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Semi-Supervised Face Frontalization in the Wild
Zhihong Zhang, Ruiyang Liang, Xu Chen, Xuexin Xu, Guosheng Hu, Wangmeng Zuo, Edwin R.

Hancock, Fellow, IEEE

Abstract—Synthesizing a frontal view face from a single
nonfrontal image, i.e. face frontalization, is a task of practical
importance in a wide range of facial image analysis applications.
However, to train the frontalization model in a supervised
manner, most existing face frontalization methods rely on the
availability of nonfrontal-frontal face pairs (typically from the
Multi-PIE dataset) captured in a constrained environment. Such
approaches, in return, limit the generalizability of their ap-
plication to unconstrained scenarios. Unfortunately, although a
large amount of in-the-wild face datasets are available, they
cannot easily be utilized for face frontalization training since
the nonfrontal and frontal facial images are not paired. To
train a frontalization network which generalizes well to both
constrained and unconstrained environments, we propose a
semi-supervised learning framework which effectively uses both
(labeled) indoor and (unlabeled) outdoor faces. Specifically, to
achieve this goal, this paper presents a Cycle-Consistent Face
Frontalization Generative Adversarial Network (CCFF-GAN)
which consists of both (1) the supervised and (2) the unsupervised
components. For (1), we use the indoor paired (labeled) data
to learn a roughly accurate frontalization network which may
not generalize well to outdoor (in-the-wild) scenarios. For (2),
to cope with the generalization issue, the unsupervised part
uses the unpaired (unlabeled) images under the perceptual
cycle consistency constraint in the semantic feature space to
generalize the network from controlled (indoor) to uncontrolled
(outdoor) environment. Extensive experiments demonstrate the
effectiveness of the proposed method in comparison with the
state-of-the-art face frontalization methods, especially under the
in-the-wild scenarios.

Index Terms—Face frontalization, face synthesis, face recogni-
tion

I. INTRODUCTION

DEEP learning (DL) has proven to be a powerful tool in

a wide range of face analysis and recognition tasks [1],

[2]. However, accurately recognizing faces in unconstrained

environments is still challenging for several reasons. Specif-

ically, large pose variations are one of the major factors

that significantly reduce the performance of face recognition

algorithms [3], [4]. Pose Invariant Face Recognition (PIFR)

has therefore attracted significant attention recently.

To tackle the pose variation problem in face recognition, a

variety of studies have been conducted [5], [6], [7], [8], [9].

Those methods can be roughly categorized into two groups.
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The first of these seeks pose-invariant features to represent

the face so that the recognition can be performed using such

features to avoid the impact of pose variations [5], [6], [7],

[8], [9]. The second group of methods aim to eliminate pose

variations by first synthesizing a frontal view of the face from

a given nonfrontal image, i.e., face frontalization (FF). Face

recognition is then performed using the synthesized frontal

face [10], [11], [12], [13], [14], [15], [16], [13], [17], [18],

[19]. Compared with invariant feature based methods, the face

frontalization methods are intrinsically easier to interpret since

they are able to generate a high quality frontal face image

from its nonfrontal counterpart. This capability is of particular

relevance and practical importance in many applications where

the transparency of the decision process is important, such as

law enforcement and visually identifying suspects.

Recently, deep learning methods have achieved promising

results in frontal face image synthesis [10], [11], [12], [13],

[14], [15], [16], [13], [17], [18], [19]. These methods often

take nonfrontal-frontal facial image pairs as the ground-truth

to learn the projection from a nonfrontal view to a frontal view

in a data-driven manner. However, most existing deep learning

based facial frontalization methods [10], [11], [12], [13],

[14], [16] only work well on images taken in a constrained

environment while cannot generalize well to unconstrained

scenarios. This results from the fact that most existing methods

use the constrained images from the Multi-PIE [20] database

for training. It is known that Multi-PIE (contains facial images

from 337 subjects with 13 poses and 20 illuminations) is the

largest database which has explicit pose annotation and can be

used to facilitate the construction of deep models (e.g. GANs)

to learn the mapping from different poses to the frontal one.

Clearly, Multi-PIE based training has two drawbacks, namely

(1) The training data lacks diversity (337 subjects only) so

that the trained model can not capture sufficient amount of

interpersonal variation. (2) The images are all captured in

the same constrained environment. Thus those models trained

on Multi-PIE cannot generalize well to faces image in the

wild. A natural solution to problems (1) and (2) is to train

models using a large unconstrained database (e.g. CASIA

WebFace [21], MegaFace [22], MS-Celeb-1M [23]) which has

a large number of unconstrained training images. So far only a

handful of methods (e.g. FF-GAN[13], DR-GAN[12]) do have

the ability to leverage outdoor unconstrained face images for

training. However, those methods can not utilize both paired

and unpaired data in a unified training framework. Specially,

face normalization method FNM[24] is able to combine both

paired and unpaired data into a unified framework. But the

restored images suffer from color bias issue.

In Fig. 1, we summarise some results obtained with the

previous TPGAN method (i.e trained on Multi-PIE) along
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Fig. 1. Each column consists of 4 subcolumns, which represent the input
face, the face restored by TP-GAN [14], the face restored by FNM [24] and
the face restored by CCFF-GAN, respectively.

with our method for comparison. We observe that there is an

obvious color bias between the synthetic frontal face obtained

by TP-GAN method and the corresponding non-frontal input.

In some cases, the synthetic faces are even incomplete and

miss a lot of fine detail around facial features. FNM method

also suffers from color bias issue but with better facial details

compared to TP-GAN. More results can be referred to in Fig.

7. Our method, on the other hand, does not suffer from these

drawbacks. As we know, it is nontrivial to use unconstrained

images for facial frontalization training because of the lack

of paired data. Specifically, the nonfrontal images from an in-

the-wild database usually do not have their frontal counterparts

(from the same subjects with exactly frontal faces under the

same conditions, such as illumination, expression, etc) to

establish the nonfrontal-frontal pairs necessary for learning

frontalization in a supervised manner.

To achieve promising face frontalization (FF) performance

in both constrained and unconstrained environments, in this

paper, we propose a semi-supervised learning method using

both constrained and unconstrained face images. Clearly, it

is very challenging to use unpaired faces to facilitate the

facial frontalization training. Motivated by the recent success

of unpaired image-to-image translation [25], we develop the

Cycle-Consistent Face Frontalization Generative Adversarial

Network, termed as CCFF-GAN to make use of unconstrained

data for training. Specifically, CCFF-GAN is based on two

generators, namely GN→F and GF→N that respectively learn

the nonfrontal-to-frontal and frontal-to-nonfrontal translations.

