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Abstract

In many real-world applications, we are often facing the

problem of cross domain learning, i.e., to borrow the la-

beled data or transfer the already learnt knowledge from a

source domain to a target domain. However, simply ap-

plying existing source data or knowledge may even hurt

the performance, especially when the data distribution in

the source and target domain is quite different, or there

are very few labeled data available in the target domain.

This paper proposes a novel domain adaptation framework,

named Semi-supervised Domain Adaptation with Subspace

Learning (SDASL), which jointly explores invariant low-

dimensional structures across domains to correct data dis-

tribution mismatch and leverages available unlabeled tar-

get examples to exploit the underlying intrinsic informa-

tion in the target domain. Specifically, SDASL conducts the

learning by simultaneously minimizing the classification er-

ror, preserving the structure within and across domains, and

restricting similarity defined on unlabeled target examples.

Encouraging results are reported for two challenging do-

main transfer tasks (including image-to-image and image-

to-video transfers) on several standard datasets in the con-

text of both image object recognition and video concept de-

tection.

1. Introduction

In the standard machine learning technologies, the train-

ing and test data are assumed to be drawn from the same

distribution. When the distribution changes, the need to re-

built most statistical models from scratch using the newly

collected training data, however, makes the task intellectu-

ally expensive or unpractical for many real-world applica-

tions. As a result, domain adaptation would be desirable.

In general, domain adaptation involves two distinct types

of datasets, one from a source domain and the other from a

target domain. The source domain contains a large amount

of labeled data such that a classifier can be reliably built,

while the target domain refers broadly to a dataset that is

assumed to have different characteristics from the source.

Thus, simply applying the classifier learnt in the source do-

main may hurt the performance in the target domain, a phe-

nomenon known as “domain shift” [29]. Furthermore, the

labeled target data are often very few and they alone are not

sufficient to construct a good classifier. Therefore, our main

objective is to attain good performance on the target domain

by utilizing the source data or adapting classifiers trained in

the source domain. In addition, how to effectively leverage

unlabeled target data also remains an important issue for

domain adaptation.

In the literature, there have been several techniques be-

ing proposed for addressing the challenge of domain shift

by learning a common feature representation [3, 5]. The

objective is to identify a new feature representation that is

invariant across domains. With this, the source and the tar-

get domain exhibit more shared characteristics. However,

in general, these approaches highly depend on the heuristic

selection of pivot features appearing frequently in both do-

mains. Furthermore, the criterion of feature selection may

be sensitive to different applications. On the other hand,

it is assumed that visual data exist in the low-dimensional

subspaces, which can provide a meaningful description of

the underlying domain shift [11, 12, 13, 22]. Given the data

from two domains, we are investigating in this paper how

to obtain the projections of mapping the data from source

and target domains onto a subspace. The new feature rep-

resentations in this subspace should be able to reduce the

data distribution mismatch as much as possible, meanwhile

preserving the structure property of the original data. Fur-

thermore, to tackle with the challenge of target labeled da-

ta insufficiency, the unlabeled target data is also leveraged

on smooth assumption encoded in a regularizer, which has

been shown effective for semi-supervised learning [17].



By consolidating the idea of semi-supervised learning

and subspace learning for domain adaptation, this paper

presents a novel Semi-supervised Domain Adaptation with

Subspace Learning (SDASL) framework for visual recog-

nition. It attempts to learn a subspace which can manifest

the underlying difference and commonness between differ-

ent domains. When projected onto this subspace, the da-

ta distribution mismatch of the source and target domains

can be reduced and data structure properties are preserved

as well. Standard machine learning methods can then be

used in the subspace to train classifier for both domains.

More specifically, three regularizers are jointly employed

in our framework, including the structural risk regulariz-

er which seeks a decision boundary that achieves a smal-

l classification error, the structure preservation regularizer

that restricts the distance between mappings of similar sam-

ples in both source and target domains, and the manifold

regularizer based on the smoothness assumption that the

target classifier shares similar decision values on the sim-

ilar target unlabeled samples. It is worth noticing that the

proposed framework is unified and any other criterion for

domain adaptation can be easily incorporated. We demon-

strate the effectiveness of our proposed approach on both

image-to-image and image-to-video transfers, and show its

superiority to several state-of-the-arts.

