that of relevance feedback
(or pseudo relevance feedback). There are also some clear differences between
SSRANK and relevance feedback (or pseudo relevance feedback), however, as
will be explained in Section 2.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 explains the semi-supervised learning method: SSRANK. Section 4
gives the experimental results. Section 5 provides our conclusion and discusses
future work.

2 Related Work

2.1 Learning for Document Retrieval

In Information Retrieval, traditionally ranking models are constructed in an
unsupervised fashion, for example, BM25 (Robertson and Hull, 2000) and Lan-
guage Model (e.g., (Lafferty and Zhai, 2001)) are functions based on degree
of matching between query and document. There is no need of data label-
ing, which is no doubt an advantage. Many experimental results show that
these models are very effective and they represent state-of-the-art methods
for document retrieval.

In Machine Learning, the problem of ‘learning to rank’ became a popular
research topic recently and many methods have been proposed. The ranking
problem is defined as that of assigning scores to instances and sorting the
instances by using the scores. A typical setting in learning to rank is that
instances labeled with a number of ordered categories or ‘ranks’ are given and
a ranking model is created using the labeled data. For example, Herbrich et al.
(2000) proposed transforming the problem of learning to rank into a problem
of classifying instance pairs and learning the classification model by means of



support vector machines. The method is referred to as Ranking SVM. Freund
et al. (2003) proposed a similar approach to learning to rank, but using the
framework of boosting.

Learning to rank (supervised learning) can also be applied to document re-
trieval, as document retrieval is in nature a ranking problem. Recently, there
have been many investigations in the IR community along this direction. For
example, Joachims (2002) trained Ranking SVM for document retrieval us-
ing click-through data. Gao et al. (2005) trained a linear discriminant model
with features generated by a language model, and made use of the model in
document retrieval. Burges et al. (2005) utilized cross entropy as the loss func-
tion in learning and employed Neural Network as the ranking model. Their
method, called RankNet, was applied to general web search. Cao et al. (2006)
adapted Ranking SVM to document retrieval by modifying the loss function
such that the model is trained with more considerations on higher ranks and
queries with fewer relevant documents. Besides, genetic programming has been
applied to ranking function construction for document retrieval (Fan et al.,
2004; Trotman, 2005; Cummins and O’Riordan, 2006; de Almeida et al., 2007).
Recently, learning to rank has been extended from pairwise training approach
to listwise training approach, and successfully applied to document retrieval
problem (Cao et al., 2007; Xu and Li, 2007; Yue et al., 2007). Since it is easy
to add new features into the rank model, the supervised learning approach
enjoys higher accuracy and better adaptability. The previous work shows that
this is exactly the case and a ranking method based on supervised learning
usually performs better than an unsupervised traditional IR method.

2.2 Semi-Supervised Learning

Semi-supervised learning (Chapelle et al., 2006; Zhu, 2005) is a machine learn-
ing paradigm in which the model is constructed with a small number of labeled
instances and a large number of unlabeled instances. One key idea in semi-
supervised learning is to label unlabeled data using certain techniques and
thus increase the amount of labeled training data.

Many semi-supervised learning methods have been proposed. Typical methods
include those using the EM algorithm (Dempster et al., 1977) to estimate the
parameters of a generative model and the labels of unlabeled data (Shahsha-
hani and Landgrebe, 1994; Miller and Uyar, 1997; Nigam et al., 2000), those
defining a graph over the data instances on the basis of certain similarity met-
ric and determining the labels of unlabeled data (Blum and Chawla, 2001;
Zhou et al., 2003; Zhu et al., 2003; Belkin and Niyogi, 2004), and those ap-
plying ‘co-training’ (Blum and Mitchell, 1998) to construct multiple learners
to label unlabeled data (Blum and Mitchell, 1998; Goldman and Zhou, 2000;



Zhou and Li, 2005b; Li and Zhou, 2007; Yu et al., 2007; Zhou et al., 2007). Pre-
vious work on semi-supervised learning mainly focused on classification (e.g.,
(Blum and Mitchell, 1998; Nigam et al., 2000)) and regression (e.g., (Zhou
and Li, 2005a; Brefeld et al., 2006; Zhou and Li, 2007)).

There are only a few studies on semi-supervised learning for ranking. Usunier
et al. (2005) presented a theoretical work, which extended the generalization
bound of semi-supervised learning to ranking and theoretically demonstrated
that unlabeled data is helpful for ranking. Chu and Ghahramani (2005) ex-
tended Gaussian Process for preference learning to a semi-supervised setting
by incorporating the graph Laplacian which is constructed using all the train-
ing examples and the pairwise relationship among them. Note that in docu-
ment retrieval, ranking function models the ordering of retrieved document
within each query rather than across queries. In other words, documents re-
trieved according to different queries are not directly comparable. So, the
general method proposed by (Chu and Ghahramani, 2005) is not suitable for
document retrieval tasks.