Note that the generator GN→F is required to be the inverse

mapping of GF→N , i.e., GN→F (GF→N (x)) ≈ x, and vice

versa. In this way, unpaired data can successfully be applied

to learn GN→F and GF→N . To train the model, paired and

unpaired data are treated separately. Specifically, the unpaired

non-frontal faces are sequentially fed to GN→F and GF→N to

reconstruct themselves; Similarly, GF→N and GN→F process

the (near) frontal faces. This ‘cycle’ process is unsupervised

learning via the aforementioned self-reconstruction. On the

other hand, the paired (labeled) faces can be fed to either

GF→N and GN→F using direct supervision (labeled poses)

rather than self-reconstruction. This clear supervision infor-

mation reduces training difficulty and alleviates the intrinsic

ambiguity brought by Cycle constraint. In addition, unlike

the original cycle constraint which measures the pixel-wise

difference using ℓ1 loss, we instead propose to use the per-

ceptual loss [26] to measure the semantic similarity between

the cycle-reconstructed image and the original one. Since the

unpaired data can be used for training (unsupervised learning),

it is natural to incorporate the paired constrained images

(supervised learning) to construct a semi-supervised learning

framework.

The main contributions of this paper are summarized as

follows.

• We present a semi-supervised learning framework, i.e.

CCFF-GAN, which exploits both the paired indoor face

images with a limited number of subjects and the un-

paired in-the-wild faces with much more inter-personal

variations to train the face frontalization network. Thus,

our CCFF-GAN can generate high quality frontalization

result and generalize well to unconstrained face images.

• For effectively leveraging paired and unpaired images in

training, pixel-level fidelity and perceptual cycle consis-

tency are respectively proposed to learn the face frontal-

ization network. Adversarial loss and identity preserving

loss are further introduced to enchance the visual quality

and recognition performance of the frontalized image.

• Extensive experiments are conducted on Multi-PIE [20],

LFW [27], IJB-A [28] and CFP [3] datasets. The re-

sults show that CCFF-GAN can achieve very promising

face frontalization performance on in-the-wild faces. In

addition, our method can effectively improve the pose-

invariant face recognition performance.

The remainder of this paper is organized as follows. Sec. II

briefly surveys the related work. Sec. III presents our CCFF-

GAN and Sec. IV reports the experimental results. Finally,

Sec. V ends this work with some remarks.

II. RELATED WORK

A. Face Frontalization

Face frontalization aims to generate a frontal view from a

given face with arbitrary nonfrontal view. Early efforts in face

frontalization usually explicitly use a 3D model, typically a 3D

Morphable Model (3DMM), to reconstruct a 3D face by fitting

the given 2D nonfrontal face image to the 3D model. Then, a

frontal face image can be generated by rotating and rendering

the 3D model and then projecting the image of the face back

onto the appropriate 2D plane. The pose transformation can

thus be handled intrinsically in a 3D space. For example,

Ferrari et al [29] present an effective face frontalization

algorithm for frontal view rendering of a face image based

on fitting a 3DMM. Zhu et al. [30] propose a High-fidelity

Pose and Expression Normalization (HPEN) method, aiming at

automatically generating a frontal face with neutral expression

under a landmark matching assumption. Hassner et al. [31]

proposed to use a single, unmodified 3D reference as an

approximation to all query faces for producing frontalized

views. Recently, deep learning technique has demonstrated its

effectiveness in many computer vision tasks, including face

frontalization. Deep learning based face frontalization methods

often utilize a Convolutional Neural Network (CNN), typically

with a encoder-decoder structure, to learn the mapping from a

nonfrontal view to a frontal view which requires hundreds of

thousands of paired nonfrontal-frontal face images for training

[10], [11], [12], [13], [14], [15], [16], [13], [17], [18], [19]. For
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𝐿𝐿𝑝𝑝𝑎𝑎𝑎𝑎𝐹𝐹 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁
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Synthesis stream Loss streamOutdoor faces

Fig. 2. The framework of the proposed CCFF-GAN. Generators GN→F and GF→N learn the nonfrontal-to-frontal and frontal-to-nonfrontal translations,
respectively. For outdoor face images, the synthetic frontal/nonfrontal faces are brought back to nonfrontal/frontal view to compare with the original faces
in high-level semantic feature space in forward/backward streams, respectively. LF

pair and LN
pair are for paired data which measure pixel-wise differences

between the generated results and the ground truth. Their unpaired counterparts LF
cc and LN

cc leverage perceptual cycle consistency constraint to guide the
training process. LF

adv
and LN

adv
are adversarial losses. LF

ip and LN
ip are identity preserving loss.

example, Yin et al. [13] present a novel deep 3D Morphable

Model (3DMM) conditioned Face Frontalization Generative

Adversarial Network (FF-GAN) to frontalize faces by utilizing

shape and appearance priors from the 3DMM. Huang et al.

[14] process the global and local transformations separately

through a Two-Pathway Generative Adversarial Network (TP-

GAN) to better preserve the facial texture details. Zhang

et al. [15] reconstruct the frontal facial view by explictly

‘moving’ pixels from the nonfrontal facial view, instead of

‘synthesising’ them. This prevents the generated results from

being blurry. Hu et al. [16] have proposed a novel Coupled-

Agent Pose-Guided Generative Adversarial Network (CAPG-

GAN) to generate both neutral and profile head pose face

images by utilizing facial landmark heatmaps to guide the

training. Tran et al. [19] propose to learn a representation

that both for frontal face image synthesis and pose-invariant

face recognition. Qian et al. [24] proposed Unsupervised

Face Normalization with Extreme Pose and Expression in the

Wild (FNM). Their model first encode images by utilizing

a pre-trained face expert network and then tried to recover

photorealistic images from the extracted feature. Recently,

Rong et al. [32] proposed FI-GAN, aiming at improving the

recognition performance under large face poses via a Feature-

Mapping Block which maps the features of profile space to

the frontal space. In most face frontalization methods, a large

number of paired nonfrontal-frontal face images, typically

from the MultiPIE dataset, are required to train the model in a

fully supervised manner. Although these deep learning based

face frontalization methods show promising results on indoor

face images, their generalizability on outdoor face images

is still questionable, since the training samples are captured

in a controlled environment. Moreover, considering that the

training samples (from MultiPIE dataset) are captured from

only a few subjects, which further limits the generalizability

of face frontalization models in practical applications. In this

paper, we propose to utilize both indoor and outdoor face

images to train the face frontalization model in a semi-

supervised manner by making use of both indoor and outdoor

face images, which can effectively improve the generalizability

of the face frontalization model. It is worth noting that the

FNM [24] method also utilizes both indoor and in-the-wild

data for training. But different from the proposed method,

the FNM is a face normalization method that conducts both

face frontalization and expression normalization, and it cannot

rotate the frontal face to a nonfrontal one like our proposed

method. We also compare the results of our proposed method

and FNM later in experiment section.