The remaining sections are organized as follows. Section

2 describes related work on domain adaptation. Section 3

presents our semi-supervised domain adaptation with sub-

space learning framework including overall objective func-

tion and its algorithm for visual recognition. Section 4 pro-

vides empirical evaluations, followed by the discussion and

conclusions in Section 5.

2. Related Work

The research on domain adaptation has proceeded along

three different dimensions: unsupervised domain adapta-

tion [1, 16, 25, 26], supervised domain adaptation [2, 8, 21,

24, 28], and semi-supervised domain adaptation [9, 13, 14].

Unsupervised domain adaptation refers to the setting

when the labeled target data is not available. Shi et al.

[25] defined an information-theoretic measure which bal-

ances between maximizing domain similarity and minimiz-

ing expected classification error on the target domain. Long

et al. [16] jointly performed feature matching and instance

weighting to learn a new feature representations that is ro-

bust to domain difference. In another work by Wang et al.

[26], the problem was considered in terms of unsupervised

manifold alignment, where the source and target domains

were aligned by preserving the neighborhood structure of

the data points. Similar in spirit, Baktashmotlagh et al. [1]

made use of the Riemannian metric on the statistical mani-

fold as a measure of distance between the source and target

distributions for domain adaptation.

In contrast, when the labeled target data is available, we

refer to the problem as supervised domain adaptation. Yang

et al. [28] proposed adaptive support vector machine (A-

SVM) to learn a new SVM classifier for the target domain,

which is adapted from an existing classifier trained with the

samples from a source domain. Pan et al. [21] proposed

a new dimensionality reduction method called maximum

mean discrepancy embedding (MMDE) for domain adap-

tation, which aims to learn a shared latent space where dis-

tance between distributions can be reduced while the data

variance can be preserved. Bergamo et al. [2] exploited the

availability of strongly-labeled target training data to simul-

taneously determine the correct labels of the source training

examples and incorporate this labeling information to im-

prove the classifier by using transductive learning. Later

in [8], Duan et al. constructed a parameterized augmented

space as the common space motivated by a domain adapta-

tion method proposed by Daumé III in [5] and the parame-

ters were learnt through optimizing a large margin classifi-

cation model. The work of Saenko et al. [24] was one of

the earliest papers to investigate domain adaptation in visu-

al recognition by metric learning techniques, which aim to

learn a transformation that minimizes the effect of domain-

induced changes.

Semi-supervised domain adaptation methods have also

been proposed. Jiang et al. [14] proposed to not only in-

clude weighted source domain instances but also weighted

unlabeled target domain instances in training, which essen-

tially combines instance weighting with bootstrapping. D-

uan et al. [9] proposed to utilize the unlabeled target data

to more precisely measure the data distribution mismatch

between the source and target domains based on the maxi-

mum mean discrepancy [4]. In [13], Guo et al. developed a

subspace co-regularized method for multilingual text clas-

sification problem. It aims to minimize the training error

on the labeled data in each language while penalizing the

distance between the subspace representations of the two

languages of both labeled and unlabeled documents.

In short, our work in this paper belongs to semi-

supervised domain adaptation. Besides of the use of un-

labeled target examples as in these aforementioned semi-

supervised methods, our approach additionally incorporates

the objective of obtaining a subspace on which data distri-

bution mismatch is reduced and original structure properties

are preserved.

3. Semi-supervised Domain Adaptation with

Subspace Learning

The main goal of semi-supervised domain adaptation

with subspace learning (SDASL) is to bridge the domain

gap by jointly constructing good subspace feature represen-

tations to minimize domain divergence and leveraging un-

labeled target data in conjunction with labeled data. The



training of SDASL is performed simultaneously by mini-

mizing the classification error, preserving the structure re-

lationships within and across domains, and restricting sim-

ilarity defined on unlabeled target instances. In particular,

the objective function of SDASL is composed of three com-

ponents, i.e., structural risk, structure preservation within

and across domains, and manifold regularization. Of the

three, the former two aim to explore invariant low dimen-

sional structures across domains and meanwhile minimiz-

ing the structural risk of the learnt models on the subspace,

while the last exploits the intrinsic information in the tar-

get domain. After we obtain the predictive function on the

subspace, the label of a new coming target instance can be

determined accordingly. In the following, we will first in-

troduce the annotations used in this paper, followed by con-

structing the three learning components of SDASL. Then

the joint overall objective and its optimization strategy are

provided. Finally, the whole SDASL algorithm for visual

recognition is presented.

