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Abstract

Contemporary domain adaptation methods are very ef-
fective at aligning feature distributions of source and tar-
get domains without any target supervision. However,
we show that these techniques perform poorly when even
a few labeled examples are available in the target do-
main. To address this semi-supervised domain adapta-
tion (SSDA) setting, we propose a novel Minimax Entropy
(MME) approach that adversarially optimizes an adaptive
few-shot model. Our base model consists of a feature
encoding network, followed by a classification layer that
computes the features’ similarity to estimated prototypes
(representatives of each class). Adaptation is achieved
by alternately maximizing the conditional entropy of un-
labeled target data with respect to the classifier and min-
imizing it with respect to the feature encoder. We em-
pirically demonstrate the superiority of our method over
many baselines, including conventional feature alignment
and few-shot methods, setting a new state of the art for
SSDA. Our code is available at http://cs—people.
bu.edu/keisaito/research/MME. html.

1. Introduction

Deep convolutional neural networks [16] have signifi-
cantly improved image classification accuracy with the help
of large quantities of labeled training data, but often gener-
alize poorly to new domains. Recent unsupervised domain
adaptation (UDA) methods [11, 19, 20, 28, 37] improve
generalization on unlabeled target data by aligning distri-
butions, but can fail to learn discriminative class boundaries
on target domains (see Fig. 1.) We show that in the Semi-
Supervised Domain Adaptation (SSDA) setting where a few
target labels are available, such methods often do not im-
prove performance relative to just training on labeled source
and target examples, and can even make it worse.

We propose a novel approach for SSDA that overcomes
the limitations of previous methods and significantly im-
proves the accuracy of deep classifiers on novel domains
with only a few labels per class. Our approach, which we
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Figure 1: We address the task of semi-supervised domain adapta-
tion. Top: Existing domain-classifier based methods align source
and target distributions but can fail by generating ambiguous fea-
tures near the task decision boundary. Bottom: Our method esti-
mates a representative point of each class (prototype) and extracts
discriminative features using a novel minimax entropy technique.

call Minimax Entropy (MME), is based on optimizing a
minimax loss on the conditional entropy of unlabeled data,
as well as the task loss; this reduces the distribution gap
while learning discriminative features for the task.

We exploit a cosine similarity-based classifier architec-
ture recently proposed for few-shot learning [12, 5]. The
classifier (top layer) predicts a K-way class probability vec-
tor by computing cosine similarity between K class-specific
weight vectors and the output of a feature extractor (lower
layers), followed by a softmax. Each class weight vector is
an estimated “prototype” that can be regarded as a represen-
tative point of that class. While this approach outperformed
more advanced methods in few-shot learning and we con-
firmed its effectiveness in our setting, as we show below it
is still quite limited. In particular, it does not leverage unla-
beled data in the target domain.

Our key idea is to minimize the distance between the
class prototypes and neighboring unlabeled target samples,
thereby extracting discriminative features. The problem is
how to estimate domain-invariant prototypes without many

8050



Class1 Class2 || Baseline Few-shot Learning Method ‘
»® Entire Network Optimization without unlabeled examples

Estimated Prototypes @

Labeled Source o ® ) .. :&:‘ o
Labeled Target .... 9 [:> ” ’§
® Classification loss

Unlabeled Target

minimization

Proposed Method

Step1: Update Estimated Prototypes

# &%-&ﬁ%> e

Step2: Update Feature Extractor

Entropy Maximization Entropy Minimization

Figure 2: Top: baseline few-shot learning method, which estimates class prototypes by weight vectors, yet does not consider
unlabeled data. Bottom: our model extracts discriminative and domain-invariant features using unlabeled data through a
domain-invariant prototype estimation. Step 1: we update the estimated prototypes in the classifier to maximize the entropy
on the unlabeled target domain. Step 2: we minimize the entropy with respect to the feature extractor to cluster features

around the estimated prototype.

