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Abstract. Ordinal regression problem arises in situations where exam-
ples are rated in an ordinal scale. In practice, labeled ordinal data are
difficult to obtain while unlabeled ordinal data are available in abun-
dance. Designing a probabilistic semi-supervised classifier to perform
ordinal regression is challenging. In this work, we propose a novel ap-
proach for semi-supervised ordinal regression using Gaussian Processes
(GP). It uses the expectation-propagation approximation idea, widely
used for GP ordinal regression problem. The proposed approach makes
use of unlabeled data in addition to the labeled data to learn a model
by matching ordinal label distributions approximately between labeled
and unlabeled data. The resulting mixed integer programming problem,
involving model parameters (real-valued) and ordinal labels (integers) as
variables, is solved efficiently using a sequence of alternating optimization
steps. Experimental results on synthetic, bench-mark and real-world data
sets demonstrate that the proposed GP based approach makes effective
use of the unlabeled data to give better generalization performance (on
the absolute error metric, in particular) than the supervised approach.
Thus, it is a useful approach for probabilistic semi-supervised ordinal
regression problem.

Keywords: Gaussian processes, ordinal regression, semi-supervised
learning, annealing.

1 Introduction

We consider the problem of predicting variables of ordinal scale, a setting re-
ferred to as ordinal regression. These problems arise in many different domains
like Social Sciences, Bioinformatics and Information Retrieval. For example, a
user can label a retrieved document using one of the following categories: highly
relevant, relevant, average, irrelevant and highly irrelevant. There exists an or-
der among the labels, which makes the ordinal regression problems different
from classification problems. Further, the labels are discrete and not continuous,
unlike in the regression problems.

Although the problem of ordinal regression is well studied in Statistics [1,2,3],
there has been a surge of interest, in recent years, in solving this problem in a
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learning framework. The ordinal regression problem can be solved by treating it
as a regression problem after transforming the ordinal scales into numeric val-
ues [4], or by converting it into nested binary classification problems that encode
the ordering of the original ranks [5]. This solution strategy can be referred to as
a reduction framework. Alternatively, the problem can be solved directly using
machine learning algorithms like support vector machines (SVM) [6] or Gaussian
Processes (GP) [7].

In many practical applications, labeled data are scarce to obtain. For exam-
ple, in the domain of Bioinformatics, time consuming experiments and domain
knowledge (biological experts) are required to label the data. Thus, obtaining
the label information is expensive and time consuming. However, unlabeled data
are easily available and are present in abundance. Semi-supervised learning [8]
uses the unlabeled data along with the labeled data to learn better predictive
models. Many approaches have been developed for the semi-supervised learn-
ing of regression and classification tasks. These approaches are based on various
assumptions on the unlabeled data like clustering, smoothness or manifold [8].
They can be broadly classified as generative approaches, graph based approaches
and approaches implementing low-density separation [8]. There exists a rich lit-
erature on semi-supervised regression and classification. See [8] and the refer-
ences therein for more details. However, there is not much work reported in the
literature to solve semi-supervised ordinal regression problem.

Semi-supervised ordinal regression problems arise quite naturally in several
contexts. For instance, in recommendation systems, every user may rate only a
few items. Often, the labeled ordinal data are insufficient to learn a good ordi-
nal regression model. Most of the literature on ordinal regression [6,7,9,10,11,12]
focused on the supervised learning setting. Recently, transductive ordinal re-
gression (TOR) [13] approach was proposed to perform ordinal regression in a
semi-supervised setting. The approach uses the reduction framework to solve the
ordinal regression problem and learns the labels of the unlabeled examples and
the decision function iteratively. The approach can be used for a general class of
loss functions and was shown to give better performance than the approach which
used only labeled examples. Semi-supervised manifold ordinal regression [14] is a
new approach for semi-supervised ordinal regression for image ranking. This ap-
proach uses the assumption that is most appropriate for image analysis: the high
dimensional observations lie on or close to a low-dimensional manifold. However,
none of these approaches offer a solution to the semi-supervised ordinal regres-
sion problem in the Bayesian setting.