B. Adversarial Image Synthesis

Goodfellow’s Generative Adversarial Network (GAN) [33]

has stimulated intense interest and consistently demonstrated

its effectiveness in a wide range of tasks, especially in image

synthesis. Typically, a GAN is composed of a generator

and a discriminator. The generator is trained to synthesize

fake images to fool the discriminator, while the discriminator

learns to differentiate the fake images from the real ones.

The generator and discriminator are trained in turn in an

adversarial manner. GANs have been proven to be powerful

tools for image synthesis since the generator is trained to

synthesize realistic images that accurately match the detailed

data distribution of their real counterparts. Recently, Zhu et

al. [25] address the image-to-image translation problem by in-

troducing a cycle-consistent adversarial network (CycleGAN),

which has received significant attention. Perhaps the most

attractive characteristic of CycleGAN is that it does not require

paired images for training, i.e., it can be trained in an entirely

unsupervised manner. Motivated by this work, in this paper

we aim to jointly learn both the nonfrontal-to-frontal and

frontal-to-nonfrontal translations in a cycle consistent manner.

Unlike the original CycleGAN which uses only unpaired

images, in this paper we make use of both paired (captured

in the controlled environment) and unpaired (captured in the

uncontrolled environment) nonfrontal-frontal face images to
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train the model, with the aim of effectively reducing the

intrinsic ambiguity encountered with CycleGAN.

III. METHODOLOGY

In this section, we introduce our novel method in detail. We

first present an overview of the proposed method in Sec. III-A.

Then we introduce the perceptual cycle consistency constraint

and the associated network architecture in Sec. III-B and Sec.

III-C, respectively. Finally, the loss functions are detailed in

Sec. III-D.

A. Overview

In this paper, we explain how to make use of both paired

(captured in a constrained environment) and unpaired (cap-

tured in an unconstrained environment) nonfrontal-frontal face

images to address face frontalization problem in a semi-

supervised manner. The indoor labeled face pairs can only

be used to learn frontalizations with poor generalizability to

faces imaged in-the-wild. Outdoor unlabeled faces, although

they cannot be used to learn stable frontalizations, can on the

other hand be used to learn the characteristics of in-the-wild

faces. Intuitively, utilizing in-the-wild faces to assist in the

construction of the face frontalization model would contribute

to improving the generalizability. The reason is that these faces

span much greater variance in the inter-personal variations

(identities/subjects) and intra-personal variations (poses, light-

ings, expressions, etc). In this paper, we propose to make use

of both indoor and outdoor faces in a semi-supervised manner,

with the aim of achieving stable in-the-wild face frontalization.

The framework is illustrated in Fig. 2.

As illustrated, the proposed Cycle-Consistent Face Frontal-

ization Generative Adversarial Network (CCFF-GAN) con-

tains two generators (i.e., GN→F and GF→N ) which respec-

tively learn the nonfrontal-to-frontal and frontal-to-nonfrontal

mappings. Note that in the frontal-to-nonfrontal translation, a

pose code is required to specify the target pose. In this work,

the pose code is a one-hot vector specifying the pose of the

desired face. Although such a pose code is unnecessary in the

nonfrontal-to-frontal translation, we still use it for the sake of

uniformity. In this case, the value of pose code is set to 0.

Both indoor and outdoor face images are jointly used to

learn the nonfrontal-frontal translations in unconstrained envi-

ronments. The indoor data (from the Multi-PIE [20] dataset)

provides paired nonfrontal-frontal face images to serve as the

direct supervision in the learning or training of the network.

While for outdoor data, the cycle consistency constraint is

applied to regularize the translations, by requiring that the two

generators be the inverse mappings of one-another in both the

forward (nonfrontal-frontal-nonfrontal) and backward (frontal-

nonfrontal-frontal) processing streams as illustrated in Fig. 2.

However, instead of the ℓ1 loss that performs at the pixel

level, we use instead the perceptual loss to apply the cycle

consistency constraint in the high-level semantic feature space,

which will be detailed later on in Sec. III-B.

Unlike the original CycleGAN [25] that uses two discrimi-

nators, in this paper, we use a single conditional discriminator

D for both nonfrontal and frontal face images. This takes an

image and a pose code as inputs to determine whether the

given image is real or synthetic.

Our model makes use of both paired and unpaired

nonfrontal-frontal face images to learn the face translation. The

paired images provide both direct supervision and also serve as

anchors during the training process. This effectively alleviates

the intrinsic ambiguity inherent in CycleGAN. The unpaired

data can effectively improve the generalizability of the face

frontalization model by learning from the unconstrained face

images. The loss functions involved in the learning process

will be elaborated in Sec. III-D.

B. Perceptual Cycle Consistency

CycleGAN [25] addresses the image-to-image translation

problem by learning mappings between the source and target

domains using unpaired images only. Since no aligned image

pairs are available to provide direct supervision, the cycle

consistency constraint is used instead furnishing a source of

indirect supervision to guide the training. To be specific, for

each image x from the source domain, two generators G and F
are required to satisfy forward cycle consistency relation: x →
G(x) → F (G(x)) ≈ x, where G and F learn the source-to-

target and target-to-source mappings, respectively. Likewise,

for each image y from the target domain, a similar backward

cycle consistency relation holds: y → F (y) → G(F (y)) ≈ y.

The original CycleGAN adopts the ℓ1 loss to measure

the similarity between the cycle-reconstructed image and

the original one at the pixel-level, i.e., ‖F (G(x))− x‖1 +
‖G(F (y))− y‖1. However, we argue that such pixel-wise

regularization is not suitable for our nonfrontal-frontal face

translation case, especially for those faces captured in the

unconstrained environment. This is because the semantic struc-

tures presented in face images can change considerably during

the rotation of head. A face image captured in an unconstrained

environment often contains a certain proportion of complicated

natural background structure. In general, the larger the facial

pose, the bigger the background area. When transferring a

nonfrontal face to a frontal one, a part of background area

will be covered by the frontalized face. However, such an

occluded background area can not be accurately restored when

this process is reversed, i.e. when transferring the frontalized

face back to the nonfrontal one.