For simplicity, we focus on the scenario when transfer-

ring only from one source. However, the proposed method

can be extended to multiple sources. Suppose we are giv-

en plenty of labeled source data and only a limited number

of labeled target data. Additionally we are given unlabeled

target data. Our goal is to assist tasks in a label-scarce tar-

get domain by transferring the knowledge in the label-rich

source domain.

3.1. Notations

Suppose there are ls labeled samples in the source

domain, represented as: XS = {xS
1 ,x

S
2 , . . . ,x

S
ls
}⊤ ∈

R
ls×ds , where ds is the dimensionality of source data.

Similarly, assume there are lt (lt ≪ ls) labeled instances

and ut unlabeled examples in the target domain, denot-

ed as: XT = {xT
1 ,x

T
2 , . . . ,x

T
lt
}⊤ ∈ R

lt×dt and XU
T =

{xU
1 ,x

U
2 , . . . ,x

U
ut
}⊤ ∈ R

ut×dt , respectively. The corre-

sponding labels of XS and XT are given as column vectors

YS ∈ {−1,+1}ls and YT ∈ {−1,+1}lt , respectively.

3.2. Structural Risk

Deriving from the idea of subspace learning by assum-

ing that the feature representations in different views are

generated from this latent subspace, we project the original

features into the low-dimensional subspace to explore the

invariant structures across domains and minimize domain

divergence. Accordingly, the linear predictive functions are

defined as
{

fS(x
S) = xSmSwS + bS

fT (x
T ) = xTmTwT + bT

, (1)

where wS ,wT ∈ R
d and bS , bT are the model weight and

bias parameters, respectively. mS and mT are the feature

mapping matrices, with mS ∈ R
dS×d and mT ∈ R

dT×d,

where d is the dimension of the subspace. The mapping

matrices mS and mT are designed to be orthogonal in order

to make each mapping basis uncorrelated to each other, i.e.,

m⊤
SmS = m⊤

TmT = I where I is the identity matrix.

Furthermore, the training objective corresponds to an

empirical risk minimization with a regularization penalty

over the model parameters {wS , bS ,mS ,wT , bT ,mT } as

min
{

wS ,bS ,mS
wT ,bT ,mT

}

∥XSmSwS + bS −YS∥
2 + αS ∥wS∥

2

+ ∥XTmTwT + bT −YT ∥
2 + αT ∥wT ∥

2

s.t. m
⊤
SmS = I, m

⊤
T mT = I ,

(2)

where αS and αT are tradeoff parameters. The objective de-

composes into the empirical risk with a least square loss of

the labeled examples from both source and target domain-

s, and the regularization penalty ∥wS∥
2

and ∥wT ∥
2
. The

parameter αS and αT are the tradeoff parameters.

3.3. Structure Preservation

One of the key goals in most state-of-the-art multi-view

learning [10] is to seek for a joint latent space that corre-

sponding views are mapped to nearby locations. This also

indicates that similar views should have similar mappings.

Similarly, to tackle with the challenge of domain shift, we

incorporate a discriminative regularization term in the ob-

jective function to take into account of the structure with-

in and across domains. That is, the distance between the

mappings in the latent subspace of the same category from

source and target domains should be as small as possible.

Technically, positives from both domains are represent-

ed as: A =

[

X+

SmS

X+

TmT

]

, where X+

S and X+

T denote the

positives in the source and target domain, respectively. The

distance between positives from source and target domains

is measured by tr(A⊤L1A), where L1 = D1 − 11⊤, 1

denotes a column vector with all 1 entries, and D1 is the

diagonal matrix that contains the row sums of 11⊤.

To learn a shared latent space across different domain-

s, we integrate the structure preservation within and across

domains as a regularization for domain adaptation.

3.4. Manifold Regularization

Manifold regularization has been shown effective for

semi-supervised learning [17]. This regularizer is to mea-

sure the smoothness of the predicted class labels along the

inherent structure of unlabeled target data. In other words,

the outputs of the predictive function are restricted to have

similar values for similar examples.

