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for plant diseases recognition
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Abstract 

Background: Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and 

promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture 

are mainly based on supervised learning schemes, ignoring unlabeled data’s helpful information.

Methods: In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases 

recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. 

Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were car-

ried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of 

selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine 

the number of unlabeled samples for pseudo-labelling adaptively.

Results: The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-

supervised method is 4.6%.

Conclusions: The proposed methods can outperform other related works with fewer labeled training data.
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Background

In agricultural production, the monitoring of plant 

growth and health status is helpful to guide farmers to 

timely take suitable measures to guarantee the yield 

and quality [1]. In practice, the recognition of plant dis-

eases mainly depends on farmers’ experience in many 

countries and areas, often by observing changes in plant 

leaves’ appearance. With the development of digital agri-

culture and precision agriculture, it is necessary to bring 

the computer and sensing techniques [2–4] into the tra-

ditional agricultural production to achieve efficient and 

automatic production. �us, the automatic recognition 

of plant leaf diseases is essential and related to other agri-

cultural researches [5–7].

At present, the methods to classify plant leaf diseases 

are mainly through the analysis of plant leaf images, e.g., 

RGB images, near-infrared images, and hyperspectral 

images [8–10], taken by general cameras or unmanned 

aerial vehicle (UAV). �e deep learning technique is a 

powerful tool in the image analysis process, which has 

achieved excellent performances in many areas, such as 

leaf segmentation [11], leaf spot detection [12], leaf dis-

eases classification [13–17], and others [18, 19]. �e deep 

learning models in these studies all have many layers, in 

which there are a large number of parameters to train.

Although this typical deep learning method to train 

models from large-scale datasets indeed has achieved 

good performance, the community has begun to rethink 

this learning approach at a crossroad. One way is to go 

deeper, with more complex networks and larger data-

sets. For example, many works focused on collecting a 

big dataset at a high cost [20], designing a deeper model 

with optimization [21], designing the ensemble model 
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[22], etc. �e other way is to solve the classification prob-

lem with few data, also called few-shot learning, which 

is more suitable for practical applications. For example, 

some other works focused on model compression by 

pruning [23], shallow model [24], and lightweight net-

work [25].

From our point of view, we are in favour of the few-shot 

learning approach. �ere are two reasons for that. First, it 

is hard and high-cost to collect big scale dataset for all the 

problems in agriculture. Some plant diseases may be so 

rare that collecting large numbers of samples is impracti-

cal. �e annotation and identification of collected sam-

ples also require experts or experienced farmers’ efforts, 

so massive data annotation is time-consuming and labo-

rious. Second, the deep learning model has a deep net-

work structure and massive parameters, requiring higher 

and more hardware resources to train and test. Moreover, 

the deployment of deep learning models on the portable 

terminals is difficult. Learning from few data with a small 

model to classify is a meaningful and promising study in 

practical applications due to the low cost of data.

�e related studies on few-shot classification in the 

agricultural field are still relatively few at this beginning 

stage, but it has received increasing attention. A handful 

of research has emerged, focusing on the few-shot classi-

fication in agriculture [26–30]. Specifically, Hu et al. used 

the data augmentation to solve few-shot classification 

of tea leaf diseases based on the generative adversarial 

network [26]. Argüeso et  al. used the transfer learning 

method to transfer knowledge from the source domain 

to the target domain, and the testing accuracy was above 

90% under 6-way and 80-shot [27]. Li et al. used the tri-

plet loss to train feature extractor based on distance 

metric comparison and focused on combining few-shot 

algorithms and terminal realization [28]. Zhong et  al. 

used the conditional adversarial autoencoders to gener-

ate samples for the zero-shot and few-shot diseases rec-

ognition based on the visual and semantic features [29]. 

Li et  al. used the metric learning to analyze the single 

domain and cross domain of crop pests and plant dis-

eases recognition [30]. �e above studies are all based on 

the supervised learning schemes, using only a few labeled 

samples and ignoring the helpful information of unla-

beled samples. Note that, in many application scenarios, 

the unlabeled samples may be easier to collect. In other 

words, in addition to a few labeled samples, there may 

also be many unlabeled samples, so how to make full use 

of the unlabeled data is indeed a significant and meaning-

ful issue.