Thus we argue that the pixels should not be treated

equally in the cycle consistency constraint in nonfrontal-

frontal face translations. Intuitively, the desired regularization

in nonfrontal-frontal translation should focus on the face area

and ignore the background.

To achieve this goal, in this paper we use the perceptual

loss [26] instead of pixel-wise ℓ1 loss for cycle consistency

constraint. The perceptual loss measures the high-level se-

mantic feature differences rather than pixel-wise differences

between two images. In this work, we use a pre-trained face

recognition network (e.g., ResNet, Light CNN) to extract

the feature representations from the face images. Since such

network is trained to recognize faces, the trained model should

focus on extracting facial features and ignore the background

area. Based on such features, perceptual cycle consistency reg-

ularization is more robust than the original pixel based version
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especially for in-the-wild face images. The corresponding loss

function is detailed later in Sec. III-D.

C. Network Architecture

The architectures of the generators and the discriminator

are illustrated in Fig. 3. Here the generator is a convolutional

neural network with an encoder-decoder structure. It takes a

face image and a target pose code as inputs. The face image is

fed into the encoder which commences with a convolutional

layer, followed by 4 encoder blocks. Each encoder block

consists of a residual block and a convolutional layer with

stride 2 to downsample the feature map. The numbers of

convolutional filters in these encoder blocks are 64,128,256

and 512, respectively. Three residual blocks [34] are appended

to improve the nonlinear modeling ability of the generators,

followed by a bottleneck layer (i.e., the fully connected layer)

in the middle to transform the feature map to a vector with

dimension 512. This vector is then concatenated with the

input pose code. The decoder is symmetrical with the encoder,

which consists of 4 decoder blocks and a convolutional output

layer. Each decoder block contains a deconvolutional layer

[35] to upsample the feature map, followed by a residual block.

Finally, an additional convolutional layer is used to generate

the output, i.e., the synthesized face image. In addition, the

Instance Normalization (IN) [36] and ReLU nonlinearity are

applied after each convolutional and deconvolutional layer,

with an exception that the tanh activation is used to normalize

the output of the generator.

The discriminator commences with 4 convolutional layers

with stride 2 to gradually downsample the feature map, fol-

lowed by 2 residual blocks. The number of filters for these

convolutional layers are 64, 128, 256 and 512, respectively.

Then, a fully connected layer is applied to generate a 512-

dimension feature vector. This feature vector is concatenated

with the input pose code, and followed by 2 fully connected

layers with output dimensions 128 and 1, respectively. The

Instance Normalization (IN) [36] is also applied after each

convolutional layer. For activation, we adopt the Leaky ReLU

[37] with slope 0.2 after each convolutional and fully con-

nected layers as suggested in DCGAN [38] except the last

layer.

D. Loss Functions

In this section, we describe the loss functions used in this

work.

1) Pixel-wise Fidelity Loss for Paired Data: The pro-

posed CCFF-GAN makes use of both paired and unpaired

nonfrontal-frontal face images to train the model. The paired

data can be directly used to guide the training by minimizing

the following loss functions:

LN
pair =E(x,y)∼(Xp,Yp)(‖GF→N (y, cx)− x‖1)

LF
pair =E(x,y)∼(Xp,Yp)(‖GN→F (x, cy)− y‖1)

(1)

where x ∈ Xp and y ∈ Yp represent a pair of nonfrontal-

frontal face images, (cx, cy) denote the pose codes of (x, y),
respectively.

2) Perceptual Cycle Consistency Loss for Unpaired Data:

As introduced in Sec. III-B, we use the perceptual cycle

consistency constraint to guide the training of the unpaired

data. The loss functions are defined as follows:

LN
cc = E(x,y)∼(Xu,Yu)‖φ3,4(GF→N (GN→F (x, cy), cx))−

φ3,4(x)‖2

LF
cc = E(x,y)∼(Xu,Yu)‖φ3,4(GN→F (GF→N (y, cx), cy))−

φ3,4(y)‖2
(2)

where x ∈ Xu and y ∈ Yu represent the unpaired nonfrontal-

frontal face images, (cx, cy) respectively denote the pose codes

of (x, y), and φi,j indicates the feature map obtained by j-

th convolution (after the activation) in i-th block of the pre-

trained face recognition network.

3) Discrimination and Adversarial Loss: The discriminator

distinguishes a real face image from a synthetic one, while

encouraging the generator to synthesize realistic face images.

The generators and discriminator are trained alternatingly in

an adversarial manner. To be specific, in the discrimination

stage, the discriminator is trained to determine whether the

given image is real or synthesized by minimizing the following

loss functions:

LN
dis =E(x,y)∼(X ,Y)((D(x, cx)− 1)2 +D(GF→N (y, cx), cx))

2

LF
dis =E(x,y)∼(X ,Y)((D(y, cy)− 1)2 +D(GN→F (x, cy), cy))

2

(3)

where x ∈ X and y ∈ Y respectively represent the nonfrontal

and frontal face images, (cx, cy) denotes the pose codes of

(x, y). In the generation stage, on the other hand, the genera-

tors are encouraged to synthesize realistic face images to fool

the discriminator. This involves the following adversarial loss

functions:

LN
adv =E(x,y)∼(X ,Y)(D(GF→N (y, cx), cx)− 1)2

LF
adv =E(x,y)∼(X ,Y)(D(GN→F (x, cy), cy)− 1)2

(4)

Note that in this paper, the LSGAN [39] is adopted instead

of the original GAN [33] to mitigate the training instability

issue.

4) Identity Preserving Loss: Finally, to preserve the identity

information in nonfrontal-frontal translations, we adopt the

identity preserving loss as proposed in [14]. To be specific,

we extract the high-level representations from the inputted

face and the synthetic one via the pre-trained face recognition

network, and require these two representations to be the same.

The loss functions are defined as follows:

LN
ip =E(x,y)∼(X ,Y)‖φ−2(GF→N (y, cx))− φ−2(y)‖2

LF
ip =E(x,y)∼(X ,Y)‖φ−2(GN→F (x, cy))− φ−2(x)‖2

(5)

where φ−2 indicates the feature map extracted by the last but

one layer of the pre-trained face recognition network. Note

that we utilize the most abstract features extracted from the

last but one layer of the pre-trained face recognition model to

calculate the identity preserving loss. Such feature is extracted

from a fully connection layer that typically behind a average

global pooling operation. So although the original face and

synthesized face may have drastically different facial yaw, their

spacial geometry structures information will be removed by the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Conv 3×3/1 Conv 3×3/2 Residual blockDeonv 3×3/2
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3×3/2

3×3/2
3×3/2

Fig. 3. The network architectures.

global pooling operation, leaving only the abstract features that

do not contain facial yaw information.