The estimation of the manifold regularization can be

measured by the appropriate pairwise similarity between



the unlabeled target samples. Specifically, it can be given by

ut
∑

i,j=1

Sij

∥

∥xU
i mTwT − xU

j mTwT

∥

∥

2
, (3)

where S ∈ R
ut×ut denotes the affinity matrix defined on

the unlabeled target samples. Under the manifold criterion,

it is reasonable to minimize Eq.(3), because it will incur a

heavy penalty if the difference between the outputs of func-

tion fT (x
T ) for similar examples is big.

There are many ways of defining the affinity matrices S.

Inspired by [10], the elements are computed by Gaussian

functions in this work, i.e.,

Sij =







e
−
∥x

U
i

−x
U
j ∥

2

σ2 if x
U
i ∈ Nk(x

U
j ) or x

U
j ∈ Nk(x

U
i )

0 otherwise
,

(4)

where σ is the bandwidth parameter, and Nk(x
U
i ) repre-

sents the set of k nearest neighbors of xU
i .

By defining the graph Laplacian L2 = D − S, where

D is a diagonal matrix with its elements defined as

Dii =
∑

j Sij , the regularization can be computed as

(XU
TmTwT )

⊤L2(X
U
TmTwT ).

This regularization term can be added to our optimiza-

tion framework, which can utilize unlabeled target exam-

ples that have auxiliary similarity information. It can al-

so be considered as a generalization of the semi-supervised

version of [17] to the domain adaptation.

3.5. Overall Objective Function

The overall objective function integrates the optimiza-

tion objectives throughout subsections (3.2-3.4). Hence we

get the following optimization problem

min
{

wS ,bS ,mS
wT ,bT ,mT

}

∥XSmSwS + bS −YS∥
2 + αS ∥wS∥

2

+ ∥XTmTwT + bT −YT ∥
2 + αT ∥wT ∥

2

+γtr(A⊤
L1A) + η(XU

TmTwT )
⊤
L2(X

U
TmTwT )

s.t. m
⊤
SmS = I, m

⊤
T mT = I ,

(5)

where γ and η are tradeoff parameters.

Next we show that the optimal {wS ,wT , bS , bT } can be

solved in terms of mS and mT . We minimize the objective

function in Eq.(5) by setting its derivative with respect to

wS , wT , bS and bT to zero, which results in:

{

bV =
1

lV
1
⊤ (YV −XV mV wV )

}

V ∈{S,T}

wS =
[

(XSmS)
⊤
HSXSmS + αSI

]−1

m
⊤
SZS

wT =
[

(XTmT )
⊤
HTXTmT + αT I+ ηC

]−1

m
⊤
T ZT ,

(6)

where ZV , HV , and C are defined as

{

ZV = X
h
V HV YV , HV = I−

1

lV
11

⊤

}

V ∈{S,T}

C = (XU
TmT )

⊤
L2X

U
TmT .

(7)

Note that we use V ∈ {S, T} for simplicity, i.e., V can be

replaced by any symbol of S and T .

Substituting Eq.(6) into Eq.(5), we get the objective

function:

L(mS ,mT ) = γtr((X̃SmS + X̃TmT )
⊤
L1(X̃SmS + X̃TmT ))

+Y
⊤
S HSYS − Z

⊤
SmS(m

⊤
S M̄SmS + αSI)

−1
m

⊤
SZS

+Y
⊤
T HTYT − Z

⊤
T mT (m

⊤
T M̄TmT + αT I)

−1
m

⊤
T ZT ,

(8)

where X̃S = [X+

S ,0]
⊤ and X̃T = [0,X+

T ]
⊤. M̄S and M̄T

are defined as

M̄S = X
⊤
SHSXS and M̄T = X

⊤
T HTXT + ηX

U⊤

T L2X
U
T .

(9)

From the above, the overall objective function can be

rewritten as

min
{mS ,mT }

L(mS ,mT ) s.t. m
⊤
SmS = I, m

⊤
T mT = I. (10)

The optimization above is a non-convex problem. How-

ever, the gradient of the objective function with respect to

mS and mT can be easily obtained and we have

∇mV
L(mS ,mT ) = −2ZV Z

⊤
V mV (m⊤

V M̄V mV + αV I)−1

+2M̄V mV (m⊤
V M̄V mV + αV I)−1

m
⊤
V ZV Z

⊤
V mV

(m⊤
V M̄V mV + αV I)−1 + 2γX̃⊤

V L1(X̃SmS + X̃TmT ),

(11)

for V ∈ {S, T}.