labeled target examples. The prototypes are dominated by
the source domain, as shown in the leftmost side of Fig. 2
(bottom), as the vast majority of labeled examples come
from the source. To estimate domain-invariant prototypes,
we move weight vectors toward the target feature distribu-
tion. Entropy on target examples represents the similarity
between the estimated prototypes and target features. A uni-
form output distribution with high entropy indicates that the
examples are similar to all prototype weight vectors. There-
fore, we move the weight vectors towards target by maxi-
mizing the entropy of unlabeled target examples in the first
adversarial step. Second, we update the feature extractor to
minimize the entropy of the unlabeled examples, to make
them better clustered around the prototypes. This process
is formulated as a mini-max game between the weight vec-
tors and the feature extractor and applied over the unlabeled
target examples.

Our method offers a new state-of-the-art in performance
on SSDA; as reported below, we reduce the error relative to
baseline few-shot methods which ignore unlabeled data by
8.5%, relative to current best-performing alignment meth-
ods by 8.8%, and relative to a simple model jointly trained
on source and target by 11.3% in one adaptation scenario.
Our contributions are summarized as follows:

e We highlight the limitations of state-of-the-art domain
adaptation methods in the SSDA setting;

e We propose a novel adversarial method, Minimax En-
tropy (MME), designed for the SSDA task;

e We show our method’s superiority to existing methods
on benchmark datasets for domain adaptation.

2. Related Work

Domain Adaptation. Semi-supervised domain adapta-
tion (SSDA) is a very important task [8, 40, 1], however it
has not been fully explored, especially with regard to deep
learning based methods. We revisit this task and compare
our approach to recent semi-supervised learning or unsu-
pervised domain adaptation methods. The main challenge
in domain adaptation (DA) is the gap in feature distribu-
tions between domains, which degrades the source classi-
fier’s performance. Most recent work has focused on unsu-
pervised domain adaptation (UDA) and, in particular, fea-
ture distribution alignment. The basic approach measures
the distance between feature distributions in source and tar-
get, then trains a model to minimize this distance. Many
UDA methods utilize a domain classifier to measure the dis-
tance [11, 37, 19, 20, 33]. The domain-classifier is trained
to discriminate whether input features come from the source
or target, whereas the feature extractor is trained to deceive
the domain classifier to match feature distributions. UDA
has been applied to various applications such as image clas-
sification [27], semantic segmentation [32], and object de-
tection [6, 29]. Some methods minimize task-specific deci-
sion boundaries’ disagreement on target examples [30, 28]
to push target features far from decision boundaries. In this
respect, they increase between-class variance of target fea-
tures; on the other hand, we propose to make target features
well-clustered around estimated prototypes. Our MME ap-
proach can reduce within-class variance as well as increas-
ing between-class variance, which results in more discrim-
inative features. Interestingly, we empirically observe that
UDA methods [11, 20, 28] often fail in improving accuracy
in SSDA.

Semi-supervised learning (SSL). Generative [7, 31],
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Figure 3: An overview of the model architecture and MME. The inputs to the network are labeled source examples (y=label),
a few labeled target examples, and unlabeled target examples. Our model consists of the feature extractor [’ and the classifier
C which has weight vectors (W) and temperature 7. W is trained to maximize entropy on unlabeled target (Step 1 in Fig.
2) whereas F'is trained to minimize it (Step 2 in Fig. 2). To achieve the adversarial learning, the sign of gradients for entropy
loss on unlabeled target examples is flipped by a gradient reversal layer [11, 37].

model-ensemble [17], and adversarial approaches [22] have
boosted performance in semi-supervised learning, but do
not address domain shift. Conditional entropy minimization
(CEM) is a widely used method in SSL [13, 10]. However,
we found that CEM fails to improve performance when
there is a large domain gap between the source and target
domains (see experimental section.) MME can be regarded
as a variant of entropy minimization which overcomes the
limitation of CEM in domain adaptation.