5) Total Loss: The final loss function for the generators is

a weighted sum of individual loss functions described above,

which is defined as follow:

LF
pair + LN

pair + λ1(L
F
cc + LN

cc)+λ2(L
F
adv + LN

adv)+

λ3(L
F
ip + LN

ip),
(6)

where λ1, λ2, and λ3 are the tradeoff parameters.

E. Training Details

We train the two generators and the shared discriminator

in turn at each iteration. To be specific, we first train the

discriminator with frontal real and synthetic face images

while the generators are frozen. Then, the nonfrontal-to-frontal

generator is trained with the other generator (i.e., the frontal-

to-nonfrontal generator) and the discriminator fixed. After

that, the discriminator is trained again with nonfrontal real

and synthetic face images with the generators fixed. Finally,

we train the frontal-to-nonfrontal generator while the other

generator (i.e., the nonfrontal-to-frontal generator) and the

discriminator are frozen. The training strategy is detailed in

Algorithm 1.

Input: nonfrontal face dataset X , frontal face dataset

Y
1 for t = 1, 2, . . . , T do

2 train D with loss: LF
dis

3 train GN→F with loss:

LF
pair + λ1L

N
cc + λ2L

F
adv + λ3L

F
ip

4 train D with loss: LN
dis

5 train GF→N with loss:

LN
pair + λ1L

F
cc + λ2L

N
adv + λ3L

N
ip

6 end

Algorithm 1: Training Strategy

We adopt Adam [40] as the optimizer to train the network

with a learning rate of 10−4 for 40,000 iterations The batch

size is 4 with each mini-batch consists of 2 paired and 2 un-

paired nonfrontal-frontal face images. Other hyper-parameters

are empirically set as: λ1 = 5, λ2 = 0.05 and λ3 = 0.01.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed CCFF-GAN,

we evaluate it both qualitatively and quantitatively in compar-

ison with the state-of-the-art face frontalization methods. In

this section, we first introduce the experimental settings in Sec.

IV-A, including a description of the training and test datasets,

as well as the preprocessing procedure. Then we present

some representative visual results for face frontalization in

Sec. IV-B, and subsequently report the quantitative results and

analyses for face recognition in Sec. IV-C. Finally, we present

ablation study in Sec. IV-D to investigate the role of different

losses respectively.

A. Experimental Settings

The proposed CCFF-GAN is trained in a semi-supervised

manner by exploiting both paired and unpaired nonfrontal-

frontal face images. The paired face images were from the

Multi-PIE [20] dataset which contains 750,000+ face images

captured from 337 subjects in a constrained environment, with

13 poses from −90◦ to 90◦ and 20 illuminations. Following

the settings in [14], we used the first 200 subjects to train the

model, leaving the remaining 137 subjects for testing.

In addition to the paired data, we also collected unpaired

nonfrontal-frontal face images to train our model. Such un-

paired data was from the MS-Celeb-1M [23] dataset, which

consists of about 10 million face images harvested from nearly

100,000 subjects, and most of these images were captured

in an unconstrained environment. However, note that the

majority of the face images in the MS-Celeb-1M dataset are

frontal faces, while the number of nonfrontal faces is very

limited. To avoid the pose imbalance problem, we selected

only a subset of the face images in the MS-Celeb-1M dataset

for each pose range. To be specific, we first calculate the

poses of the face images in the MS-Celeb-1M dataset using

the 3DDFA algorithm [41] and categorized the images into

different pose groups. Then we randomly selected a fixed size

subset of the face images at every pose group to avoid pose

imbalance problem. Summary satatistics for the training data

are presented in Table I. Each of the face images used in our

experiments is aligned and cropped to the size of 96×96×3,
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TABLE I
NUMBER OF TRAINING SAMPLES ACROSS DIFFERENT POSE.

Pose −90
◦ −75

◦ −60
◦ −45

◦ −30
◦ −15

◦
0
◦

15
◦

30
◦

45
◦

60
◦

75
◦

90
◦

MS-Celeb-1M[23] 10 243 2876 15000 15000 15000 15000 15000 15000 15000 1919 174 3
Multi-PIE [20] 12420 12420 12420 12420 12420 12420 12420 12420 12420 12420 12420 12420 12420

and then the pixel intensity values are linearly scaled into the

interval [−1, 1].

B. Qualitative Evaluation

Most existing face frontalization methods only use indoor

face images that are captured in a constrained environment

to train the model. This limits their generalizabilities in an

unconstrained environment since such data cover too few inter-

personal variations (identities/subjects) and intra-personal vari-

ations (poses, lightings, expressions, etc) to learn a robust

frontalization. To address this issue, in this paper we also make

use of in-the-wild face images (which cover much more inter-

personal and intra-personal variations) to assist in training the

face frontalization model via cycle-consistent image synthesis.

To demonstrate the effectiveness of the proposed method, in

this section we qualitatively evaluate the proposed CCFF-

GAN by presenting some of the representative synthesis results

obtained, and compare them with those produced by state-

of-the-art face frontalization methods. In addition, we trained

our nonfrontal-to-frontal generator GN→F solely using only

paired training data (i.e., from the Multi-PIE[20] dataset). This

model serves as a Baseline for the purposes of comparison

and demonstrating the benefits of using in-the-wild (unpaired)

nonfrontal-frontal face images.

Fig. 4 shows the results of the proposed CCFF-GAN and

several state-of-the-art face frontalization methods. In the fig-

ure the columns respectively represent (a) the input nonfrontal

face, and the synthesized frontal face obtained using (b) the

HPEN [30] method, (c) the TP-GAN [14] method, (d) the FF-

GAN [13] method, (e) the CCFF-GAN method, and (f) the

ground truth. It is clear that the traditional face frontalization

methods (e.g., HPEN [30]) struggle to reconstruct the shape

of the face. On the other hand, the results of the deep

learning based face frontalization methods (e.g., FF-GAN

[13]) tend to lack high-quality facial details. This implies poor

generalizability since the models were trained on a limited set

of subjects. By contrast, the proposed CCFF-GAN generates

more realistic results. This can mainly be attributed to the

proposed semi-supervised learning framework that learns the

data distribution of frontal faces from both indoor and in-the-

wild face images. It is worth noting that although TP-GAN

[14] also generates high-quality results with fine facial details,

it requires additional facial landmarks to assist in the face

frontalization. This limits its generalizability in unconstrained

environments, as we will analyze in greater detail later. More

qualitative visual results for the proposed method based on

Multi-PIE are presented in Fig. 5. Here we demonstrate the

effectiveness of the proposed CCFF-GAN on different poses.