In the Bayesian setting, Bayesian committee machine [15] is one of the early
attempts to solve a transductive regression problem using Gaussian processes.
Though computationally expensive, it performs well on low noise data sets. Null
category noise model [16] provides a semi-supervised approach to Gaussian pro-
cess classification. A disadvantage of this approach is that the Gaussian ap-
proximation to the noise model can have negative variance. Semi-supervised
Gaussian process classifiers [17] use a graph based approach to learn semi-
supervised GP classifiers. It is based on using geometric properties of unlabeled
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data within globally defined kernel functions. It is extended to regression prob-
lems in [18]. They also propose a feedback mechanism in which the model is re-
trained by considering some unlabeled data and its predictions as labeled data.
The Archipelago model [19] presents a generative approach for semi-supervised
GP classification. It uses a GP to specify priors over label distribution and uses
it along with a base distribution to model data distribution. More closely related
to our work is the “Distribution Matching” approach for transductive regression
and classification [20]. This approach is designed for a large margin setting. In a
GP setting, similar ideas are used in [21] and [22] for transductive GP regression
and multi-category classification, respectively. However, none of these transduc-
tive or semi-supervised GP based approaches are extended to semi-supervised
ordinal regression problem.

Contributions: We propose a novel approach for semi-supervised ordinal re-
gression using Gaussian Processes. GPs are non-parametric Bayesian models and
provide a probabilistic kernel based approach for learning. Our method, here-
after abbreviated as SSGPOR, learns decision boundaries which pass through a
low density region. The proposed approach is based on the assumption that the
output distributions corresponding to labeled and unlabeled data are similar, a
well founded assumption explored in the transductive classification and regres-
sion settings [20]. The proposed approach models the similarity by minimizing
the Kullback-Leibler (KL) divergence between the predictive distribution over
the unlabeled data outputs and an approximate distribution . The approximate
distribution has properties similar to the labeled data output distribution. Ob-
taining the approximate distribution satisfying these properties is challenging.
Our approach involves solving two sub-problems iteratively: (1) We learn the
model by minimizing an upper bound on the negative logarithm of the evidence
and the KL divergence, (2) we estimate the approximate distribution efficiently
using the label switching method [23] that solves an underlying integer pro-
gramming problem. To avoid bad local minima that typically arise with the
unlabeled data in the semi-supervised setting, we use an annealing technique
where the contribution of the unlabeled loss term is gradually increased [24].

Our method can be seen as an extension of the supervised Gaussian process
ordinal regression approach using expectation propagation (EPGPOR) [7], to the
semi-supervised setting. The EPGPOR approach is among the state-of-the-art
approaches for ordinal regression. We compare the performance of the proposed
SSGPOR approach with the EPGPOR approach. The experiments on synthetic,
benchmark and real-world data sets show that, the performance of the EPGPOR
approach could be significantly improved using our method when unlabeled data
are available. It is also observed that the SSGPOR approach performs better
than the TOR approach [13] in the transductive setting. Large improvements
are observed on the absolute error metric than zero-one error metric. Note that
unlike classification problems where zero-one error is important, absolute error
metric is more meaningful in ordinal regression problems.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
Gaussian process and discuss the Gaussian process ordinal regression approach
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using expectation propagation (EPGPOR). Section 3 discusses the proposed
approach, semi-supervised Gaussian process ordinal regression (SSGPOR), in
detail. Comparisons of the SSGPOR, EPGPOR and TOR approaches on syn-
thetic, benchmark and real-world data sets are presented in Sect. 4. Finally,
some conclusions are drawn in Sect. 5.