Few-shot learning (FSL). Few shot learning [35, 39,
26] aims to learn novel classes given a few labeled examples
and labeled “base” classes. SSDA and FSL make differ-
ent assumptions: FSL does not use unlabeled examples and
aims to acquire knowledge of novel classes, while SSDA
aims to adapt to the same classes in a new domain. How-
ever both tasks aim to extract discriminative features given a
few labeled examples from a novel domain or novel classes.
We employ a network architecture with £ normalization on
features before the last linear layer and a temperature pa-
rameter 7', which was proposed for face verification [25]
and applied to few-shot learning [12, 5]. Generally, classi-
fication of a feature vector with a large norm results in con-
fident output. To make the output more confident, networks
can try to increase the norm of features. However, this does
not necessarily increase the between-class variance because
increasing the norm does not change the direction of vec-
tors. /5 normalization on feature vectors can solve this is-
sue. To make the output more confident, the network fo-
cuses on making the direction of the features from the same
class closer to each other and separating different classes.
This simple architecture was shown to be very effective for
few-shot learning [5] and we build our method on it in our

work.

3. Minimax Entropy Domain Adaptation

In semi-supervised domain adaptation, we are given
source images and the corresponding labels in the source
domain D, = {(x{,y;°)};~,. In the target domain, we
are also given a limited number of labeled target images
Dy = {(xt,y;")}",, as well as unlabeled target images
D, = {(x)}*. Our goal is to train the model on

Ds, Dy, and D,, and evaluate on D,,.

3.1. Similarity based Network Architecture

Inspired by [5], our base model consists of a feature ex-
tractor F' and a classifier C. For the feature extractor F,
we employ a deep convolutional neural network and per-
form /5 normalization on the output of the network. Then,
the normalized feature vector is used as an input to C
which consists of weight vectors W = [wq, wa, ..., W]
where K represents the number of classes and a temper-
ature parameter 7. C takes % as an input and out-

1 WTF(x)

PUtS 7 Eo - The output of C is fed into a softmax-
layer to obtain the probabilistic output p € R". We denote
p(x) = a(%%), where ¢ indicates a softmax func-
tion. In order to classify examples correctly, the direction
of a weight vector has to be representative to the normal-
ized features of the corresponding class. In this respect, the
weight vectors can be regarded as estimated prototypes for
each class. An architecture of our method is shown in Fig. 3.
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3.2. Training Objectives

We estimate domain-invariant prototypes by performing
entropy maximization with respect to the estimated proto-
type. Then, we extract discriminative features by perform-
ing entropy minimization with respect to feature extractor.
Entropy maximization prevents overfitting that can reduce
the expressive power of the representations. Therefore, en-
tropy maximization can be considered as the step of select-
ing prototypes that will not cause overfitting to the source
examples. In our method, the prototypes are parameterized
by the weight vectors of the last linear layer. First, we train
F and C to classify labeled source and target examples cor-
rectly and utilize an entropy minimization objective to ex-
tract discriminative features for the target domain. We use
a standard cross-entropy loss to train F' and C for classifi-
cation:

L =Exy)ep.pLee (PX),9) - 0]
With this classification loss, we ensure that the feature ex-
tractor generates discriminative features with respect to the
source and a few target labeled examples. However, the
model is trained on the source domain and a small fraction
of target examples for classification. This does not learn
discriminative features for the entire target domain. There-
fore, we propose minimax entropy training using unlabeled
target examples.

A conceptual overview of our proposed adversarial
learning is illustrated in Fig. 2. We assume that there exists
a single domain-invariant prototype for each class, which
can be a representative point for both domains. The esti-
mated prototype will be near source distributions because
source labels are dominant. Then, we propose to estimate
the position of the prototype by moving each w; toward tar-
get features using unlabeled data in the target domain. To
achieve this, we increase the entropy measured by the simi-
larity between W and unlabeled target features. Entropy is
calculated as follows,

H = ~Exyep, Yoy =ilx)logply =ilx) (2)

=1

where K is the number of classes and p(y = ¢|x) represents
the probability of prediction to class ¢, namely ¢ th dimen-
sion of p(x) = o (% %) To have higher entropy, that
is, to have uniform output probability, each w; should be
similar to all target features. Thus, increasing the entropy
encourages the model to estimate the domain-invariant pro-
totypes as shown in Fig. 2.