The major difference between the proposed CCFF-GAN and

the competing methods is that we use both indoor and in-the-

(a) Input (b) [30] (c) [14] (d) [13] (e) Ours (f) GT

Fig. 4. Comparison with state-of-the-art face frontalization methods.

wild face images to train the model. Thus, it is reasonable

that the proposed method generalizes well to in-the-wild

face images captured in an unconstrained environment. To

demonstrate this, we have evaluated the trained model on LFW

[27] and IJB-A [28] datasets, and compared the results with

those obtained with TP-GAN [14] method. Besides, we also

compared the results with that of FNM [24], which also uses

both indoor and in-the-wild data for training. It is worth noting

that the FNM method is a face normalization method. That

is, it not only performs face frontalizatoin, but also removes

expression (synthesizes neural expression) from given input.

Some representative results are shown in Fig. 7 , where the

leftmost two columns and the rightmost two columns are

from LFW and IJB-A, respectively. The sub-columns in each

column respectively represent a) the input nonfrontal image,

b) the results of the TP-GAN method c) the results of the

FNM method and d) the results of the proposed CCFF-GAN.

From these results, it is clear that that there is an obvious

color bias between the synthetic frontal face obtained by TP-

GAN method and the corresponding nonfrontal input. To be

specific, the facial skin colors of the synthetic faces obtained

by TP-GAN often differs from that of the input faces. This

is because the TP-GAN model was trained on indoor face

images which lack facial texture variations since these images

were captured in a constrained environment and were from a

very limited number of subjects (i.e., 200 subjects). Moreover,

TP-GAN failed to synthesize the frontal face in some cases

(e.g., 2nd row in column (b) and last row in column (c))

where the detected facial landmarks are inaccurate. These
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(a) 90
◦ (b) 75

◦ (c) 60
◦ (d) 45

◦ (e) 30
◦ (f) 15

◦

(g) −15
◦ (h) −30

◦ (i) −45
◦ (j) −60

◦ (k) −75
◦ (l) −90

◦

Fig. 5. Face frontalization from arbitrary poses in a constrained environment on Multi-PIE. Each column consists of 2 subcolumns, which represent the input
face,and the face restored by our method respectively.

results indicate that the performance of TP-GAN relies crit-

ically on the landmark detection accuracy, which limits its

generalization ability in unconstrained environments. On the

other hand, although also incorporating the in-the-wild data

into training, we can observe that the FNM method also suffers

from the color bias problem. Obviously, the training of FNM

was dominated by the indoor data, since the synthetic faces

have very similar illuminations, backgrounds and skin colors

with MultiPIE faces. By contrast, the proposed CCFF-GAN

is able to synthesize more realistic frontal faces from in-the-

wild nonfrontal faces as well as better preserving the facial

details. This implies good generalizability to an unconstrained

environment, a feature mainly attributable to the proposed

semi-supervised learning framework basaed on both indoor

and in-the-wild face images.

In addition, some representative frontal-to-nonfrontal syn-

thetic results are shown in Fig. 6, where the first two rows

were sampled from indoor data and the last two rows were

from in-the-wild data. From the results, we can found that the

nonfrontal-to-frontal generator produces good results in most

cases, while also produces some artifacts when facing extreme

pose (e.g., 90◦), especially for in-the-wild faces. This is due to

the fact that the number of profile face images is very rare in

outdoor training set (see Table I), which hampers the generator

in learning a reliable frontal-to-nonfrontal mapping.
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(a) Input (b) 15
◦ (c) 30

◦ (d) 45
◦ (e) 60

◦ (f) 75
◦ (g) 90

◦

Fig. 6. Face rotation to arbitrary poses. 1-2 rows sampled from indoor data
and 3-4 rows sampled from outdoor data.

C. Face Recognition

To further demonstrate the effectiveness of the proposed

CCFF-GAN, we have also quantitatively evaluated it on face

recognition. In this work, we employed ResNet50 1 and Light

CNN 2 as the face recognition models, which are further

refined using the training set of paired and unpaired data.

The trained model are also used to compute the identity

preserving loss as stated in Section III-D. We first conducted

face recognition on the LFW [27], IJB-A [28] and CFP

[3] datasets, where most face images were captured in an

unconstrained environment. The results are shown in Table

II, Table III and Table V, respectively.

Specifically, to demonstrate the superiority of using images

collected from unconstrained environment, we conduct our

training process using two different configurations of dataset.

We first train our model using only Multi-PIE [20] dataset,

which, as expected, leads to performance drop in face recog-

nition test. Then the preprocessed MS-Celeb-1M dataset is in-

cluded to jointly train the model along with Multi-PIE dataset.

The second configuration which is the complete version of our

CCFF-GAN prevails. Not surprisingly, the proposed CCFF-

GAN outperforms other competing face frontalization methods

on the LFW, IJB-A and CFP datasets in most cases, thus

demonstrating its superiority in the unconstrained environ-

ment. In the IJB-A verification protocol, FNM outperforms

all the other method including our method because FNM

conducts both face frontalization and expression normlization,

while other methods including ours do not conduct expression

normalization. The good generalization ability of the CCFF-

GAN can be attributed to the underlying semi-supervised

learning framework which learns face frontalization from both

indoor and in-the-wild face images. By contrast, most existing

face frontalization methods are only trained on indoor face

images (typically from Multi-PIE[20] dataset), which limits

their generalization abilities in the unconstrained environment.

1The code is publicly available at https://github.com/auroua/InsightFace TF
2The code is publicly available at https://github.com/AlfredXiangWu/

LightCNN

TABLE II
FACE VERIFICATION RESULTS ON LFW.

Methods ACC(%) AUC(%)

TP-GAN [14] 91.17± 1.44 92.78± 0.02
Hassner et al. [31] 93.62± 1.17 98.38± 0.06
HPEN [30] 96.25± 0.76 99.39± 0.02
LightCNN [42] 98.87± 0.61 99.69± 0.17
ResNet50 [43] 98.98± 0.52 99.79± 0.14
FF-GAN [13] 96.42± 0.89 99.45± 0.03
A3FCNN [15] 96.63± 0.99 99.29± 0.42
FI-GAN [32] 98.30± − 99.60± −

Ours(Multi-PIE only) + LightCNN 98.83± 0.50 99.63± 0.24
Ours + LightCNN 98.93± 0.56 99.67± 0.21
Ours(Multi-PIE only) + ResNet50 98.08± 0.47 99.78± 0.21
Ours + ResNet50 99.20 ± 0.49 99.83 ± 0.13

We also conducted the face recognition experiment on the

Multi-PIE dataset following the settings used with TP-GAN

[14]. Specifically, we selected a single frontal face image for

each subject in the test dataset and treated the selected face

images as the gallery set, leaving the remaining face images

as the probe or test set. Then, we synthesized the frontal

view for each nonfrontal face image in probe set using the

trained CCFF-GAN. We then extracted the deep features using

the pre-trained recognition network. The rank-1 recognition

accuracy is evaluated by comparing the features from the

frontalized faces in the probe set and those from the real frontal

faces in the gallery set. The comparison was performed using

the cosine distance metric. The evaluation results are given in

Table IV and compared with the competing methods.