3.6. SDASL Algorithm

To address the difficult non-convex problem (10) due to

the orthogonal constrains, we use a gradient descent opti-

mization procedure with curvilinear search for a local opti-

mal solution and readers can refer to [27] for details.

After the optimization of mS and mT , we can obtain the

linear predictive functions defined in Eq.(1) with the model

parameters {wV , bV }V ∈{S,T} calculated by Eq.(6). Next,

given a target test visual instance, x̂ ∈ R
dt , we compute the

prediction values using the linear function as

f(x̂) = x̂mTwT + bT . (12)

The label of instance x̂ is sign(f(x̂)), where sign(•) is the

signum function. The whole SDASL algorithm is given as

Algorithm 1.



Algorithm 1 Semi-supervised Domain Adaptation with

Subspace Learning (SDASL)

1: Input: 0 < µ < 1, ε ≥ 0.

2: Initialize the mapping matrices mS and mT using Prin-

cipal Component Analysis (PCA).

3: for iter = 1 to Tmax do

4: Compute gradients:

GS = ∇mS
L(mS ,mT )

GT = ∇mT
L(mS ,mT )

5: if ∥GS∥
2

F + ∥GT ∥
2

F ≤ ε then

6: Exit.

7: end if

8: Compute skew-symmetric matrices:

PS = GSm
⊤
S −mSG

⊤
S

PT = GTm
⊤
T −mTG

⊤
T

9: Set τ = 1
10: repeat

11: τ = µτ

12: Compute new trial point:

QS(τ) = (I+ τ
2
PS)

−1(I− τ
2
PS)mS

QT (τ) = (I+ τ
2
PT )

−1(I− τ
2
PT )mT

13: until Armijo-Wolfe conditions [19] meet

14: Update the transformation matrices:

mS = QS(τ)
mT = QT (τ)

15: end for

16: Compute wS , wT , bS and bT via Eq.(6).

17: Output:

Predictive function: ∀x̂, f(x̂) = x̂mTwT + bT .

4. Experiments

We conducted our experiments for both image-to-image

and image-to-video transfer tasks, i.e., object recognition

on the image dataset studied in [24], and video concept de-

tection on the challenge TRECVID 2011 Semantic Indexing

(SIN) task with the assistance of images from ImageNet [6].

4.1. Image­to­image transfer

The first experiment was conducted on the Office dataset

released in [24]. It contains three image datasets from three

different domains. The images in the first domain dslr are

captured with a digital SLR camera and have high resolu-

tion. The second domain amazon consists of images down-

loaded from online merchants (www.amazon.com). These

images are of products at medium resolution. The images

in the third domain webcam are collected by a web camera.

Thus, the images are of low resolution. Each domain con-

tains 31 categories and in total there are 4,652 images in all

the three domains. Figure 1 shows image examples of cat-

egory “bike” and “desk chair” from the three domains and

illustrates the difference or shift between domains.

amazon

desk chairbike

webcam

dslr

Figure 1. Image examples of category “bike” and “desk chair”

come from (top row) dslr (high-resolution images captured with

a digital SLR camera), (middle row) amazon (medium-resolution

images downloaded from online merchants), and (bottom row) we-

bcam (low-resolution images recorded by a web camera).

Compared Approaches. We compare the following ap-

proaches for performance evaluation:

• SVM-S. A SVM classifier trained only on the labeled

examples in the source domain.

• SVM-T. A SVM classifier learnt entirely from the la-

beled examples in the target domain.

• SVM-ST. An aggregate SVM classifier trained from all

the labeled samples in both source and target domains.

• A-SVM [28] aims to learn a new decision boundary that

is close to the original one (learnt on the source labeled

data) as well as separating the target data.

• FR [5] is to augment features for transfer learning. The

augmented features are used to construct a kernel func-

tion for SVM training. With this, the impact of the

examples from target domain is twice as those from

source domain on the predictions of target test data.

• Metric [24] is to learn a transformation based on the in-

formation theoretic metric learning method of [15] by

leveraging both similarity constrains within the same

categories and dissimilar constrains between the dif-

ferent categories.