We use the following notations for the discussion ahead. Given a sample of
nl labeled independent examples Dl = (Xl,yl) = {(xi, yi)}nl

i=1 and nu unlabeled
independent examples Du = (Xu) = {(xi)}nu

i=1. Let D = Dl ∪ Du denote the set
of all training examples of size n (n = nl + nu). Let D∗ be the set consisting of
n∗ test data points X∗. We assume xi ∈ X ⊆ R

d and yi ∈ Y = {c1, c2, . . . , cr},
where c1 < c2 < . . . < cr. We consider an ordinal regression problem with r or-
dered categories and without loss of generality, we denote them by r consecutive
integers {1, 2, . . . , r}. Our goal is to learn a decision function h : X → Y from
both labeled and unlabeled data, such that it generalizes well on test data.

2 Background

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of the variables is a Gaussian [25].
It generalizes the Gaussian distribution to infinitely many random variables.
The GP is used to define a prior distribution over latent functions underlying a
model. It is completely specified by a mean function and a covariance function.
The covariance function is defined over latent function values of a pair of input
examples and is typically evaluated using the Mercer kernel function over the
pair of input examples. The covariance function expresses some general proper-
ties of functions such as their smoothness, and length-scale. A commonly used
covariance function is the squared exponential (SE) or the Gaussian kernel

cov
(

ti, tj
)

= k(xi,xj) = exp(−κ

2
‖xi − xj‖2). (1)

Here ti = t(xi) and tj = t(xj) are latent function values associated with the
inputs xi and xj respectively. κ > 0 is the hyper-parameter associated with
the covariance function and ‖ · ‖ is the L2 norm. The latent function sampled
from a GP is denoted by t and in particular we denote the latent functions
associated with labeled data as tl, unlabeled data as tu and test data as t∗.
Let Kll = k(Xl, Xl), Kl∗ = k(Xl, X∗) and K∗∗ = k(X∗, X∗). Here k(Xl, X∗) is
an nl × n∗ matrix of covariances evaluated at all pairs of labeled training and
test input data. The matrices k(Xl, Xl), K(X∗, Xl) and K(X∗, X∗) are defined
similarly.

Gaussian Process Ordinal Regression: The Gaussian process ordinal re-
gression (GPOR) [7] approach uses a non Gaussian likelihood function for mod-
eling the ordinal labels. It uses a zero mean Gaussian process prior on the latent
function values t(x). Under noisy observations, for an input x, the likelihood
function for an ordinal output y is defined as

p(y|t(x)) = Φ
(by − t(x)

σ

)

− Φ
(by−1 − t(x)

σ

)

, (2)
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where σ is the standard deviation of the Gaussian noise and Φ is the Gaussian
cumulative distribution function i.e. Φ(z) =

∫ z

−∞
N (δ; 0, 1)dδ. The thresholds

b0, b1, . . . , br ∈ R (b0 ≤ b1 ≤ . . . ≤ br where b0 = −∞ and br = ∞) are
fixed so that the likelihood function represents a valid probability distribution
over the ordinal outputs. The thresholds b1 ≤ b2 ≤ . . . ≤ br−1 divide a real
line into r contiguous intervals. A real latent function value is mapped to a
discrete ordinal output based on the interval in which it lies. The likelihood (2)
is not a Gaussian and therefore the posterior, p(tl|Dl), could not be obtained
in closed form. The GPOR approach works by approximating the posterior as
a Gaussian distribution using either Laplace approximation (MAPGPOR) or
using expectation propagation (EPGPOR).

Learning: The Expectation propagation (EP) [26] approach approximates
the posterior p(tl|Dl) ∝ ∏nl

i=1 p(yi|ti)p(tl) as a product of Gaussian distri-
butions r(tl;h, A) =

∏nl

i=1 p̂(ti)p(tl), where p̂(ti) = si exp(− 1
2pi(ti − mi)

2),

A = (K−1
ll + Π)−1, and h = AΠm. Here, Π is a nl × nl diagonal matrix

with elements in the diagonal given by {pi}nl

i=1 and m is a nl dimensional col-
umn vector with elements given by {mi}nl

i=1. The parameters {si,mi, pi}nl

i=1 are
called the site parameters of the EP approximation. The site parameters are ob-
tained iteratively where in each iteration i, {si,mi, pi} are obtained by minimiz-
ing the Kullback-Leibler (KL) divergence [8], KL(r−i(ti)p(yi|ti) || r−i(ti)p̂(ti)).
Here r−i(ti) is the marginal cavity distribution over ti obtained after leaving out
the ith likelihood term p̂(yi|ti) from the approximated posterior r(tl) and then
marginalizing over the remaining variables.