To obtain discriminative features on unlabeled target ex-
amples, we need to cluster unlabeled target features around
the estimated prototypes. We propose to decrease the en-
tropy on unlabeled target examples by the feature extractor
F'. The features should be assigned to one of the prototypes
to decrease the entropy, resulting in the desired discrimina-
tive features. Repeating this prototype estimation (entropy

maximization) and entropy minimization process yields dis-
criminative features.

To summarize, our method can be formulated as adver-
sarial learning between C' and F'. The task classifier C' is
trained to maximize the entropy, whereas the feature ex-
tractor F is trained to minimize it. Both C' and F' are also
trained to classify labeled examples correctly. The overall
adversarial learning objective functions are:

O = argmin £ + \H

o 3)

O0c = argmin £ — A\H

Oc

where ) is a hyper-parameter to control a trade-off between
minimax entropy training and classification on labeled ex-
amples. Our method can be formulated as the iterative min-
imax training. To simplify training process, we use a gra-
dient reversal layer [11] to flip the gradient between C' and
F with respect to H. With this layer, we can perform the
minimax training with one forward and back-propagation,

which is illustrated in Fig. 3.
3.3. Theoretical Insights

As shown in [2], we can measure domain-divergence by
using a domain classifier. Let i € H be a hypothesis, €, (h)
and ¢;(h) be the expected risk of source and target respec-
tively, then €,(h) < e5(h) + dy(p, q) + Co where Cy is a
constant for the complexity of hypothesis space and the risk
of an ideal hypothesis for both domains and d (p, ) is the
‘H-divergence between p and q.

dy(p,q) £ 2sup | Pr [a(f*) =1] — Pr [h(f") =1]
heH | X" ~P

xtr~q

“4)
where £ and f* denote the features in the source and target
domain respectively. In our case the features are outputs of
the feature extractor. The H-divergence relies on the capac-
ity of the hypothesis space H to distinguish distributions p
and ¢. This theory states that the divergence between do-
mains can be measured by training a domain classifier and
features with low divergence are the key to having a well-
performing task-specific classifier. Inspired by this, many
methods [11, 3, 37, 36] train a domain classifier to discrim-
inate different domains while also optimizing the feature
extractor to minimize the divergence.

Our proposed method is also connected to Eq. 4. Al-
though we do not have a domain classifier or a domain clas-
sification loss, our method can be considered as minimizing
domain-divergence through minimax training on unlabeled
target examples. We choose h to be a classifier that decides
a binary domain label of a feature by the value of the en-
tropy, namely,

i >
wey— {1 THC®) =7,
0, otherwise

®)

where C' denotes our classifier, H denotes entropy, and
~ is a threshold to determine a domain label. Here,
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we assume C' outputs the probability of the class pre-
diction for simplicity. Eq. 4 can be rewritten as follows,

dy(p,q) = 2 sup ‘ Pr [h(f*) =1] — Pr [h(f") = 1]’
he |[f2~p firg

Pr H(C() 23] - o (H(C(F) 2]

= 2 sup
ferp q

cec
<2sup Pr [H(C(f)) >~].
cecting
In the last inequality, we assume that fPr [H(C(f%) >~] <
S~p
Pr [H(C(f')) > v]. This assumption should be realistic
ft~p

because we have access to many labeled source examples
and train entire networks to minimize the classification
loss. Minimizing the cross-entropy loss (Eq. 1) on source
examples ensures that the entropy on a source example
is very small. Intuitively, this inequality states that the
divergence can be bounded by the ratio of target examples
having entropy greater than . Therefore, we can have
the upper bound by finding the C' that achieves maximum
entropy for all target features. Our objective is finding
features that achieve lowest divergence. We suppose there
exists a C' that achieves the maximum in the inequality
above, then the objective can be rewritten as,