In this paper, we proposed a semi-supervised few-shot 

classification method based on transfer learning. �e 

semi-supervised method uses both a few labeled samples 

and many unlabeled samples to train a model. Extensive 

experiments were carried out on the public dataset 

PlantVillage and compared with the Ref [27], which was 

also based on transfer learning. �e transfer learning 

technique needs to split the dataset into source domain 

and target domain. �e reference only considered one 

domain split situation; we further compared three more 

domain splits to validate the proposed method’s correct-

ness and generalization. Besides the domain split, we also 

considered other influencing factors, such as few-shot 

parameters and semi-supervised iteration.

�e contributions of this work can be summarized as 

three-fold:

1. We carried out the first semi-supervised few-shot 

work in the field of plant leaf disease recognition.

2. We proposed to use the confidence interval to select 

unlabeled samples for pseudo-labeling in the semi-

supervised process adaptively.

3. We considered many factors to verify the proposed 

method’s correctness and generalization, including 

the domain split, few-shot parameters, and semi-

supervised iteration.

Materials

PlantVillage is a public dataset with 38 classes of plant 

leaf diseases and healthy crops. �e number of samples 

in each category is not equal. �e Ref. [31] augmented 

the images for those classes with fewer samples. In this 

shared dataset, the minimum number of samples per 

class is 1000, and the maximum number is 5507, corre-

sponding to the orange citrus greening disease. To avoid 

the impact of unbalanced data distribution, we randomly 

select 1000 images per category to assemble the used bal-

anced dataset. All the images are resized to 84*84*3, cor-

responding to the RGB channels.

�e dataset was split into a source domain and a target 

domain, without intersections between these two parts. 

�e main reason is the inherent limitations of few data, 

which cannot provide enough information of categories. 

Mimicking the way humans learn, we hope the few-shot 

model can learn new tasks from few samples based on 

basic knowledge and past experiences. �e target domain 

only provides a few labeled data to train the model, then 

it is hoped to generalize to previously unseen samples. In 

fact, this way of learning is similar but different with the 

typical transfer learning, which generally has large num-

ber of training data in the source domain.

Generally, different splits of the source domain and 

target domain in the same dataset will lead to different 

difficulties during the transfer learning process because 

the fitness of transferred knowledge between the source 

domain and target domain is different. To verify the 
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correctness and generalization of the proposed semi-

supervised few-shot classification of plant leaf dis-

eases, we performed three different splits of the source 

domain and target domain on the PlantVillage dataset. 

�e split details are shown in Table 1, specifically, some 

image examples corresponding to the Split-1 are shown 

in Fig. 1.

In Table 1, for all the three split modes, the number of 

classes in the source domain is 28, and that in the target 

domain is 10. For the sake of presentation, specific dis-

ease names are not expanded, and only the number of 

diseases for each crop is listed. For example, Apple(4) 

refers to the four categories corresponding to Apple: 

apple scab, black rot, cedar apple rust, and healthy.

Methods

Transfer-based few-shot classi�cation

Overall framework

�e overall framework of typical few-shot classifica-

tion based on transfer learning is shown in Fig.  2. As 

known, the used dataset was split into a source domain 

and a target domain. It is given that there are many avail-

able labeled data in the source domain to train the model 

to learn basic knowledge and then transfer the trained 

network with parameters to the target domain as trans-

ferred knowledge. In the target domain, there are only 

a few labeled data can be used to updated the model, 

called fine-tuning. Due to the small number of provided 

labeled samples, this kind of problem is called few-shot 

classification.

Table 1 The split modes of  source and target domain

Split Mode Source (28 classes in total) Target (10 classes in total)

Crop (number of categories) Crop (number of categories)

Split-1 Apple(4), Blueberry(1), Cherry(2), Corn(4), Grape(4), Orange(1), Peach(2), Pepper(2), Potato(3), Rasp-
berry(1), Soybean(1), Squash(1), Strawberry(2)

Tomato(10)

Split-2 Blueberry(1), Corn(4), Orange(1), Peach(2), Pepper(2), Potato(3), Raspberry(1), Soybean(1), Squash(1), 
Strawberry(2), Tomato(10)

Apple(4), Cherry(2), Grape(4)

Split-3 Apple(4), Blueberry(1), Cherry(2), Orange(1), Pepper(2), Potato(3), Raspberry(1), Soybean(1), Squash(1), 
Strawberry(2), Tomato(10)

Corn(4), Grape(4), Peach(2)

Fig. 1 Some examples corresponding to the Split-1
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Model structure

�e model in this work is designed based on a convo-

lutional neural network (CNN), which has been widely 

used in image processing [32–35]. �e structure of the 

used model is shown in Fig. 3.