The EPGPOR approach performs model selection by minimizing an upper
bound (F(θ)) on the negative logarithm of evidence (p(Dl|θ)) ,

argmin
θ

F(θ) = argmin
θ

−
nl
∑

i=1

∫

r(ti;hi, Aii) log(φ(
byi

− ti

σ
)− φ(

byi−1 − ti

σ
))dti

+
1

2
log|I +KllΠ |+ 1

2
tr(I +KllΠ)−1

+
1

2
m⊤(Kll +Π−1)−1Kll(Kll +Π−1)−1m (3)

where θ is the model parameter vector which includes the kernel parameter κ

in the covariance function, the threshold parameters (b1, b2, . . . , br−1) and the
noise parameter σ in the likelihood function. Here, tr(B) denotes the trace of
the matrix B. The optimization can be done using any standard gradient based
techniques like conjugate gradient. During optimization, for every new model
parameter values, the site parameters and the approximated posterior r(tl) are
re-estimated using the EP approach.

Prediction: The learnt model parameters and the EP approximated posterior
are used to make predictions on test data. The predictive distribution of the
latent function t∗ for a test data x∗ is p(t∗|x∗,Dl) ∼ N(t∗;µ∗, σ

2
∗), where µ∗ =

K⊤
l∗(Kll + Π−1)−1m and σ2

∗ = K∗∗ − K⊤
l∗(Kll + Π−1)−1Kl∗. The predictive

distribution for test output is p(y∗|x∗,Dl) = φ
( by∗−µ∗√

σ2+σ2
∗

)

− φ
( by∗−1−µ∗√

σ2+σ2
∗

)

.
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The EPGPOR approach is a supervised approach. It does not perform well
when the size of the labeled data are small. In most of the practical scenarios,
labeled data are limited while unlabeled data are available in abundance. We
propose a semi-supervised approach which extends the EPGPOR approach to
a semi-supervised setting. The proposed approach make use of the unlabeled
data along with the labeled data to learn a better decision function than the
EPGPOR approach.

3 Semi-supervised Gaussian Process Ordinal Regression

The proposed approach, semi-supervised Gaussian process ordinal regression
(SSGPOR), is based on the idea of “Distribution Matching” [20,21,22] and is
derived by extending the transductive GP regression (TGPR) [21] approach to
the ordinal regression setting. The basic assumption is that the predictive distri-
bution on unlabeled data should have properties similar to the output distribu-
tion on labeled data. In particular, it requires the average number of examples
for an ordinal category in unlabeled data should match approximately with the
average number of examples for that category in labeled data. The assumption
is justified by the independent and identically distributed (i.i.d.) nature of the
data and is true for many real-world data sets [21]. The model parameters are
estimated subject to these assumptions. It results in distributions which are con-
sistent across labeled and unlabeled data. We now briefly describe the TGPR
approach and then explain the proposed approach in detail.

The TGPR approach [21] models the regression problem where the output
is real valued and the likelihood is a Gaussian. It considers a transductive set-
ting where the training data set is Dl ∪ Du and the designed GP model is used
to predict the labels of the examples in Du. The TGPR approach requires the
predictive Gaussian distribution over unlabeled data to be close to a family of
Gaussian distributions Q̂. The family Q̂ is such that the first and second mo-
ments of its members on unlabeled data are close to the corresponding moments
obtained using labeled data. The model parameters (θ̂) are obtained by minimiz-

ing the negative logarithm of evidence (p(Dl|θ̂)), subject to the constraint that

the predictive distribution over unlabeled data p(yu|Dl,Du, θ̂), belongs to the
approximating family Q̂. The constraint could be enforced by minimizing the
Kullback-Leibler (KL) divergence between p(yu|Dl,Du, θ̂) and some q̂ ∈ Q̂ [21].