: t

minmax Pr [H(C(f)) 2 7] ©6)
Finding the minimum with respect to f* is equivalent to find
a feature extractor F' that achieves that minimum. Thus,
we derive the minimax objective of our proposed learning
method in Eq . 3. To sum up, our maximum entropy pro-
cess can be regarded as measuring the divergence between
domains, whereas our entropy minimization process can be
regarded as minimizing the divergence. In our experimen-
tal section, we observe that our method actually reduces
domain-divergence (Fig. 6¢). In addition, target features
produced by our method look aligned with source features
and are just as discriminative. These come from the effect
of the domain-divergence minimization.

4. Experiments
4.1. Setup

We randomly selected one or three labeled examples per
class as the labeled training target examples (one-shot and
three-shot setting, respectively.) We selected three other la-
beled examples as the validation set for the target domain.
The validation examples are used for early stopping, choos-
ing the hyper-parameter A, and training scheduling. The
other target examples are used for training without labels,
their labels are only used to evaluate classification accuracy
(%). All examples of the source are used for training.
Datasets. Most of our experiments are done on a subset
of DomainNet [24], a recent benchmark dataset for large-
scale domain adaptation that has many classes (345) and six
domains. As labels of some domains and classes are very
noisy, we pick 4 domains (Real, Clipart, Painting, Sketch)

and 126 classes. We focus on the adaptation scenarios
where the target domain is not real images, and construct
7 scenarios from the four domains. See our supplemental
material for more details. Office-Home [38] contains 4 do-
mains (Real, Clipart, Art, Product) with 65 classes. This
dataset is one of the benchmark datasets for unsupervised
domain adaptation. We evaluated our method on 12 sce-
narios in total. Office [27] contains 3 domains (Amazon,
Webcam, DSLR) with 31 classes. Webcam and DSLR are
small domains and some classes do not have a lot of exam-
ples while Amazon has many examples. To evaluate on the
domain with enough examples, we have 2 scenarios where
we set Amazon as the target domain and DSLR and Web-
cam as the source domain.

Implementation Details. All experiments are implemented
in Pytorch [23]. We employ AlexNet [16] and VGG16 [34]
pre-trained on ImageNet. To investigate the effect of deeper
architectures, we use ResNet34 [14] in experiments on Do-
mainNet. We remove the last linear layer of these networks
to build F, and add a K-way linear classification layer C'
with a randomly initialized weight matrix W. The value of
temperature 7' is set 0.05 following the results of [25] in
all settings. Every iteration, we prepared two mini-batches,
one consisting of labeled examples and the other of unla-
beled target examples. Half of the labeled examples comes
from source and half from labeled target. Using the two
mini-batches, we calculated the objective in Eq. 3. To im-
plement the adversarial learning in Eq. 3, we use a gradient
reversal layer [11, 37] to flip the gradient with respect to
entropy loss. The sign of the gradient is flipped between C
and F' during backpropagation. We adopt SGD with mo-
mentum of 0.9. In all experiments, we set the trade-off pa-
rameter A in Eq. 3 as 0.1. This is decided by the validation
performance on Real to Clipart experiments. We show the
performance sensitivity to this parameter in our supplemen-
tal material, as well as more details including learning rate
scheduling.