As seen in Fig. 2, the model in the source domain has 

same structure as that in the target domain. Given the 

size of input images, each layer’s details in the model 

are shown in Table 2. According to the fine-tuning set-

ting in transfer learning, the parameters in the first sev-

eral layers are fixed and non-trainable, those in the last 

dense layers are trainable. �e pooling layers have no 

parameters.

In Table  2, there are seven convolution layers and 

three pool layers. For the first two convolution layers, 

the number of filters is 64, and the padding mode is the 

same padding. For the max-pooling layer, the purpose 

is to halve the space size and maintain the same num-

ber of channels. �e situation for the following convo-

lution layers is similar, and the number of filters is 128 

and 256, respectively.

Note that the last dense layer refers to the soft-

max classifier. �us, the number of its output neurons 

should be the same as the number of categories clas-

sified, here written as N. For the source domain, the 

training samples from all 28 classes are used, so the N is 

28. But for the target domain, the N is variable.

�e few-shot classification in this paper uses the 

typical definition: N-way k-shot. �at means there 

are N categories and k samples per category available 

to fine-tune the transferred model, which is wished to 

distinguish these N classes in the target domain. As 

described, there are in total ten classes in the target 

domain. Hence, the N can be anyone smaller than 10, 

generally equal to 3 or 5.

Fig. 2 The overall framework of transfer-based few-shot classification

Fig. 3 The structure of the used model

Table 2 The details of each layer in the model

Layers Output size Parameters Fine-tuning

Input (84, 84, 3) 0 –

Convolution (84, 84, 64) 1792 Non-trainable

Convolution (84, 84, 64) 36,928 Non-trainable

Max pooling (42, 42, 64) 0 –

Convolution (42, 42, 128) 73,856 Non-trainable

Convolution (42, 42, 128) 147,584 Non-trainable

Max pooling (21, 21, 128) 0 –

Convolution (21, 21, 256) 295,168 Non-trainable

Convolution (21, 21, 256) 590,080 Non-trainable

Convolution (21, 21, 256) 590,080 Non-trainable

Global average pool (256) 0 –

Dense (128) 32,896 Trainable

Dense (N) 128*N + N Trainable
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Training, �ne-tuning, and testing

�e training stage occurs in the source domain with 

a batch size of 16. �e Adam optimizer with its default 

parameters is adopted, and the categorical cross-entropy 

is used as the loss function. �ere are 20% data in the 

source domain split as the validation set to check the 

model’s training status.

�e fine-tuning stage occurs in the target domain, 

where only provides a few labeled data. �e model 

trained in the source domain will be transferred to the 

target domain. �e number of neurons in its last dense 

layer is replaced with N. If all the model parameters are 

fine-tuned, the serious overfitting problem is inevitable 

because of the small number of labeled training data. 

Hence, as shown in Table  2, only the parameters in the 

last two dense layers are fine-tuned and trainable, while 

the parameters in other layers are fixed.

�e testing stage also occurs in the target domain, 

based on the fine-tuned model. �e few-shot classifica-

tion problem definition is the N-way k-shot, and the N 

classes are randomly selected from the ten classes in 

the target domain. �e selected categories to be classi-

fied may be similar or significantly different, resulting in 

different task difficulty. So, only one experiment is not 

enough. We performed ten times for each group (N-way 

k-shot) of experiments, and then the average accuracy is 

output.

Semi-supervised few-shot classi�cation

In “Transfer-based few-shot classification” section, the 

few-shot classification based on transfer learning was 

introduced, which includes two main parts. One is the 

source domain to learn basic knowledge from a large 

number of labeled data. �e other is the target domain 

to fine-tune parts of the transferred network from a few 

labeled data to adapt the specific classification tasks. Our 

essential contribution is to propose the semi-supervised 

few-shot classification method, working in the target 

domain.

Single semi-supervised few-shot classi�cation

As comparison, the typical fine-tuning and testing pro-

cess of few-shot classification is shown in Fig. 4.

Based on the N-way k-shot definition in “Model struc-

ture” section, the N*k samples are used to update the last 

two dense layers’ parameters, and then the fine-tuned 

model is fixed. We randomly select 15 samples per cat-

egory, total N*15 samples, to test the fixed model’s few-

shot performance, referring to Ref [36, 37]. �e testing 

process will be performed ten times to obtain the average 

few-shot accuracy in this work.

To improve the few-shot classification performance, we 

propose the semi-supervised method, shown in Fig. 5. It 

is shown that there are two steps to complete.