The model parameters (θ̂) and q̂ ∈ Q̂ are estimated by solving the joint opti-
mization problem ;

argmin
q̂∈Q̂,θ̂

− log p(Dl|θ̂) + λ KL(q̂(yu)||p(yu|Dl,Du, θ̂)). (4)

Here, λ is a regularization parameter and for two distributions q and p, KL(q||p)
=

∫

q(y) log q(y)
p(y)dy. The parameters are obtained using an alternating optimiza-

tion approach [21].
It is not easy to extend the TGPR approach to the ordinal regression setting.

This is due to the nature of the labels and the likelihood. In ordinal regression,
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the labels are discrete and ordered. Further, the likelihood is non-Gaussian. Since
labels are discrete and ordered, we have to consider a discrete approximating
distribution. Because of the non-Gaussian nature of the likelihood, we have to
use approximation techniques like expectation propagation to obtain a Gaussian
approximated posterior [7]. The discrete nature of the labels results in an integer
programming problem which needs to be solved efficiently. We now give the
details of the proposed approach.

Proposed Approach: The SSGPOR approach considers the setting where
the training data set is Dl ∪ Du and the designed GP model is tested on D∗. It
uses the likelihood (2) and the expectation propagation approach [7], to obtain
a Gaussian approximation of the posterior distribution. The resulting predictive
distribution on an ordinal output yu of an unlabeled example xu ∈ Du is given
as

p(yu|xu,Dl) = φ

(

byu
− µu

√

σ2 + σ2
u

)

− φ

(

byu−1 − µu
√

σ2 + σ2
u

)

, yu = 1, . . . , r (5)

where µu = K⊤
lu(Kll +Π−1)−1m and σ2

u = Kuu −K⊤
lu(Kll +Π−1)−1Klu.

The SSGPOR approach requires the predictive distribution (5) over
the unlabeled data to have some properties similar to the output distribution
over the labeled data. We achieve this by considering an approximate distri-
bution over the unlabeled data output with properties similar to the labeled
data output distribution, and constrain the predictive distribution to be close
to the approximate distribution. Since outputs are discrete in the ordinal re-
gression setting, the approximate distribution takes the form of a multinomial
distribution. In particular, we consider a multinomial distribution with r cate-
gories such that probability of success, pj , for each category is defined by the
average number of examples of that category in labeled data, i.e. pj = γj ,
where γj = 1

nl

∑nl

i=1 I(yi = j) (I(·) is an Indicator function). We define a
label matrix q of size nu × r, where each row qi is an i.i.d. random vector
following the multinomial distribution for a single trial and provides a label
for the ith unlabeled example. The ith unlabeled example is assigned a label
j, if qij = 1. We have qij ∈ {0, 1} and

∑r

j=1 qij = 1 ∀ i = 1, . . . , nu. Also,

q satisfies the label constraints 1
nu

∑nu

i=1 qij = γj ∀ j = 1, . . . , r, which en-
sures that the distribution over the unlabeled data are similar to the labeled
data distribution. The label constraints are important in a semi-supervised set-
ting as they avoid trivial solutions like assigning all unlabeled data to a sin-
gle category [8]. Let Q be the set of all q satisfying all these constraints, i.e.
Q = {q : q ∈ {0, 1}nu×r,

∑r

j=1 qij = 1 ∀ i, 1
nu

∑nu

i=1 qij = γj ∀ j}. The SSG-
POR approach requires the predictive distribution over all the unlabeled data
p(yu|Dl,Du) to be close enough to some q ∈ Q. This can be achieved by mini-
mizing the KL-divergence between q and p(yu|Dl,Du). Since obtaining the joint
distribution p(yu|Dl,Du) is difficult, we instead minimize the sum of the KL
divergence between qu and p(yu|xu,Dl) over all unlabeled examples.