• HFA [8] learns the classifier and transformations to a

common latent subspace between source and target in

a max-margin framework.

• GFK [11] integrates an infinite number of subspaces

along the geodesic flow between the source and target

domains to characterize changes in between.

• SCMV [13] assumes the representations of the same

object from different domains in the subspace should

be similar. The learning of the subspace and classifier



is conducted by simultaneously minimizing the train-

ing losses on the labeled data in both domains and pe-

nalizing the distance between the two projected sub-

space representations of the same object.

• SDASL is our approach described in Algorithm 1.

Parameter Setting. In this experiment, we focus on one

source to one target domain adaptation on image object de-

tection task. In each setting of our experiments, we pick one

of the three domain as the source domain and another one as

the target domain. Then six source-target domain pairs are

generated by the aforementioned three domains, i.e., a2w,

w2a, a2d, d2a, w2d and d2w, where a, w and d represents

amazon, webcam and dslr, respectively. All the examples

in the source domain are used as the source training data.

The instances in the target domain are evenly split into two

halves. One is used as the target training data and the oth-

er is as the target test collection. Furthermore, to simulate

a semi-supervised learning scenario, we divide the selected

training data into two subsets: one subset is used as the la-

beled set (five in our experiments) in which we consider that

the labels are known; for the remaining training examples,

the labels are hidden and this subset is used as unlabeled

set. We take the output of 1000-way fc8 classification layer

by using DeCAF [7] as image representation.

To ensure the performance of these methods compara-

ble, we use the same RBF kernel function K(xi,xj) =

e−δ∥xi−xj∥
2

with δ = 0.1 in all SVM-based methods. Fol-

lowing the setting in [24, 11], Metric and GFK use 1-nearest

neighbor as its classifier. For the proposed SDASL, we em-

pirically set µ=0.3 in the curvilinear search. The param-

eters αS and αT are both fixed to 1.0. The tradeoff pa-

rameters γ and η are selected from {0.2, 0.4, 0.6, 0.8, 1.0}
and the optimal values are determined by using a validation

set. The averaged accuracies over all categories on target

domain are finally reported.

Performance Comparison. Table 1 summarizes the

classification accuracy obtained by all the above methods

averaged over all 31 categories for six pairings of the source

and target domains. The highest performances are in bold

font and the symbol ↑ indicates that performance is signif-

icantly better than others, according to the randomization

test [23] with 100,000 randomization iterations and at 0.05

significance level. It is also worth noting that the perfor-

mances are given by choosing 100 as the dimensionality of

the latent subspace for methods SCMV and SDASL. Accord-

ing to [8] and [11], the dimensions are set to 1,000 and 10

for HFA and GFK, respectively. The other six methods per-

form on the original 1,000 dimensional visual features.

Overall, our proposed SDASL consistently outperform-

s the other runs across different pairings of the source and

target domains. In particular, the accuracy of SDASL for

the adaptation from amazon to webcam can achieve 0.8540,

which makes the improvement over SVM-T by 5.5%. More

importantly, by learning a low-dimensional latent subspace,

the dimension of the mappings of visual feature is reduced

by several orders of magnitude. Furthermore, SDASL by

additionally incorporating manifold regularization leads to

a performance boost against SCMV which only restricts the

distance between the two projected subspace representa-

tions. SDASL improves Metric and HFA, which basically

indicates the advantage of exploiting the unlabeled target

examples. Our SDASL also exhibits better performance than

GFK, where the very low-dimensional subspaces may not

represent high-dimensional input data accurately.

There is a significant performance gap between SVM-

T and SVM-S, which demonstrates that the SVM classifi-

er learnt with the source examples performs much worse

than developing a new classifier with very few target train-

ing examples due to the domain gap. The exceptions are the

two transfers between webcam and dslr, in which SVM-S

slightly improves SVM-T. This is arisen from the fact that

the datasets webcam and dslr are statistically similar as the

same objects are captured with different camera for each

dataset. Therefore, the knowledge transfer in between is

more confident and closely related. Similar in spirit, take

webcam as the target domain, SVM-S model learnt in dslr

exhibits better performance than that learnt in amazon.