Baselines. S+T [5, 25] is a model trained with the labeled
source and labeled target examples without using unlabeled
target examples. DANN [11] employs a domain classifier
to match feature distributions. This is one of the most pop-
ular methods in UDA. For fair comparison, we modify this
method so that it is trained with the labeled source, labeled
target, and unlabeled target examples. ADR [28] utilizes a
task-specific decision boundary to align features and ensure
that they are discriminative on the target. CDAN [20] is
one of the state-of-the art methods on UDA and performs
domain alignment on features that are conditioned on the
output of classifiers. In addition, it utilizes entropy min-
imization on target examples. CDAN integrates domain-
classifier based alignment and entropy minimization. Com-
parison with these UDA methods (DANN, ADR, CDAN)
reveals how much gain will be obtained compared to the
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RtoC RtoP PtoC CtoS StoP RtoS PtoR MEAN
Net Method
1-shot  3-shot I-shot  3-shot 1-shot 3-shot 1-shot 3-shot I-shot  3-shot I-shot  3-shot 1-shot 3-shot 1-shot 3-shot
S+T 433 47.1 424 450 40.1 449 336 364 357 384 291 333 558 587|400 434
DANN | 433 46.1 41.6 438 391 41.0 359 365 369 389 325 334 536 573|404 424
AlexNet ADR 43.1 462 414 444 393 436 328 364 331 389 291 324 559 573|392 427
CDAN | 463 46.8 457 450 383 423 275 295 302 337 288 313 567 587|391 410
ENT 37.0 455 356 426 268 404 189 31.1 151 296 180 29.6 522 600 | 29.1 398
MME 489 556 48.0 49.0 46.7 51.7 363 394 394 43.0 333 379 568 60.7 | 442 48.2
S+T 490 523 554 567 477 510 439 485 508 551 379 450 69.0 71.7 ] 505 543
DANN | 439 568 420 575 373 492 467 482 519 556 302 456 658 70.1 | 454 547
VGG ADR | 483 502 546 561 473 515 440 490 507 535 386 447 676 709 | 502 537
CDAN | 578 581 578 591 510 574 425 472 512 545 426 493 717 746 | 535 572
ENT 39.6 503 439 546 264 474 270 419 291 510 193 397 682 725|362 51.1
MME | 606 641 633 635 570 607 509 554 605 609 502 548 722 753|592 621
S+T 556 600 60.6 622 568 594 50.8 550 56.0 595 463 50.1 71.8 739|569 60.0
DANN | 582 598 614 628 563 596 528 554 574 599 522 549 703 722 | 584 60.7
ResNet ADR 57.1 60.7 613 619 570 60.7 510 544 560 599 49.0 51.1 720 742|576 604
CDAN | 650 69.0 649 673 637 684 531 578 634 653 545 590 732 785 | 625 665
ENT 652 710 659 692 654 71.1 546 60.0 59.7 62.1 521 61.1 750 78.6 | 62.6 67.6
MME 70.0 722 677 697 69.0 71.7 563 618 648 668 61.0 619 761 785 | 664 68.9

Table 1: Accuracy on the DomainNet dataset (%) for one-shot and three-shot settings on 4 domains, R: Real, C: Clipart, P:
Clipart, S: Sketch. Our MME method outperformed other baselines for all adaptation scenarios and for all three networks,
except for only one case where it performs similarly to ENT.

Office-Home Office
Net Method 1-shot  3-shot 1-shot 3-shot
S+T 44.1 50.0 50.2 61.8
DANN 45.1 50.3 55.8 64.8
ADR 44.5 49.5 50.6 61.3
AlxNet | DAN | 412 462 494 608
ENT 38.8 50.9 48.1 65.1
MME 49.2 55.2 56.5 67.6
S+T 574 62.9 68.7 73.3
DANN 60.0 63.9 69.8 75.0
ADR 57.4 63.0 69.4 73.7
Va6 CDAN 55.8 61.8 65.9 72.9
ENT 51.6 64.8 70.6 75.3
MME 62.7 67.6 73.4 77.0

Table 2: Results on Office-Home and Office dataset (%).
The value is the accuracy averaged over all adaptation sce-
narios. Performance on each setting is summarized in sup-
plementary material.

existing domain alignment-based methods. ENT [13] is a
model trained with labeled source and target and unlabeled
target using standard entropy minimization. Entropy is cal-
culated on unlabeled target examples and the entire network
is trained to minimize it. The difference from MME is that
ENT does not have a maximization process, thus compari-
son with this baseline clarifies its importance.