Objective Function: The SSGPOR approach estimates the model parameters
θ = (b1, b2, . . . , br−1, κ, σ) and q ∈ Q, by minimizing the upper bound on the
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negative logarithm of evidence (3) and the sum of the KL-divergences over all
unlabeled data. It results in the following joint optimization problem;

argmin
q∈Q,θ

F(θ) + λ

nu
∑

i=1

KL(qi||p(yi|xi,Dl, θ)). (6)

Here, the variable λ serves as a regularization parameter determining the impor-
tance that should be given to the unlabeled data term. The model parameters
θ and q are obtained by an alternating optimization approach. It is an iterative
approach, where in each iteration, we first solve the model parameters keeping
q fixed. Then, we estimate q ∈ Q keeping the model parameters fixed.

Alternating Optimization
(i) Estimating θ For a fixed q, the model parameters (θ) are obtained as

argmin
θ

1

nl

F(θ) − λ
1

nu

nu
∑

i=1

KL(qi||p(yi|xi,Dl, θ))

= argmin
b1,...,br,σ2,κ

− 1

nl

nl
∑

i=1

∫

r(ti;hi, Aii) log(φ(
byi

− ti

σ
)− φ(

byi−1 − ti

σ
))dti

−λ
1

nu

nu
∑

i=1

r
∑

j=1

qij log(φ(
bj − µi

√

σ2 + σ2
i

)− φ(
bj−1 − µi
√

σ2 + σ2
i

)) +
1

2
log|I +KllΠ |

+
1

2
tr((I +KllΠ)−1) +

1

2
m⊤(Kll +Π−1)−1Kll(Kll +Π−1)−1m

s.t. b1 ≤ . . . ≤ br (7)

This problem can be converted to an unconstrained optimization problem and
can be solved using any standard optimization technique like conjugate gradient.
During optimization, the site parameters and the approximated posterior r(tl)
are re-estimated using the EP approach.

(ii) Estimating q For fixed model parameters, q is estimated by minimiz-
ing the sum of the KL-divergences over all the unlabeled data subject to the
constraint that q ∈ Q. It results in the following optimization problem.

argmin
q∈{0,1}nu×r

−
nu
∑

i=1

r
∑

j=1

qij log(φ(
bj − µi

√

(σ2 + σ2
i )
)− φ(

bj−1 − µi
√

(σ2 + σ2
i )
))

s.t.
1

nu

nu
∑

i=1

qij = γj ∀j = 1, . . . , r ,

r
∑

j=1

qij = 1 ∀i = 1, . . . , nu (8)

Estimation of q is a binary integer programming problem and is done efficiently
using the label switching algorithm [23].

We now discuss the proposed SSGPOR algorithm to solve (6) in detail.

Algorithm: The SSGPOR algorithm (Algorithm 1) consists of two parts: (i)
initialization part (steps 2 and 3) and (ii) iterative part (steps 4–9).
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The initialization of model parameters θ (step 2) is done by solving the super-
vised learning problemusing the EPGPORapproach on labeled data,Dl. It is then
used to initialize the label matrix q (step 3) so that constraints are satisfied. This
is done as follows. The initialized model parameters are used to find the prediction
probability (5) for every category of unlabeled data. For every category, the unla-
beled data examples are ranked based on the descending order of their prediction
probability for that category. Starting from category 1 to r, the top ranked unla-
beled data examples are assigned to the respective categories such that the num-
ber of examples assigned to each category does not exceed the expected number
(nu×γj). Care should be taken to remove examples from the sorted list correspond-
ing to other categories, once they have been assigned to a particular category.

The iterative part of the algorithm corresponds to solving the problem (6) for
different values of the regularization parameter λ. To avoid drastic switching of
the labels in q, λ is varied from a small value to a final value 1 in annealing steps.
That is, little importance is given to the unlabeled examples in the beginning
(λ = 10−3) and the importance of the unlabeled examples is increased gradually
as λ is increased. This helps the algorithm to avoid poor local minima and achieve
better performance. Step 4 of Algorithm 1 corresponds to this outer loop.