Our method achieves very competitive performance. Note

that the methods compared in Table IV are obtained using

the models training and tested only on Multi-PIE, They thus

tend to overfit the test set. In comparison, our method is

designed for in-the-wild faces (161,460 images from Multi-

PIE, 110,225 images from MS-Celeb-1M in training set), the

strong performance of our method on Multi-PIE means our

methods can generalize well to constrained environment.

D. Ablation Study

In this section, we conduct an ablation study on several

variations of the proposed CCFF-GAN by dropping each of

the 4 loss functions in turn. This gives us insights into the

individual roles of the different loss functions in the training

process. All the presented results are generated using LFW

[27] and IJB-A [28] datasets. Note that, our model is trained

on MS-Celeb-1M [23] and Multi-PIE [20] databases only.

We present visual results of 4 different CCFF-GAN variants

obtained using the partial or curtailed loss function are shown

in Fig. 8 along with the input profile images and the outputs

the originql CCFF-GAN with the full loss function, while the

corresponding quantitative results are shown in Table VI.

1) Remove Lpair loss: When trained without the Lpair loss,

the generated face frontalization results suffer from model

collapse problem. The generated faces lack of diversity with

only minor differences in facial features and its quantita-

tive performance has significantly deteriorated compared with

other CCFF-GAN variants. As mentioned above, the Lpair

loss is used to supervise learning from paired data and gives
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(a) (b) (c) (d)

Fig. 7. Face frontalizatoin from arbitrary poses in the wild on LFW (Columns 1-2) and IJB-A (Columns 3-4). Each column consists of 4 subcolumns, which
represent the input face, the face restored by TP-GAN [14], the face restored by FNM [24] and the face restored by CCFF-GAN, respectively.

TABLE III
PERFORMANCE COMPARISON ON IJB-A DATABASE.

Methods
Verification Identification

FAR=0.01 FAR=0.001 Rank1 Rank5

OpenBR [28] 23.6± 0.9 10.4± 1.4 24.6± 1.1 37.5± 0.8
TP-GAN [14] 31.5± 1.8 9.2± 1.1 48.6± 5.0 59.3± 5.6
GOTS [28] 40.6± 1.4 19.8± 0.8 44.3± 2.1 59.5± 2.0
Wang [44] 72.9± 3.5 51.0± 6.1 82.2± 2.3 93.1± 1.4
PAM [45] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
LightCNN [42] 81.7± 2.8 69.7± 4.8 97.7± 1.1 98.5± 0.8
ResNet50 [43] 81.2± 2.3 67.2± 4.8 97.7± 1.3 98.6± 0.9
DR-GAN [12] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
DR-GANAM [19] 87.2± 1.4 78.1± 3.5 92.0± 1.3 96.1± 0.7
FF-GAN [13] 85.2± 1.0 66.3± 3.3 90.2± 0.6 95.4± 0.5
FNM [24] 93.4 ± 0.9 83.8 ± 2.6 96.0± 0.5 98.6± 0.3
A3FCNN [15] 80.4± 3.3 60.0± 8.6 92.2± 2.3 97.4± 0.9

Ours(Multi-PIE only) + LightCNN 82.9± 4.2 69.9± 6.4 97.8± 1.1 98.4± 0.9
Ours + LightCNN 82.8± 4.2 69.9± 5.8 97.8± 1.3 98.7± 0.8
Ours(Multi-PIE only) + ResNet50 83.4± 2.5 71.4± 4.7 97.9± 1.6 99.1 ± 0.7
Ours + ResNet50 84.1± 2.6 72.3± 4.6 98.1 ± 1.4 98.9± 0.7

strong supervision over the entire training process. Due to the

complexity of unpaired data, it is not trivial for the network

to learn a mapping from unpaired profile image to unpaired

frontal image. On the other hand, the paired data has fewer

variations in pose, illumination, hue, etc, which makes it much

easier to learn the transformation. We argue that the training

process require both paired data and the Lpair loss to prevent

the training from being dominated by model collapse and

producing unsatisfying results.

2) Remove Ladv loss: As shown in the third row of Fig. 8,

the network becomes degenerate, producing an output image

which is identical to the input image. This results from the

absence of pose constrain normally introduced by the Ladv

loss. In other words there is no penalty for not rotating the face.

Although the restored images have a whitening color tone, the

images still preserve a lot of identity information, which coin-

cide with its second best performance in quantitative results.

Those results indicate that the Ladv loss is indispensable in

forcing the generated faces to rotate pose.

3) Remove Lip loss: In this scenario, the network is finally

able to produce visually pleasing synthesized images. The

reason for introducing identity preserving loss [14] is its

capacity to enforce the constraint that the generated images

preserve identity information present in the original input

images. Without this loss, the synthesized faces tend to be

blurred and have deformations around the face contouring.

The quantitative results also suffers from the poor quality

of synthesized images causing performance loss of different

extents in different tests.The cause of these effects is the loss

of identity information. The results coincide with our intuition.

4) Remove Lcc loss: The Lcc loss is the unpaired counter-

part of the Lpair loss. The synthesized results are expected

to be deteriorate without using it. We observe the synthesized

faces are in frontal pose but with significant distortions and

deformations on the face contouring, eyes, nose, etc, which are

far from plausible. Its quantitative results are also inferior to
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TABLE IV
COMPARISON OF STATE-OF-THE-ART METHODS IN TERMS OF RECOGNITION ACCURACY (%) ON MULTI-PIE DATABASE. AVG1 AND AVG2 ARE THE

AVERAGE ACCURACY IN 15
◦ - 60◦ AND 15

◦ - 90◦ RESPECTIVELY.