Another interesting observation is that SVM-T outper-

forms SVM-ST when amazon (with much more images) is

as source domain. The result basically indicates that the risk

of bias on source domain could be increased by incorporat-

ing sufficient source positive examples, and thus may hurt

the performance on target domain. In contrast, the improve-

ment of FR is more obvious on all six transfer pairs, which

verifies the advantage of augmenting the influence of target

examples. Instead of explicitly being affected by the data

distribution difference, A-SVM is to adapt a source model

so that the decision boundary is adjusted to fit the target

domain. With this, the adaptation can benefit from source

domain and lead to performance gain.

In addition, we conducted experiments by using the out-

puts of fc6 and fc7 layers in DeCAF [7] as image represen-

tations on all the compared methods, respectively. The per-

formance trends are similar with that of fc8 and our method

outperforms all the baselines on a2w, w2a, a2d and d2a

adaptations. On the other w2d and d2w settings, SVM-ST

and SVM-S achieve the best two performances, which is

similar to the observations in [7], followed by our method.

This is still due to the fact that in webcam and dslr, the ma-

jor difference between the images of same objects is caused

by the use of different camera devices. Thus, the problem

of domain shift is not severe, and can be handled by fc6 and

fc7 representations.

Effect of Each Regularizer. As three components, i.e.,

structural risk on the subspace (SR) in Section 3.2, structure



Table 1. Classification accuracy of different approaches averaged over all 31 categories. The highest performances are in bold font and the

numbers in the brackets represent the feature dimension used in each approach. The symbol ↑ indicates statistically better performance

than the others according to the randomization test [23]. (a: amazon, w: webcam, and d: dslr)

SVM-T SVM-S SVM-ST A-SVM[28] FR[5] Metric[24] HFA[8] GFK[11] SCMV[13] SDASL

(d=1000) (d=1000) (d=1000) (d=1000) (d=1000) (d=1000) (d=1000) (d=10) (d=100) (d=100)

a2w 0.8094 0.5198 0.7822 0.8096 0.8193 0.7995 0.7846 0.8323 0.8168 0.8540 ↑

w2a 0.6393 0.4859 0.6506 0.6513 0.6506 0.6591 0.6570 0.6581 0.6605 0.6726 ↑

a2d 0.8293 0.5488 0.7764 0.7886 0.8374 0.8333 0.8374 0.8258 0.8415 0.8577 ↑

d2a 0.6393 0.4661 0.6443 0.6485 0.6478 0.6499 0.6556 0.6645 0.6457 0.6676 ↑

w2d 0.8293 0.8415 0.8455 0.8333 0.8415 0.8496 0.8536 0.8323 0.8455 0.8618 ↑

d2w 0.8094 0.8218 0.8292 0.8267 0.8317 0.8391 0.7921 0.8387 0.8342 0.8465 ↑
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a2w w2a a2d d2a w2d d2w

SR+MR SR+SP SR+SP+MR

Figure 2. Performance improvements over SVM-T with different

combination of regularization across six pairing of the source and

target domain. The performances are compared against the results

w.r.t their overall classification accuracy.

preservation (SP) in Section 3.3, and manifold regulariza-

tion (MR) in Section 3.4, are jointly explored and optimized

in our proposed SDASL. The degree of contribution from

each component is here investigated. Figure 2 shows the

degree of improvement over the run SVM-T with three dif-

ferent combinations of regularization, i.e., SR+MR, SR+SP,

and SR+SP+MR. The optimization procedure on each com-

bination all uses curvilinear search presented in [27]. The

results across six pairings of the source and target domains

consistently indicate that learning using three components

leads to a larger performance boost compared to using t-

wo components. Furthermore, learning utilizing SR+MR

also exhibits better performance than SR+SP when ama-

zon and webcam are picked as target domain, in contrast,

SR+SP outperforms SR+MR when dslr is used as target do-

main. This observation is not surprise because dataset dslr

has much less training examples than amazon and webcam

weakening the effect of unlabeled target data in MR.

4.2. Image­to­video transfer

The second experiment was conducted on ImageNet [6]

(Web images with clean labels) and TRECVID 2011 SIN

dataset (TV11) [20] (Web video). We use TV11 as the target

domain, while examples from ImageNet as the source do-

main training data. Among the 50 concepts officially eval-

uated in TV11, there are 22 concepts which share common

definition with ImageNet and these concepts are evaluated

TRECVID SIN

(Video domain)

runningflags

ImageNet

(Image domain)

Figure 3. Examples of concept “flags” and “running” come from

(top row) ImageNet (image domain) and (bottom row) TRECVID

Semantic Indexing (SIN) (video domain) illustrating the apparent

difference between image and video domains.

in our experiments. Figure 3 shows examples of concepts

“flags” and “running” from the two domains. As illustrated

in the figure, the image and video domains are quite dif-

ferent making the transferring from image-to-video much

harder than image-to-image.