Note that all methods except for CDAN are trained with

exactly the same architecture used in our method. In case
of CDAN, we could not find any advantage of using our
architecture. The details of baseline implementations are in
our supplemental material.

4.2. Results

Overview. The main results on the DomainNet dataset are
shown in Table 1. First, our method outperformed other
baselines for all adaptation scenarios and all three networks
except for one case. On average, our method outperformed
S+T with 9.5% and 8.9% in ResNet one-shot and three-shot
setting respectively. The results on Office-Home and Office
are summarized in Table 2, where MME also outperforms
all baselines. Due to the limited space, we show the results
averaged on all adaptation scenarios.

Comparison with UDA Methods. Generally, baseline
UDA methods need strong base networks such as VGG
or ResNet to perform better than S+T. Interestingly, these
methods cannot improve the performance in some cases.
The superiority of MME over existing UDA methods is sup-
ported by Tables 1 and 2. Since CDAN uses entropy min-
imization and ENT significantly hurts the performance for
AlexNet and VGG, CDAN does not consistently improve
the performance for AlexNet and VGG.

Comparison with Entropy Minimization. ENT does not
improve performance in some cases because it does not ac-
count for the domain gap. Comparing results on one-shot
and three-shot, entropy minimization gains performance
with the help of labeled examples. As we have more labeled
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Method | R-C R-P P-C C-S S-P R-S P-R | Avg

Source | 41.1 426 374 306 30.0 263 523|372
DANN | 447 361 358 338 359 276 493 | 376
ADR 40.2  40.1 367 299 306 259 515 | 364
CDAN | 442 39.1 378 262 248 243 54.6 | 359
ENT 338 43.0 230 229 139 120 512 | 285
MME 47.6 447 399 340 330 290 535 | 40.2

Table 3: Results on the DomainNet dataset in the unsuper-
vised domain adaptation setting (%).
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Figure 4: Accuracy vs the number of labeled target exam-
ples. The ENT method needs more labeled examples to ob-
tain similar performance to our method.

RtoC RtoS
1-shot 3-shot 1-shot 3-shot
S+T (Standard Linear) 41.4 44.3 26.5 28.7
S+T (Few-shot [5, 25]) 43.3 47.1 29.1 333
MME (Standard Linear) 44.9 47.7 30.0 32.2
MME (Few-shot [5, 25]) | 48.9 55.6 333 379

Table 4: Comparison of classifier architectures on the Do-
mainNet dataset using AlexNet, showing the effectiveness
of the architecture proposed in [5, 25].

Method

target examples, the estimation of prototypes will be more
accurate without any adaptation. In case of ResNet, entropy
minimization often improves accuracy. There are two po-
tential reasons. First, ResNet pre-trained on ImageNet has
a more discriminative representation than other networks.
Therefore, given a few labeled target examples, the model
can extract more discriminative features, which contributes
to the performance gain in entropy minimization. Second,
ResNet has batch-normalization (BN) layers [15]. It is re-
ported that BN has the effect of aligning feature distribu-
tions [4, 18]. Hence, entropy minimization was done on
aligned feature representations, which improved the perfor-
mance. When there is a large domain gap such as C to S,
S to P, and R to S in Table 1, BN is not enough to handle
the domain gap. Therefore, our proposed method performs
much better than entropy minimization in such cases. We
show an analysis of BN in our supplemental material, re-
vealing its effectiveness for entropy minimization.

4.3. Analysis

Varying Number of Labeled Examples. First, we show
the results on unsupervised domain adaptation setting in Ta-
ble 3. Our method performed better than other methods
on average. In addition, only our method improved per-
formance compared to source only model in all settings.
Furthermore, we observe the behavior of our method when
the number of labeled examples in the target domain varies
from O to 20 per class, which corresponds to 2520 labeled
examples in total. The results are shown in Fig. 4. Our
method works much better than S+T given a few labeled ex-
amples. On the other hand, ENT needs 5 labeled examples
per class to improve performance. As we add more labeled
examples, the performance gap between ENT and ours is
reduced. This result is quite reasonable, because prototype
estimation will become more accurate without any adapta-
tion as we have more labeled target examples.