Semi-supervised learning has also been applied to applications, such as text
classification (e.g., (Nigam et al., 2000; Li and Liu, 2003; Liu et al., 2003)),
image retrieval (e.g., (Zhou et al., 2004, 2006)) and computer-aided diagnosis
(Li and Zhou, 2007). Recently, it has been used to classify relevant documents
for pseudo-relevance feedback (Huang et al., 2006).

Note that existing semi-supervised learning methods may not be directly ap-
plicable to learning of ranking functions in document retrieval. The reason is
that ranking is an issue different from conventional learning problems such as
classification and regression. In learning for ranking, one needs to learn a model
that can map instances to ordered categories. Possibly the first semi-supervised
learning method that can be applied to “learning to rank” in retrieval task
is (Zhou et al., 2004, 2006) which was designed for image retrieval. In that
method, features are extracted from either the query image or the retrieved
image separately, while in learning to rank for document retrieval methods
(e.g., (Joachims, 2002), (Cao et al., 2006) and (Xu and Li, 2007)), features are
extracted based on query-document pairs. Recently, while the current paper
is being reviewed, two methods that exploit unlabeled data are proposed and
can be adapted to document retrieval task. Amini et al. (2008) labeled the
nearest unlabeled instance of each labeled instance with the same label of this
labeled instance, and then adapted RankBoost (Freund et al., 2003) to learn
ranking function based on the both the originally and newly labeled training
set. Duh and Kirchhoff (2008) exploited unlabeled data in a transductinve
settings, where KPCA was repeatedly applied to the unlabeled instances of
each query. Then, all labeled instances and the unlabeled instances of this
query were projected into this new space, and a ranking function was learned
using the projected labeled instances to rank all the unlabeled instances. To



the best of our knowledge, our current paper is the first work that leverages
the learning to rank machinery and conventional document retrieval model to
address the semi-supervised document retrieval problem.

2.8 Relevance Feedback

Relevance feedback (Rocchio, 1971; Salton and Buckley, 1990; Harman, 1992;
Shen and Zhai, 2005) and pseudo relevance feedback (Attar and Fraenkel,
1977; Xu and Croft, 1996; Sakai et al., 2005; Tao and Zhai, 2006) are known
to be effective methods for improving the performances of document retrieval.
In relevance feedback, given a query by the user, the retrieval system returns
a number of documents and asks the user to make judgments on the relevance
of the documents with respect to the query. Then, the system uses the judged
documents to modify the query using techniques such as query expansion
and query term reweighting, and re-retrieves documents with the modified
query. In the re-retrieval process, Rochio’s algorithm (Rocchio, 1971) etc are
employed. Instead of asking explicit feedbacks from the user, pseudo relevance
feedback takes the top k retrieved documents as ”relevant documents”.

There are similarities between the settings of relevance feedback (or pseudo
relevance feedback) and that of SSRANK in this paper. Specifically, both ap-
proaches attempt to leverage a certain number of relevance judgements to
improve the performance of document retrieval. However, there are also clear
differences between conventional relevance feedback (or pseudo relevance feed-
back) and SSRANK. Firstly, relevance feedback usually makes use of the la-
beled documents to reform the query, while SSRANK makes use of the la-
beled documents to refine the ranking model. Secondly, relevance feedback
(or pseudo relevance feedback) is usually an online process, which is con-
ducted for each individual query . In contrast, learning of SSRANK is an
offline process, which is conducted for all the queries with partial relevance
judgments (some documents are labeled, but the remaining are not). Thirdly,
while relevance feedback aims to improve the retrieval results for the current
query, while SSRANK is targeted at improvements on the relevance of new
queries. Fourthly, the co-training style algorithm in SSRANK largely differs
from Rocchio’s algorithm etc, used in relevance feedback (or pseudo relevance
feedback).



3 The proposed method: SSRANK
3.1 General Framework

Suppose that there is a document collection. In retrieval, the documents re-
trieved with a given query are sorted using a ranking model such that the
documents relevant to the query are on the top, while the ranking model is
created using machine learning. In learning, a number of queries are given,
and for each query a number of documents are retrieved and the correspond-
ing labels are attached. The labels associated with the documents for a query
represent the relevance degrees of the documents with respect to the query.
For each query and document pair, we construct a feature vector. TF-IDF
score, for example, can be a feature. We construct the ranking model using
all the feature vectors and their corresponding labels. For simplicity, we also
refer a feature vector as a document (associated with a certain query).