In step 1, the N*k samples with true labels are used 

to fine-tune the transferred model and then fix all the 

parameters after fine-tuning. All the unlabeled samples 

are then fed to the fixed model to make predictions and 

select some of them as pseudo-labeled samples. �e 

pseudo-label means the prediction label given to the 

sample through the judgment of the model.

In step 2, both the N*k labeled samples and the selected 

pseudo-labeled samples from step 1 are used to fine-

tune the model again. �e trainable parameters are still 

those in the last two dense layers. After the fine-tuning, 

the model is fixed again and tested on the N*15 samples. 

Because the pseudo-labeled samples in the semi-super-

vised methods can be selected once or more times, the 

above-described process is also called single semi-super-

vised few-shot classification.

Fig. 4 The typical fine-tuning and testing process

Fig. 5 The single semi-supervised few-shot method
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Iterative semi-supervised few-shot classi�cation

Based on the single semi-supervised few-shot classifica-

tion, we further propose the iterative semi-supervised 

few-shot classification, shown as Fig. 6.

�e iterative semi-supervised few-shot method has 

three steps, but the whole operation is similar to the 

single semi-supervised method. �e difference is that 

the pseudo-labeled samples are selected twice. In par-

ticular, step 1 of the iterative semi-supervised method is 

the same as that of the single semi-supervised method. 

After the fine-tuning stage in step 2, the rest unlabeled 

samples except the selected pseudo-labeled samples in 

step 1 are fed to the fixed model to select pseudo-labeled 

samples again. In step 3, the N*k labeled samples and the 

pseudo-labeled samples from both steps 1 and 2 are used 

together to fine-tune the parameters in the last two dense 

layers of the model, and then the model is fixed finally to 

do the testing on the N*15 samples.

Adaptive selection of pseudo-labeled samples

In Figs.  5 and 6, the unlabeled samples are fed to the 

model to select some of them for pseudo-labeling. But 

how to determine the number of pseudo-labeled sam-

ples? �e simplest method is to set some number, e.g., 5 

or 10, manually. However, this is not a wise choice, owing 

to the low fitness for different tasks.

It should be noted that the selection of pseudo-labeled 

samples is a double-edged sword. If we can get many 

suitable pseudo-labeled samples in the semi-supervised 

process, the shortage of few data with original labels can 

be solved. But if we get many unsuitable pseudo-labeled 

samples, e.g., with many wrong labels, there will be ter-

rible impacts on the few-shot performance due to the 

misdirection of fine-tuning by the wrong labels. Besides, 

if we are too careful to select only a few pseudo-labeled 

samples, the improvement will also be tiny.

We propose an adaptive selection method based on the 

confidence interval to solve the pseudo-labeled samples’ 

selection problem. Specifically, only when the prediction 

confidence is larger than 99.5% will the unlabeled sample 

be selected by the model to pseudo-label as the predicted 

category. Although these given labels are called pseudo-

labels, they should be almost entirely consistent with the 

real ones, as the model has such high confidence in the 

predictions. In this case, the model will adaptively deter-

mine the number of pseudo-labeled samples under dif-

ferent experiments.

Results

�is section carried out the comparison experiment with 

other related work and further experiments considering 

the factors of domain split, few-shot parameters, and 

semi-supervised iteration. �e experimental hardware 

and software environments are the NVIDIA TITAN 

Xp with 12 GB memory and the Jupyter Notebook with 

libraries of Tensorflow (version 1.12.0), Numpy (version 

1.19.2), Keras (version 2.2.4), and OpenCV (version 4.1).

Comparison results with related work

In Ref [27], the few-shot plant diseases classification was 

carried out based on transfer learning and other opti-

mized methods, such as contrastive loss and triplet loss. 

�e used dataset was also PlantVillage, but the Ref [27] 

only considered one domain split. �e first six classes are 

the target domain, and the rest 32 classes are the source 

domain. All the six classes in the target domain are tested, 

and k is 1, 5, 10, 15, 20, 30, 50, 80, and 100. In terms of 

the definition of N-way k-shot, the operation was called 

6-way k-shot. Same with the above experimental settings, 

our semi-supervised few-shot results are compared with 

those provided in Ref [27], shown in Table 3.

In Table  3, the SS is short for the semi-supervised. It 

is shown that our proposed method outperforms the 

results presented in Ref [27] in all the conditions of 

k-shot. Specifically, the referred work achieved an aver-

age accuracy of 90% at 80-shot. However, our work 

achieved the average accuracy of 90% at 5-shot using the 

iterative semi-supervised, or 92.6% at 10-shot using the 

single semi-supervised method.
Fig. 6 The iterative semi-supervised few-shot method
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�us, our semi-supervised methods have apparent 

advantages due to the reasonable use of the unlabeled 

samples.