Parameter Setting. The source training data consists

of all the images of these 22 concepts collected from Im-

ageNet. In total, there are 27,452 source training images.

TV11 has 46,133 training shots for all the 22 concepts and

we randomly select 3, 5, 7, 10, 20, 50, and 100 positive sam-

ples per concept from the training set as the labeled target

training data. The remaining training examples are used as

the unlabeled set. In addition, TV11 also contains 137,327

video shots as testing samples and they are all used as target

test data for each concept.

We use bag-of-visual-words (BoW) to represent the di-

verse content of images/keyframes, because of their consis-

tent good performances reported in [18]. BoW is generated

from SIFT of local interest points extracted by Difference-

of-Gaussian (DoG) and Hessian Affine detectors. Specif-

ically, we generate a visual vocabulary of 500 words for

each kind of keypoints using k-means and then encode each

image/keyframe with 1000-dimensional vector by concate-

nating the BoW histograms from the two vocabularies. Fol-

lowing TRECVID evaluation, the Inferred average preci-

sion (InfAP) which is an approximation of Average Preci-

sion (AP) on partially labeled testing data is computed over

the top 2,000 retrieved shots. Note that we do not compare

with [8, 11, 24] here because [8] is with high computational
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Figure 4. Per-concept InfAPs of different approaches with 100 target positive examples for all the 22 concepts. The numbers in the brackets
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Figure 5. The performance (Mean InfAP) of different approaches

with the increase of target positive training examples. The num-

bers in the brackets represent the feature dimension.

cost when training on thousands of examples for each con-

cept and [11, 24] cannot cope with this evaluation criteria.

Performance Comparison. Figure 5 shows the per-

formance of different approaches in terms of Mean InfAP

against the number of target positive training examples.

Overall, SDASL with different target positive examples con-

sistently exhibits significantly better performance than oth-

er approaches. The three adaptation methods as SDASL,

SCMV, and FR perform better than the two baseline meth-

ods as SVM-S and SVM-T. The result basically indicates

the benefit of re-using source data. Furthermore, when the

number of the target positive training examples exceeds 10,

SVM-T outperforms A-SVM instead. This somewhat reveals

the weakness of A-SVM, which restricts the target decision

boundary not far away from the source one. In practice, this

constrain may even deteriorate the adaptation performance,

especially when the domain gap is large.

Figure 4 further details the InfAP performance for all the

22 queries. Basically different approach respond differently

to concepts. For instance, concept “Male Person” is bet-

ter classified with SVM-S. On the other hand, the concept

“Studio with Anchorperson” shows much better result with

SVM-T. In the experiment, SDASL successfully brings up

the InfAP performance of these concepts. Among all the 22

concepts, SDASL achieves the best performance for 16 con-

cepts. To verify that the performance of different approach-

es is not by chance, we conducted significance test using the

randomization test [23]. The number of iterations used in

the randomization is 100,000 and at 0.05 significance level.

SDASL is found to be significantly better than others.

5. Discussion and Conclusion

In this paper, we have presented semi-supervised domain

adaptation with subspace learning for visual recognition.

Particularly, we explore a new feature representation in the

subspace which could reduce the data distribution mismatch

across domains and preserve structure properties of the o-

riginal data. Meanwhile, as the unlabeled target examples

exhibit the underlying intrinsic information in the target do-

main, these examples are further employed to generalize the

visual concept classifier. Experiments conducted on both

image-to-image and image-to-video transfers validate our

proposal and analysis. Our future works are as follows.

First, we will extend this work to multiple source domain-

s, where the subspace is explored holistically among all the

domains. Moreover, several issues arisen from this exten-

sion need to be further addressed, e.g., how to select good

source domains making the task more effective. Second, as

the proposed framework is unified and any other criterion

can be easily incorporated, we will investigate other robust

principles to further improve the performance.
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