The inner loop (steps 5–8) does alternating minimization of θ and q in (6), for
a given λ. In particular, optimization of θ (or q) for a fixed q (or θ) corresponds
to solving (7) (or (8)). This alternating minimization procedure is repeated until
no label switching happens. Algorithm 1 can be made more efficient by ensuring
that steps 6 and 7 use the most recent θ and q as the starting points. For
step 6, we employed the standard conjugate gradient method to solve (7), by
converting it to an unconstrained optimization problem. For step 7, the label
switching algorithm [23] was used.

The label switching algorithm assumes that the constraints are satisfied ini-
tially. It then proceeds by switching the labels of a pair of examples from two
consecutive categories if the objective function decreases after such switching.
The algorithm greedily performs as many such switches as possible for every con-
secutive categories. The pairwise switching of labels ensures that the constraints
are satisfied throughout the label switching algorithm. The algorithm converges
after a few iterations and the overall cost is proportional to O(nur).

Algorithm 1. SSGPOR Algorithm

1: procedure SSGPOR(Dl, Du)
2: Initialize θ by solving (3).
3: Initialize the label matrix q.
4: for λ = {10−3, 3× 10−3, 10−2, 3× 10−2, 10−1, 3× 10−1, 1} do
5: repeat
6: Estimate θ by solving the optimization problem (7) for fixed q.
7: Estimate q by solving the optimization problem (8) for fixed θ.
8: until q is unchanged during step 7
9: end for
10: return θ

11: end procedure



Semi-supervised Gaussian Process Ordinal Regression 153

4 Experimental Results

We perform experiments on synthetic, benchmark and real-world data sets to
compare the performance of the proposed SSGPOR approach (in the semi-
supervised setting) with the EPGPOR approach. The EPGPOR approach is a
supervised approach and does not use unlabeled data. We also compare the SS-
GPOR approach with the transductive ordinal regression (TOR) [13] approach.
For brevity, we refer to these approaches as EPGPOR, SSGPOR and TOR. TOR
used a transductive setting and therefore, for fair comparison, we also used SS-
GPOR in the transductive setting. The SSGPOR and EPGPOR approaches use
the Gaussian kernel (1) in all the experiments. First, we conduct experiments on
a synthetic data set to visualize the decision boundaries obtained using EPG-
POR and SSGPOR. The generalization performance of the models is studied
on several benchmark data sets. Finally, the effectiveness of SSGPOR is demon-
strated on a real-world sentiment data set.

The generalization performance is compared using two metrics, zero-one error
and absolute error [7]. Let the actual test outputs be {y1, . . . , yn∗

} and the
predicted test outputs be {ŷ1, . . . , ŷn∗

}. Then the zero-one error and absolute

error are defined as follows.

zero-one error gives the fraction of incorrect predictions on test data i.e.
1
n∗

∑n∗

i=1 I(ŷi = yi), where I(·) is an indicator function.
absolute error gives the average deviation of predicted outputs from the actual

outputs i.e. 1
n∗

∑n∗

i=1 |ŷi − yi|, where | · | denotes the absolute function.

Ordinal regression problems require the predicted category to be close enough
to the actual category. The absolute error captures this and hence, it is more
meaningful than the zero-one error for ordinal regression problems. One prefers
approaches with low zero-one and absolute errors.

Synthetic Data: We conduct experiments on a two dimensional synthetic data
set to visualize the decision boundaries obtained using EPGPOR and SSGPOR.
The data set consists of three ordinal categories with 10 labeled examples and
100 unlabeled examples in each category. The labeled and unlabeled data for
each category were generated from a Gaussian distribution with different mean
and covariance. We consider two synthetic data sets. In the first, the labeled data
distribution is similar to the unlabeled data distribution while in the second, they
are different. The decision boundaries obtained using SSGPOR and EPGPOR
for the two data sets are depicted in Fig. 1a and Fig. 1b. The decision boundary
is the predictive mean value indexed by the thresholds. Table 1 provides the
zero-one and absolute errors on the unlabeled data using EPGOR and SSGPOR
for both the synthetic data sets. The zero-one and absolute errors are the same
in this experiment because error occurred only between the neighboring classes.