Let 2 denote an instance (feature vector), z € X : X C R? and let y denote a
label representing a relevance degree, or a rank, y € YV : Y = {ry,re, ..., "a}.
There exists a total order between the labels in YV: ry; > ras—1 > ... = r1, where
r; > r; implies that 7; has higher relevance than r;. Let f : X — R be a ranking
function. In ranking, instances (corresponding to documents) with respect to
a query are sorted according to f such that x; > x; if f(z;) > f(x;). The
learning of the ranking function can be performed by employing supervised
learning methods such as Ranking SVM and RankNet.

In this paper we consider the case in which for each query in the training data
only a small number of documents (instances) associated with it are labeled
and the remaining documents (instances) are unlabeled. Note that this is
commonly true in IR. Let X = {z1,x9,...,xx} be the set of training instances
from all the trainin% queries. Some instances in X have been manually labeled.
Let L = {(ml,yl)}lﬂl and U = {z,}, |, respectively denote the sets of
labeled instances and unlabeled instances.

We propose a semi-supervised learning method to accomplish the learning
task. For any unlabeled instance z,, we calculate the scores for all the possible
labels, and then choose the most likely label for it. With the labeled data
set augmented with these newly labeled instances, we train a more accurate
ranking model.

We consider using multiple base ranking functions representing multiple ‘views’
and then combining the uses of them for labeling the unlabeled data, fol-
lowing the idea of co-training. Specifically, there are V' base ranking func-
tions f; : X — R, ..., fyy + X — R. Each base ranking function can assign
scores to the instances with respect to a query. Suppose that for each view



v, T, is assigned a score representing the likelihood of its being in rank r,,:
So(Yu = Tm|Ty), rm € Y with the base ranking function f,. We can then cal-
culate the final score of x,’s being in rank r,,: S(y, = m|z,), from the scores
of all the views, and choose the rank that has the highest score as the rank of
x, (Ranks are randomly picked up when there is a tie). Several strategies for
the combination can be considered. First, we can employ linear combination

S (yu = Tm|xU) = Zw(v>8v<yu = Tm|xu) (1)

v=1

where w(v) is weight of view v and Y-, w(v) = 1. Here, we can define w(v)
as the confidence of judgment by f,. Alternatively, we can employ majority
voting

1 Vv
S (Yo = rm|Ts) = VZ 0 (Tm = arg max So(Yu = n|1‘u)> (2)
v=1 v

where 0(B) takes 1 as value if B is true and 0 otherwise.

Note that there is a total order relationship existing in ), and thus the two
strategies are not the same as those in learning for multi-class classification.

3.2 Score Calculation

We propose a way of calculating scores of unlabeled data for each view in the
above semi-supervised learning method.

Using one of the base ranking functions f,, we can rank the instances (cor-
responding to documents) associated with a query. Note that some of the
instances are labeled while the others are unlabeled. If f,(z;) is larger than
fo(z;) , then it is likely z; has a higher rank than z;, i.e., y; > y;.

We assign a probability vector to each instance (either labeled or unlabeled)
using the scores of all the labeled instances given by the base ranking function.

First, we define the probability of z; being ranked no lower than z; by f, (i.e.,
y; = y;) with respect to query ¢ as

oFol@)—fu(w)
Pv (yi ~ yj|$ia Ty, Q) = 1+ efv(ﬂci)*fv(zj) (3)

following the proposal in (Burges et al., 2005). We next define the probability



of instance x; having a rank no lower than r,, as

1
P, (yi = rml|xi,q) = o Z P, (yi = yjlxi, 24, q) (4)

xjeaq
yj=rm

where o, denotes the labeled instances with respect to ¢ and [,,, denotes the
number of instances in o, labeled as ry,.

Since there are M ranks, we calculate M such probabilities. Each instance,
both labeled and unlabeled, then is assigned an M-dimensional probability
vector, calculated according to Eq. 4. All the probability vectors from all the
queries are collected together in the new probability space. In the new space,
we then employ the k-Nearest Neighbor method (Mitchell, 1997) to calculate
Sy (Yu = Tm|Ty), the score of possible rank r,, of instance z,, from the ranks of
its k nearest labeled instances, where Euclidean distance is used as the metric.

It is noteworthy that mapping instances from the feature space into the prob-
ability space is essential for our score calculation method. Specifically, the
mapping makes instances from different queries comparable. This is because
in the probability space the probability vectors represent the likelihood values
of instances in different ranks, which do not depend on queries. Moreover,
the probability vectors contain the ordering information in the ranking lists.
Consequently, we can employ a method like kNN to make predictions on the
ranks of unlabeled instances from all the labeled instances .

We note that alternative ways for labeling unlabeled data may exist. For in-
stance, one can make use of P(rx11 > y; = 7|2, q) in the score calculation.

It seems, however, that it is hard to accurately estimate the probability, ac-
cording to our experiment.

3.8 Theoretical Analysis

In a semi-supervised learning method, unlabeled instances can be incorrectly
labeled and noise can be introduced. It is important, therefore, to clarify the
condition under which data labeling can be continued, in order to enhance the
accuracy of the learning. The following proposition provides such a condition.