Methods ±15
◦ ±30

◦ ±45
◦ ±60

◦ ±75
◦ ±90

◦ avg1 avg2

Zhu et al. [7] 90.7 80.7 64.1 45.9 - - 70.4 -
Zhu et al. [5] 92.8 83.7 72.9 60.1 - - 77.4 -
CPF [6] 95.0 88.5 79.9 61.9 - - 81.3 -
DR-GAN [12] 94.0 90.1 86.2 83.2 - - 88.4 -
DR-GANAM [19] 95.0 91.3 88.0 85.8 - - 90.0 -
A3FCNN [15] 98.7 98.9 95.8 92.7 - - 96.5 -
LightCNN [42] 98.6 97.4 92.1 62.1 24.2 5.5 87.5 63.3
ResNet50 [43] 100.0 99.8 99.1 95.3 88.1 73.1 98.5 92.6
FF-GAN [13] 94.8 93.4 91.0 87.0 82.7 71.7 91.6 86.8
TP-GAN [14] 98.7 98.1 95.4 87.7 77.4 64.6 95.0 87.0
CAPG-GAN [16] 99.8 99.6 97.3 90.6 83.1 66.1 96.8 89.4
FNM [24] 98.9 98.1 96.8 92.7 80.6 63.8 96.6 88.5
GSP-GAN [46] 99.4 99.2 98.1 93.9 82.9 65.6 97.7 89.9
FI-GAN [32] 98.8 98.5 97.4 96.2 88.2 77.0 97.7 92.7

Ours(Multi-PIE only) + LightCNN 98.7 97.4 95.1 89.6 78.4 62.5 94.5 87.0
Ours + LightCNN 99.2 98.5 96.5 91.8 81.8 66.1 96.5 89.0
Ours(Multi-PIE only) + ResNet50 100.0 99.8 99.1 94.7 87.7 73.4 98.4 92.5
Ours + ResNet50 100.0 99.8 99.2 94.9 88.3 73.9 98.5 92.7

Fig. 8. Model Comparsion: synthesis results of CCFF-GAN and its variants on LFW(Columns 1-5) and IJB-A(Columns 6-10).

the complete model but close to the performance of w/o Lcc

model. These might be the result of not fully utilizing the

unpaired dataset since we have dropped the Lcc loss in this

setting. As a result the network mostly learns the easier

paired transformation, which generalizes poorly to the faces

in the wild. We also notice that the synthesized results are

expected to deteriorate without using Lcc. However, there is

no color bias between the input and synthetic face images.

This is because even without Lcc, the unpaired in-the-wild

face images still contribute to the adversarial learning and

identity preserving constraint, encouraging the generators to

better learn the data distribution of frontal faces from both

indoor and in-the-wild face images.
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TABLE V
PERFORMANCE (ACCURACY) COMPARISON ON CFP.

Method Frontal-Frontal Frontal-Profile

Sengupta et al. [3] 96.40± 0.69 84.91± 1.82
Sankarana et al. [47] 96.93± 0.61 89.17± 2.35
LightCNN [42] 99.37± 0.30 91.56± 1.89
ResNet50 [43] 99.54± 0.31 94.25± 1.33
DR-GAN [12] 97.84± 0.79 93.41± 1.17
DR-GANAM [19] 98.36± 0.75 93.89± 1.39
Chen et al. [48] 98.67± 0.36 91.97± 1.70
PIM [17] 99.44± 0.36 93.10± 1.01
Peng et al. [8] 98.67± − 93.76± −

FI-GAN [32] 98.90± − 94.20± −

Ours(Multi-PIE only) + LightCNN 99.20± 0.33 91.17± 1.63
Ours + LightCNN 99.27± 0.39 91.87± 1.42
Ours(Multi-PIE only) + ResNet50 99.55± 0.30 93.39± 1.44
Ours + ResNet50 99.61 ± 0.23 94.30 ± 1.26

TABLE VI
ABLATION STUDY IN TERMS OF PERFORMANCE ON IJB-A DATABASE.

Methods
Verification Identification

FAR=0.01 FAR=0.001 Rank1 Rank5

w/o Lpair 19.33±3.02 8.18± 2.10 37.61±6.10 51.42±8.72
w/o Ladv 82.20±2.72 70.55±4.17 96.52±1.72 96.97±1.34
w/o Lip 68.47±3.81 52.22±5.02 94.20±2.16 96.26±1.87
w/o Lcc 64.37±4.15 45.84±5.11 93.05±2.91 95.45±1.34

Ours 84.07±2.60 72.29±4.62 98.13±1.41 98.93±0.67

V. DISCUSSIONS AND FUTURE WORK

To summarize, various practical methods have been pro-

posed to address the face frontalization problem (i.e., syn-

thesizing a frontal view of face from a nonfrontal one) and

these have achieved promising performance. However, most

of the existing face frontalization methods rely on paired

nonfrontal-frontal face images to train the model in a fully

supervised manner. This limits their generalization ability

in the unconstrained environment since such paired images

(typically from the Multi-PIE dataset) were captured not only

in a constrained environment but also from a very limited set

of subjects. To address this problem, in this paper we have

proposed a semi-supervised face frontalization framework,

which learns mappings between the nonfrontal and frontal

face images by utilizing both indoor constrained and outdoor

unconstrained face images. To regularize the nonfrontal-frontal

translation on unpaired outdoor nonfrontal-frontal face images,

we have adopted a variant of the cycle consistency constraint.

In doing so, we perform regularization in a high-level semantic

feature space rather than the visual image space. Our exper-

imental results demonstrate the effectiveness of the proposed

method compared with previous face frontalization methods,

especially for face images captured in an unconstrained envi-

ronment.

1) Strengths: In face frontalization, there are very few

methods that have utilized the in-the-wild face database for

training. Only a handful of them (e.g, FNM [24]) use both

paired and unpaired nonfrontal-frontal face images. However,

results show that artefacts such as the skin color bias persists

and they failed to reproduce realistic variation in facial ap-

pearance (i.e, the generated frontal face appears very similar

to its exemplar from the Multi-PIE database). Our proposed

method does not suffer from those drawbacks. This can be at-

tributed to the use of the proposed semi-supervised framework.

This leverages both inter-personal and intra-personal variations

from the in-the-wild face images.

2) Weaknesses: In our method, we have incorporated a

pose code to guide the training process. Those pose codes

were obtained by 3DDFA [41], which is far from accurate

when compared with handcrafted pose code. Such bias may

impair the training process. The reason for this is that the pose

information given is not precise and may sometimes even be

rather noisy. On the other hand, those pose codes are encoded

in a discrete way which means a loss of information.

3) Future Work: To further improve our method, more in-

vestigation should be made into the field of obtaining accurate

face pose information and how to encode pose information so

that it is easier for the network to learn and produce more

satisfying result.
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