Effect of Classifier Architecture. We introduce an abla-
tion study on the classifier network architecture proposed
in [5, 25] with AlexNet on DomainNet. As shown in Fig.
3, we employ /5 normalization and temperature scaling. In
this experiment, we compared it with a model having a stan-
dard linear layer without ¢ normalization and temperature.
The result is shown in Table 4. By using the network ar-
chitecture proposed in [5, 25], we can improve the per-
formance of both our method and the baseline S+T model
(model trained only on source examples and a few labeled
target examples.) Therefore, we can argue that the net-
work architecture is an effective technique to improve per-
formance when we are given a few labeled examples from
the target domain.

Feature Visualization. In addition, we plot the learned fea-
tures with t-SNE [21] in Fig. 5. We employ the scenario
Real to Clipart of DomainNet using AlexNet as the pre-
trained backbone. Fig 5 (a-d) visualizes the target features
and estimated prototypes. The color of the cross represents
its class, black points are the prototypes. With our method,
the target features are clustered to their prototypes and do
not have a large variance within the class. We visualize fea-
tures on the source domain (red cross) and target domain
(blue cross) in Fig. 5 (e-h). As we discussed in the method
section, our method aims to minimize domain-divergence.
Indeed, target features are well-aligned with source features
with our method. Judging from Fig. 5f, entropy minimiza-
tion (ENT) also tries to extract discriminative features, but
it fails to find domain-invariant prototypes.

Quantitative Feature Analysis. We quantitatively investi-
gate the characteristics of the features we obtain using the
same adaptation scenario. First, we perform the analysis on
the eigenvalues of the covariance matrix of target features.
We follow the analysis done in [9]. Eigenvectors represent
the components of the features and eigenvalues represent
their contributions. If the features are highly discrimina-
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Figure 5: Feature visualization with t-SNE. (a-d) We plot the class prototypes (black circles) and features on the target domain
(crosses). The color of a cross represents its class. We observed that features on our method show more discrimative features
than other methods. (e-h) Red: Features of the source domain. Blue: Features of the target domain. Our method’s features
are well-aligned between domains compared to other methods.
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Figure 6: (a) Eigenvalues of the covariance matrix of the features on the target domain. Eigenvalues reduce quickly in our
method, which shows that features are more discriminative than other methods. (b) Our method achieves lower entropy than
baselines except ENT. (c) Our method clearly reduces domain-divergence compared to S+T.

tive, only a few components are needed to summarize them.
Therefore, in such a case, the first few eigenvalues are ex-
pected to be large, and the rest to be small. The features are
clearly summarized by fewer components in our method as
shown in Fig. 6a. Second, we show the change of entropy
value on the target in Fig. 6b. ENT diminishes the entropy
quickly, but results in poor performance. This indicates that
the method increases the confidence of predictions incor-
rectly while our method achieves higher accuracy at the
same time. Finally, in Fig. 6¢, we calculated .A-distance
by training a SVM as a domain classifier as proposed in [2].
Our method greatly reduces the distance compared to S+T.
The claim that our method reduces a domain divergence is
empirically supported with this result.

5. Conclusion
We proposed a novel Minimax Entropy (MME) ap-
proach that adversarially optimizes an adaptive few-shot

model for semi-supervised domain adaptation (SSDA). Our
model consists of a feature encoding network, followed by a
classification layer that computes the features’ similarity to
a set of estimated prototypes (representatives of each class).
Adaptation is achieved by alternately maximizing the con-
ditional entropy of unlabeled target data with respect to the
classifier and minimizing it with respect to the feature en-
coder. We empirically demonstrated the superiority of our
method over many baselines, including conventional feature
alignment and few-shot methods, setting a new state of the
art for SSDA.
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