Proposition 1 Let mqy denote the number of labeled instance pairs in the
training data and my denote the number of labeled instance pairs in the first
iteration of semi-supervised learning. Let ey denote the error rate in the newly
labeled instance pairs in the first iteration. If the following inequality holds

o < (a—|—1)2—a\/a+1 (5)




where a = my/my, then the accuracies of ranking functions can be improved
i terms of the lower bound of average precision in the first iteration of the
semi-supervised learning.

Let m; and my;_1 respectively denote the number of labeled instance pairs in
the t-th iteration and the (t —1)-th iteration of semi-supervised learning. Let e;
and e;_1 respectively denote the error rate in the newly labeled instance pairs
in the t-th iteration and the (t — 1)-th iteration. If the following inequalities
hold

€t mi—1

0< —<

<1 6
€t—1 my ( )

where e;_1 < 0.5 and e; < 0.5, then the accuracies of ranking functions can be
improved in terms of the lower bound of average precision in the t-th iteration
(t > 1) of the semi-supervised learning.

It is not difficult to verify that the proposition holds.

PROOF.
We use two theoretical results obtained in previous work.

First, let us consider using a learning to rank method, for example RankNet
(Burges et al., 2005) and Ranking SVM (Joachims, 2002) to create the ranking
model . Such a method transforms the ranking problem into that of classify-
ing instance pairs. The learning process, thus, is equivalent to constructing a
classifier h : X x X +— {+1,—1}, where +1 and —1 stand for ‘ordering the
first instance before the second instance’ and ‘ordering the first instance after
the second instance’, respectively. Errors made by h imply pair inversions in a
ranking. According to Joachims (2002), the performance of a ranking function
in terms of average precision in the setting is approximately bounded from
below by the inverse of the number of instance pair inversions (errors).

Next, let us analyze the error rate introduced in data labeling, following a
similar analysis in (Goldman and Zhou, 2000) and (Zhou and Li, 2005b). We
actually utilize the theoretical results on learning from noisy data proposed
by Angluin and Laird (1988). Let m and n(< 0.5) denote the size of training
set and the noise rate in the training set. Let h denote a learned hypothesis
that minimizes the disagreement on a sequence of noisy training instances
and € denote the worst-case error rate of h. If m, n and € satisfy the following
condition
c

" e .

10



where ¢ is a constant, the difference between h and the true hypothesis h* will
be small with very high probability. Letting u = c¢/€?, the equation can be
re-formalized as the following utility function.

u= 5 =m(l -2’ (8)

Let hg denoted the hypothesis learned from the labeled instance pairs and h,
denote the hypothesis learned in the first iteration . To make h; have smaller
classification error rate than hg, the utility of h; should be larger than that of
ho, ie.

mo(1 — 2m9)% < (mo +mq) (1 — 2m;)? (9)

where

_ oMo + e1my
mo + my

m (10)

Assume that there exists no noise in the original training set, and thus ny = 0.
Solving the inequity in Eq. 9 yields Eq. 5. It follows that when Eq.5 is satisfied,
hi makes fewer pair inversions than hy and hence the corresponding ranking
function f; has higher average precision lower bound than fj.

It is also easy to verify that Eq. 6 holds for the (¢ — 1)-th and ¢-th iterations
in a similar way. O

3.4 Algorithm

Now we can build the semi-supervised learning algorithm SSRANK on the
basis of the discussions above. Fig. 1 shows the pseudo code of the algorithm.
We can see that significant differences exist between SSRANK and relevance
feedback (or pseudo relevance feedback).

In this paper we only consider the uses of two views (i.e., V = 2). One ranking
function is based on machine learning namely RankNet and the other is based
on IR namely BM25. The two views are denoted as Learning View and IR
View respectively. Note that in SSRANK only the base ranking function in
Learning View is iteratively updated, while the base ranking function in IR
View does not change, because the latter is an unsupervised function. We
use the theoretical result in Section 3.3 to derive the stopping criterion. The
algorithm iterates until the stopping criterion is met.