Further comparison experiments

In “Comparison results with related work” section, we 

compared the related work of the few-shot plant leaf dis-

eases classification, which had shown our semi-super-

vised method’s superiority. Since the different splits of 

the source domain and target domain will lead to the 

different fitness of transferred knowledge (network), we 

further carried out more comparison experiments con-

sidering domain split and few-shot parameters of N-way 

k-shot. �e purpose of these comparison experiments is 

to verify the consistent correctness and generalization of 

our proposed semi-supervised method under different 

experimental settings.

According to the few-shot definition of N-way k-shot 

and the three different domain split modes described in 

Table 1, we set N as five and carried out each experiment 

ten times to obtain the average few-shot classification 

accuracy. �e results under different domain splits are 

shown in Table 4.

In Table  4, the SS is short for semi-supervised. �ere 

are three methods, named baseline, single semi-super-

vised, and iterative semi-supervised. �e baseline stands 

for the typical few-shot classification based on transfer 

learning, shown in Fig. 4. �e single SS and iterative SS 

methods are our proposed methods, shown in Figs. 5, 6.

Unlike the experimental settings in “Comparison 

results with related work” section, in this section, the 

N is equal to five, which means in each experiment, we 

randomly selected five classes from all the ten classes in 

the target domain to fine-tune the transferred model to 

distinguish these random N categories.

�e relation between average accuracy and k-shot is 

plotted in Figs. 7, 8, and 9, corresponding to the domain 

split-1, split-2, and split-3, respectively.

�e few-shot parameters in Fig. 7 are as follows. �e 

N-way is 5, and k-shot is 1, 5, 10, and 20. �e data split 

mode is Split-1, which decides the different source 

domain and target domain.

�e above three figures can intuitively indicate two 

points: First, the baselines are different under differ-

ent domain splits, due to the different difficulty of 

few-shot task in different domain split modes. Second, 

under three different split modes, the proposed semi-

supervised (SS) method is consistently higher than the 

Table 3 The comparison results with related work

Results k-shot

1 5 10 15 20 30 50 80 100

Ref. [27] 0.56 0.72 0.77 0.8 0.82 0.86 0.88 0.9 0.91

Single SS 0.745 0.897 0.926 0.936 0.939 0.951 0.961 0.97 0.974

Iterative SS 0.751 0.9 0.927 0.936 0.939 0.951 0.961 0.97 0.974

Table 4 The comparison results under different domain splits

Results Split-1, k-shot Split-2, k-shot Split-3, k-shot

1 5 10 20 1 5 10 20 1 5 10 20

Baseline 0.328 0.467 0.64 0.732 0.439 0.685 0.787 0.891 0.507 0.631 0.772 0.893

Single SS 0.337 0.509 0.667 0.747 0.447 0.747 0.857 0.897 0.523 0.676 0.799 0.901

Iterative SS 0.34 0.531 0.688 0.756 0.464 0.769 0.892 0.919 0.552 0.693 0.808 0.915

Fig. 7 The average accuracy under domain split-1
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baseline accuracy at each k-shot. In detail, the iterative 

SS method achieves the highest performance at the cost 

of more operations. �us, the single SS method can be 

regarded as a suitable solution, balancing the perfor-

mance gains with computational complexity.

Moreover, the average improvement by single SS 

method and iterative SS method on different k-shot 

can be calculated from Table  4. In particular, under 

the domain split-1, the average improvement by single 

SS method is 2.33%, and that by iterative SS method is 

3.7%. Under the domain split-2, the average improve-

ment by single SS method is 3.65%, and that by iterative 

SS method is 6.05%. Under the domain split-3, the aver-

age improvement by single SS method is 2.4%, and that 

by iterative SS method is 4.13%.

In summary, considering all the experimental factors, 

the average improvement by single SS method is 2.8%, 

and that by iterative SS method is 4.6%.

Results of adaptive selection of pseudo-labeled samples

As described in “Adaptive selection of pseudo-labeled 

samples” section, pseudo-labeled samples’ adaptive selec-

tion is crucial for the proposed semi-supervised few-shot 

methods. For instance, in the domain split-1, the number 

of adaptively selected pseudo-labeled samples under dif-

ferent k-shot is shown in Fig. 10.