11



Algorithm: SSRANK
Input: labeled instance set L, unlabeled instance set U, combining strategy C
conventional document retrieval method: IR, (e.g. BM25),
machine learning method for ranking: ML, (e.g. RankNet)
Process:

Construct f(*) using IR

Calculate the scores of the instances w.r.t each query ¢ using f(*)

Calculate the probabilities of all the ranks in ) for each instance

Assign scores to the unlabeled instances in U using the method in Section 3.2

t—1

Learn a ranking function f) from L: f( «— ML(L)

Repeat Until f() does not change
Calculate the scores of the instances w.r.t each query ¢ using f(®
Calculate the probabilities of all the ranks in ) for each instance
Assign scores to the unlabeled instances in U using the method in Section 3.2
Combine the scores from f() and f(*) using C (Section 3.1) to label unlabeled instances
Construct L’ using newly labeled instances
Calculate the number of newly labeled pairs m; and estimate the error rate é;
ift=1 % the first iteration

if é; < m ((mt/mo +1) — +/(m¢/mo + 1)) % refer to Eq. 5

Learn a ranking function from LU L’: f() «— ML(LUL')

else % the other iterations
if my_1 <my and émmy < é_1mi_1 % refer to Eq. 6
Learn a ranking function from LU L’: f() « ML(LUL’)
t—t+1

Output: the learned ranking function f()

Fig. 1. The SSRANK algorithm

In each iterations, the main computational cost is on the refinement of the
ranking functions. Suppose that the cost of training one ranking function is
O(v), where v is a variable indicating the order of the computational cost of
the ranking function learning method. For example, for RankNet, v = cI/W N?
where N is the total number of training examples, ¢ is the number of epochs in
training, and W is the total number of weights in the neural network. Since the
rank computation and ranking model evaluation in both views (e.g., RankNet
and BM25) are extremely fast, the cost is dominated by the refinement of
the ranking function generated by the machine learning method, and hence is
roughly O(v). Assume the algorithm stops after ¢ iterations, the total cost will
be O(tv). Usually t is a small integer (e.g. in most cases ¢ is less than 3). So,
the cost of SSRANK is just slightly expensive than running a pure supervised
algorithm on the labeled data, but the reward is a significant improvement of
the performance.

4 Experiments

4.1  Benchmark Data Sets

We used three benchmark data sets on document retrieval in our experiments.

12



The first two data sets are from the TREC ad-hoc retrieval track. The docu-
ment collections are from The Wall Street Journal (WSJ) and Associated Press
(AP), which can be found in TREC Data Disk 2 and 3. WSJ contains 74,521
articles from 1990 to 1992, and AP contains 158,241 articles from 1988 and
1990. The queries are from the description fields of 200 TREC topics (No.101
~ No0.300). Each query has a number of documents associated and they are
labeled as ‘Relevant’ or ‘Irrelevant’ (to the query). Following a similar prac-
tice in (Trotman, 2005), the queries that have less than 10 relevant documents
were discarded.

The third data set is the OHSUMED collection (Hersh et al., 1994) from
the TREC filtering track. The data set contains 348,566 documents and 106
queries; in total 16,140 documents have been judged as ‘Definitely Relevant’,
‘Partially Relevant’, or ‘Irrelevant’ (to the queries).

Table 1

Statistics of data sets
Data Set # Queries # Docs # Docs Per Query
AP 116 24727 213.16
WSsJ 126 40230 319.29
OHSUMED 106 16140 152.26

Table 1 gives the statistics of the data sets. For all the three data sets, stop
words were removed and terms were stemmed with Potter Stemmer (Baeza-
Yates and Ribeiro-Neto, 1999). Table 2 gives the details of the features used,
where tf(t,d) and idf (t,C) respectively denote term frequency of term ¢ in
document d and inverse document frequency of ¢ in document collection C,
respectively. The features, defined based on query-document pairs, are those
widely used in learning methods for IR (e.g., (Nallapati, 2004) and (Cao et al.,
2006)).

Table 2

Features defined based on query-document pairs

1D Feature Value 1D Feature Value

1 > log (tf(t,d)+ 1) 2 > log(tf(t D )
teqnd teqnd

3 S log (idf (t,C)) 4 > log (5D +1)
teqnd teqnd

5 > log (LD idf(t,0) +1) 6 S log (M. 4 1)
teqnd teqnd

7 log (BM25(q,d))

13



4.2 Evaluation Measures

In the experiments, Normalized Discounted Cumulative Gain (NDCG) (Jarvelin
and Kekalainen, 2000) was used to evaluate the performance of the ranking
methods. Given a query ¢;, the NDCG score at position p in a ranking list
ordered by a ranking function is defined as

zp: 2" —1

g(1+ ) (11)

where r; is the rank of the j-th document, and the normalization constant n;
is chosen such that the NDCG score of the ideal ordering becomes 1. The final
NDCG score is averaged over the scores of all the queries. In this paper, the
NDCG scores at positions of 1, 3, 5 and 10 are reported.

Mean Average Precision (MAP) was also used. MAP stands for the mean of
Average Precisions over all the queries. Given a query ¢;, Average Precision is

defined as

AvgPre; = % de )(R]/]) (12)

Jj=1

where R and R; denote the number of relevant documents and the number of
documents before the position (j+1) respectively, m; is the number of retrieved
documents, and I(j) is an indicator which takes value 1 if the document at
position j is relevant and value 0 otherwise. Note that, unlike NDCG, MAP can
only handle the cases, in which there are two relevance ranks, i.e. relevant and
irrelevant. When there are more than two ranks of relevance, e.g., OHSUMED,
the highest rank is treated as relevance and the others irrelevant in calculation

of MAP.
4.3 FExperiment 1: Comparison with Baselines

We conducted four-fold cross validation on all the data sets in all the exper-
iments. In each fold, for each query in the training set, the documents were
randomly split into two groups according to a ratio. In one group the labels
on relevance of the documents were used, and in the other group the labels
were withheld and the documents were viewed as unlabeled. The ratio is re-
ferred to as labeling rate (u). For instance, if there are 100 documents and
the labeling rate is 10%, then 10 documents are used as labeled data, and
90 documents are used as unlabeled data. In our experiments, we used four
different labeling rates: 10%, 20%, 30% and 40%. Methods were evaluated and
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compared under different labeling rate for each data set. As a result, there are
12 different groups of results (i.e. 3 data sets x 4 labeling rates). To ensure
that for most queries relevant instances were selected into the labeled data set,
for each query, documents with BM25 scores lower than 0.01 were discarded
and were not used in the experiment. The number of relevant instances was
roughly one tenth in the experiments.

We then applied SSRANK to all the data sets. In our experiments, for Learning
View of SSRANK we employed RankNet (Burges et al., 2005) and for IR View
we employed BM25 (Robertson and Hull, 2000). For the score calculation with
k-Nearest Neighbor, k was fixed at 10 (cf., Section 3). For combination of the
two views RankNet and BM25 at SSRANK, we tried both strategies: linear
combination (c.f., Eq. 1) and agreement (a special case of Eq. 2 when V' = 2),
denoted as SSRANK-Lin and SSRANK-Agr, respectively. For comparison, we
also tested SSRANK with only one view. The one using RankNet is referred
to as SSRANK-RN, and the other one is referred to as SSRANK-BM.

Table 3

Methods compared in the experiments

Type Name Information

Semi-supervised SSRANK-lin SSRANK using linear combination of the two views (c.f. Eq. 1)
SSRANK-Agr SSRANK using agreement combination of the two views (c.f. Eq. 2)
SSRANK-RN SSRANK using only one view where RankNet is used

SSRANK-BM SSRANK using only one view where BM25 is used

Supervised RankNet-L RankNet trained only on labeled data

RankNet-LU RankNet trained on labeled and unlabeled data with the true labels

Unsupervised BM25 BM25 is a traditional document retrieval method

Here, we only experiment with two implementations of RankNet as baseline
methods. The first one, RankNet-L, uses only the labeled data to train the
model. This is what we can obtained with RankNet in real-world tasks. The
second one, RankNet-LU, uses both the labeled data and unlabeled data to
train the model. Note that this is a “cheating” method, which assumes that
it could know the ground-truth labels of all the unlabeled examples. Thus, it
is evident that such a method is infeasible in real-world tasks. However, it is
good to include it in the comparison since it might be the upper performance
of SSRANK. Besides, BM25 is used as another baseline method. We use the
labeled data as the validation set and tune the parameters of BM25 for the
best performance. The detailed information of the compared algorithms is
tabulated in Table 3.

For each data set and each labeled rate, the proposed methods and baseline
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Fig. 2. Performances of methods on three data sets averaged over four labeling rates

methods were evaluated in terms of NDCG and MAP . Figure 2 and Fig. 3
show the results. Due to space limitation, the results of the three data sets
are combined together by data sets and by labeling rates.

Fig. 2 shows the average performances of the methods on different data sets.
We can see from the figure that SSRANK-Lin and SSRANK-Agr outper-
form RankNet-L and BM25. Significant improvements can be observed on AP
and WSJ, while improvement on OHSUMED is small. We can also see that
SSRANK-Lin and SSRANK-Agr are superior to SSRANK-RN and SSRANK-
BM.

Fig. 3 shows the average performances of the methods in labeling rates. We can
see that SSRANK can significantly performs better than the baseline methods
under all the four labeling rates. We can also see that SSRANK with two views
works better than SSRANK with only one view.

Statistical significance testing (¢-test) at significant level 0.05 shows that SSRANK-
Lin and SSRANK-Agr significantly outperform the baselines in more than half
of the twelve settings (three data sets by four labeling rates) in terms of NDCG
and MAP. For example, for NDCG@10, SSRANK-Lin and SSRANK-Agr sig-
nificantly outperform RankNet-L in 7 and 8 settings, respectively, and they
outperform BM25 in 9 and 7 settings, respectively. SSRANK-RN is signifi-
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cantly better than the two baselines in 7 and 5 settings, respectively, and
SSRANK-BM is significantly better than the two baselines in 6 and 4 settings,

respectively.