It can be found that there is a positive correlation 

between the number of adaptively selected pseudo-

labeled samples and k-shot. �e reason is that with the 

increase of k-shot, the model has more training data to 

fine-tune. In other words, the model is stronger. So, it can 

be more confident to predict those unlabeled samples. 

When the predicted confidence is larger than 99.5%, the 

sample is selected for pseudo-labeling.

Besides, the iterative SS method will choose more 

pseudo-labeled samples than the single SS method. �e 

reason is that the iterative SS method has one more fine-

tuning stage than the single SS method. �us, the model 

with iterative SS has better performance on understand-

ing the tested categories to predict unlabeled data with 

higher confidence.

Discussion

At present, the plant leaf diseases classification is mainly 

based on deep learning. Although there have been many 

achievements achieved, the drawbacks of deep learning 

cannot be ignored, e.g., the high cost of collecting and 

labeling large-scale datasets. As an essential supplement 

Fig. 8 The average accuracy under domain split-2

Fig. 9 The average accuracy under domain split-3

Fig. 10 The number of pseudo-labeled samples under domain 

split-1
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to deep learning, few-shot learning aims to combine a 

few samples and knowledge, committed to model learn-

ing and application deployment. �e existing few-shot 

studies in the agricultural field all focus on the super-

vised paradigm and neglect the helpful information of 

unlabeled samples through the literature research. �us, 

we want to explore the semi-supervised paradigm to 

improve the effect of few-shot classification and provide 

some inspirations for this community.

We proposed the single semi-supervised and iterative 

semi-supervised method to deal with few-shot plant leaf 

diseases classification. Overall, the experimental results 

are divided into two major sections. �e first is the com-

parison with the related work in the Ref [27]. According 

to the experimental setting in referred work, the results 

have shown that our proposed method can outperform 

the reference method under all the conditions of k-shot. 

Specifically, the reference method achieved an average 

accuracy of 90% at 80-shot. Our work achieved an aver-

age accuracy of 90% at 5-shot with the iterative semi-

supervised methods and 92.6% at 10-shot with the single 

semi-supervised method. In other words, under the same 

conditions, our methods can achieve better results with 

fewer samples. �e second is the further comparison 

experiments considering more factors, e.g., the different 

three domain splits in Table 1 and different k-shot. �e 

results consistently prove our semi-supervised methods 

can achieve better performance than the typical trans-

fer-based few-shot learning. In detail, under the domain 

split-1, the average improvement by single SS method 

is 2.33%, and that by iterative SS method is 3.7%. Under 

the domain split-2, the average improvement by single 

SS method is 3.65%, and that by iterative SS method is 

6.05%. Under the domain split-3, the average improve-

ment by single SS method is 2.4%, and that by iterative 

SS method is 4.13%. Considering all the different domain 

splits and k-shot, the average improvement by single SS 

method is 2.8%, and that by iterative SS method is 4.6%.

�is study did not consider some special case, such as 

the possible wrong data labels, which belongs to another 

important research scope of robustness. If the wrong 

labels are corresponding to original data, it is better to 

clean data first, otherwise they will mislead the learn-

ing process. If the wrong labels are corresponding to 

predicted data, it is suggested to modify the confidence 

interval to raise the screening criteria, and increase 

the number of iterations to improve model filtering 

performance.

In future work, from a broader and more practical per-

spective, we will try to do the few-shot classification under 

significant cross-domain by taking the public dataset as 

the source domain and the images taken in the field as the 

target domain. Moreover, in this study, the used model has 

seven convolution layers and two dense layers. As men-

tioned, the few-shot learning should aim at learning from 

few samples and convenient application deployment. 

Hence, we would like to further compress the size of the 

used model to realize the smaller intelligent model for con-

venient deployment.

Conclusion

Automatic classification of plant leaf diseases based on 

a few labeled samples is significant to guarantee the yield 

and quality with low cost of data. In this work, we proposed 

the semi-supervised few-shot learning scheme, which can 

improve the average accuracy of few-shot classification by 

adaptively selecting the pseudo-labeled samples to help 

fine-tune the model. �rough literature research, to our 

best knowledge, we carried out the first semi-supervised 

work in the field of few-shot plant diseases classification. 

�e PlantVillage dataset was divided into three split modes, 

and extensive comparison experiments were executed 

to prove the correctness and generalization of proposed 

methods. Considering all the different domain splits and 

k-shot, the average improvement by the proposed single 

semi-supervised method is 2.8%, and that by the iterative 

semi-supervised method is 4.6%.
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