The relative improvements of SSRANK over RankNet-L and BM25 on the
12 settings are further summarized in Table 4 and Table 5, respectively. The
highest numbers are highlighted in boldface. We can see that SSRANK-Lin
and SSRANK-Agr outperform the baseline methods of RankNet-L and BM25
consistently. Furthermore, SSRANK-Lin and SSRANK-Agr work better than
SSRANK-RN and SSRANK-BM. Additionally, SSRANK-Lin performs slightly

@BM25
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We can conclude, therefore, that SSRANK can perform better than the base-
line methods, and SSRANK with two views can perform better than SSRANK
with one view.

Table 4
Improvements of SSRANK over RankNet-L

Measures SSRANK-Lin SSRANK-Agr SSRANK-RN SSRANK-BM
NDCG@1 18.9% 16.4% 14.6% 11.3%
NDCG@3 8.8% 7.2% 6.1% 3.1%
NDCG@5 7.1% 6.2% 4.6% 2.8%
NDCG@10 5.4% 5.4% 4.0% 2.5%
MAP 5.2% 5.3% 4.6% 2.2%

Table 5

Improvement of SSRANK over BM25
Measures SSRANK-Lin SSRANK-Agr SSRANK-RN SSRANK-BM
NDCG@1 28.1% 25.4% 23.8% 19.9%
NDCG@3 16.1% 14.3% 13.4% 9.8%
NDCG@5 9.6% 8.6% 7.2% 5.0%
NDCG@10 6.4% 6.4% 5.0% 3.4%
MAP 2.7% 2.8% 2.1% -0.3%

4.4 FExperiment 2: Learning Curve

To investigate how the performance of SSRANK improves as the labeling rate
increases (10%, 20%, 30% and 40%), we conducted an additional experiment.
Fig. 4 to Fig. 6 give the learning curves of SSRANK methods and RankNet-L
and RankNet-LU, in terms of NDCG@5 and MAP for the experimental data
sets. It can be observed from the figures that as the amount of labeled data
increases, the performances of all the SSRANK methods approach to RankNet-
LU. Note that the performance of the methods, either semi-supervised meth-
ods or the pure supervised method such as RankNet-L, fluctuate slightly as
the amount of labeled data increase. This might due to the fact that the ex-
perimental data are real-world data which contains much noise. Anyway, in
general, SSRANK-Lin and SSRANK-Agr perform better than SSRANK-RN
and SSRANK-BM, particularly when the labeling rate is low.

4.5  FExperiment 3: Stopping Criterion

We also investigated the effectiveness of the proposed stopping criterion (Propo-
sition 1). Specifically we tested the cases in which we had a fixed number of
iterations 7" in data labeling, 7' = 10. (Recall that in SSRANK data labeling
is performed until the stopping criterion is satisfied). We refer to the corre-
sponding methods as SSRANK”-Lin and SSRANK”-Agr, respectively.
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Experimental results show that SSRANK-Lin and SSRANK-Agr usually per-
form better than SSRANK?-Lin and SSRANK?-Agr on all the 12 settings
(3 data sets by 4 labeling rates). For example, in terms of MAP, SSRANK-
Lin outperforms SSRANK”-Lin on 12 settings and SSRANK-Agr outperforms
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SSRANKT-Agr on 11 settings. Fig. 7 plots the MAP ratios averaged across dif-
ferent labeling rates of SSRANK-Lin and SSRANK-Agr, respectively, on each
experimental data set. Such a ratio is computed by the MAP of the method
stopped after a fixed number of iterations over the corresponding method using
the stopping criterion proposed in Section 3.3. Thus, a ratio less than 1 means
that the method stopping after a fixed number of iterations has lower MAP
value that that using our proposed criterion. It is obvious from the figure that
both SSRANKT-Lin and SSRANK”-Agr perform worse than SSRANK-Lin and
SSRANK-Agr, respectively, which suggests the proposed stopping criterion is
effective.

Furthermore, since the unlabeled data actually had labels (they were only
withheld in the experiments), accuracies on ranking instance pairs as the
training iterates may give some insight of the two different stopping criterion
employed by SSRANK. For example, Fig. 8 shows the accuracies of SSRANK-
Lin and SSRANK?-Lin during the iterations of data-labeling on WSJ under
labeling rate of 10% (i.e., starting from 10% of data labeled). We can see from
the figure that SSRANK-Lin stops after two iterations when it should and the
accuracy keeps on increasing in the training process. In contrast, the accuracy
of SSRANK”-Lin fluctuates. It seems hard to find an optimal point to stop for
the fixed number approach. The same tendencies are observed in the other set-
tings. Note that the accuracies of the two methods differ slightly at the second
iteration. The reason is that RankNet randomly selects the initial values for
training, and thus there is no guarantee that the same model will be obtained
in two different trials. Note that Fig. 8 also reveals that the semi-supervised
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process could not perfectly label the unlabeled examples. Thus, using only the
semi-supervised process could hardly reach the maximum performance that
could be reached by RankNet-LU when all the examples are labeled. This
is easy to understand since when all the data are labeled, semi-supervised
learning is not needed.
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Fig. 8. Accuracies of SSRANK-Lin using different stopping criteria on instance pairs

We note that SSRANK based on a fixed iterations might still work here, but
the use of the stopping criterion appears to be better. The superiority of
the use of the criterion seems to be more evident on MAP than on NDCG,

because the criterion is derived from number of inverse instance pairs and is
more closely related to MAP (Joachims, 2002).

4.6 Discussions

The experimental results show that SSRANK outperforms RankNet-L (using
the same amount of labeled data). It indicates that SSRANK can indeed effec-
tively leverage the use of unlabeled data to enhance the ranking performance
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of the supervised learning method. This is because the only extra information
used by SSRANK is the unlabeled data set, when compared with RankNet-L.

In addition, the performance of BM25 can be improved by using SSRANK and
a small amount of labeled data. This finding will be valuable for IR, because it
points out a new approach to improving the performance of the conventional

IR model.

The experimental results also show that SSRANK performs better than SSRANK-
BM and SSRANK-RN. It suggests that the uses of two views are better than
the uses of one view. For most of time, SSRANK outperforms both single
view methods, suggesting that SSRANK does not simply ‘average’ the per-
formances of the two views. This finding is in accordance with the theory on
semi-supervised learning. That is, if the learner in each view can make pre-
dictions with high accuracy, and the two views are not highly correlated, then
co-training can work well (Balcan et al., 2005).

For combining strategies in SSRANK. Linear combination performs slightly
better than agreement (i.e. the special case of majority voting when V' = 2).
One possible explanation is that the weights used in linear combination can
provide more information.

The stopping criterion of SSRANK, which is derived on the basis of machine
learning theory, appears to be effective. Since in semi-supervised learning noise
will be inevitably involved, the use of the stopping criterion seems to be better.

4.7  Ezxperiment 4: Application to Web Search

We also applied the proposed method SSRANK to a real search system, in
which the amount of labeled data was exactly small. The training data was
created from 150 real user queries. The instances for each query were con-
structed. In total, there were 646 features generated for each query document
pair. For each query only a small number of instances were manually labeled
to represent the degree of relevance, while others were left unlabeled.

SSRANK-Lin and SSRANK-Agr, as well as SSRANK-RN and SSRANK-BM,
were used to learn ranking functions, and then the models were evaluated
with a hold-out test set. The test set consisted of instances generated from
50 queries, and with all the instances being manually labeled. BM25 and
RankNet-L were also used as the baselines. Note that RankNet-LU was not
created, because not all the training data were actually labeled as in the other
experiments.

Fig. 9 shows the results in terms of NDCG and MAP. It can be seen from
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the figure that the four semi-supervised learning methods outperform the
two baseline methods. Furthermore, SSRANK-Lin and SSRANK-Agr performs
better than SSRANK-BM and SSRANK-RN. For example, with the use of
SSRANK-Lin NDCG@1, NDCG@3, NDCG@5, NDCG@10 and MAP are im-
proved by 19.6%, 16.9%, 17.5%, 11.1% and 26.0%, respectively, when com-
pared with RankNet-L.

5 Conclusion and Future Work

This paper addresses the issue of ranking model construction in document
retrieval, particularly when there are only a small amount of labeled data
available. The paper proposes a semi-supervised learning method SSRANK
for performing the task. It leverages the uses of both labeled data and unla-
beled data, utilizes views from both conventional IR and supervised learning
to conduct data labeling, and relies on a criterion to control the process of
data labeling. Several conclusions can be drawn from the experimental results.
First, SSRANK can work better than the baseline methods of using BM25 or
using a supervised learning model with only labeled data. It demonstrates that
SSRANK can effectively leverage the use of unlabeled data. Second, among the
variants of SSRank, the methods of using two views are always better than
those using one single view. This agrees with the findings in semi-supervised
learning studies. Third, the stopping criterion used in SSRANK is indeed ef-
fective to control the quality of data labeling.

In this paper, a stopping criterion for the semi-supervised learning method has
been proposed on the basis of the theoretical results in (Angluin and Laird,
1988). We must note that the bounds used to derive the stopping criterion are
still not tight enough, although the criterion seems to work well empirically.
Further studies on the issue may be needed. In the paper, we have addressed
the cases in which all the training queries have some documents labeled, but
did not consider the cases in which some training queries have labeled docu-
ments while the others do not. How to extend our method to the cases will
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also be an interesting research topic. How much initially labeled data is needed
in order to get the bootstrapping process roll out is another question which
we have not addressed in this paper. This will also be a research topic in the
future.
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