In Fig. 1a, where labeled and unlabeled data distributions are similar, both
SSGPOR and EPGPOR are able to learn decision boundaries passing through
a low density region. In Fig. 1b, where the labeled data distribution differs from
the unlabeled data distribution, SSGPOR learns a better decision boundary
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(a) Labeled data distribution similar to unla-
beled data distribution

(b) Labeled data distribution not similar to
unlabeled data distribution

Fig. 1. The decision boundaries obtained with SSGPOR and EPGPOR on a 2-
dimensional synthetic data set with 3 ordinal categories

Table 1. Zero-one and absolute errors on the synthetic dataset using EPGPOR and
SSGPOR. The numbers in bold face style indicate the best results.

distributions similar distributions different

Method zero-one absolute zero-one absolute

EPGPOR 0.0456 0.0456 0.1489 0.1489

SSGPOR 0.0267 0.0267 0.0733 0.0733

than EPGPOR. The unlabeled data help SSGPOR to shift its decision boundary
towards a region of low data density. From Table 1, we observe that in either
cases, SSGPOR gives lower errors than EPGPOR. It is important to note that
the increase in the error is significantly higher (∼ 10%) for EPGPOR compared
to SSGPOR (∼ 5%). This corroborates well with the observation that effective
decision boundary is learnt by SSGPOR using unlabeled data.

Benchmark Data: We conduct experiments on benchmark data sets to study
the generalization performance of the proposed SSGPOR approach. The exper-
iments are conducted on six benchmark data sets [7] with varying sizes. The
properties of these benchmark data sets are summarized in Table 2. These are
regression data sets. The continuous target values are discretized into ordinal
values using equal frequency binning. For each data set, we discretize the target
values in the original data set into 5 ordinal categories. Each data set is ran-
domly partitioned into training and test data sets as mentioned in Table 2. We
generate 10 such training and test data set instances by repeated independent
partitioning. For each data set, zero-one and absolute errors are obtained on all
the 10 instances of training and test data sets. The mean of the zero-one and
absolute errors, along with their standard deviation, are used to compare the
performance of the approaches.

Semi-supervised Setting: Figures 2 and 3 provide a comparison of SSGPOR
and EPGPOR on the benchmark data sets using mean zero-one error and mean
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Table 2. Benchmark data sets and their properties

Data sets Boston StocksAbaloneBankCaliforniaCensus

Attributes 13 9 8 32 8 16

Training Instances 300 600 1000 2000 3000 4000

Test Instances 206 350 3177 6192 17,640 18,784

(a) Boston housing (b) Stocks domain (c) Abalone

(d) Bank (e) California (f) Census

Fig. 2. Comparison of SSGPOR and EPGPOR using mean zero-one error on varying
the fraction of labeled examples. Error bars denote the standard deviation.

absolute error, respectively. Here, a fraction of the training data acts as labeled
data and the rest as unlabeled data. For each benchmark data set, we plot
the performance of the approaches as we vary the fraction of labeled data. We
also plot the performance that can be obtained using EPGOR when the entire
training set is used as the labeled data, and is denoted as EPGPORfull.

We observe from Fig. 2 and Fig. 3 that SSGPOR performs better than EPG-
POR for both zero-one and absolute errors. The improvement in performance
is higher when the fraction of labeled data are small. As we increase the frac-
tion of labeled data, the improvement in performance decreases, and both the
approaches start giving similar results. Eventually, the performance of both the
approaches converges to the case of using full training data as the labeled data
set. We observe that the improvement in performance is greater for the absolute
error than for the zero-one error. That is, the labels predicted by SSGPOR are
more closer to the true labels, as one would desire in an ordinal regression prob-
lem. SSGPOR gives better results on large data sets like California and Census,
than on small data sets. This is due to the availability of more unlabeled data
in large data sets. SSGPOR is thus able to make effective use of unlabeled data
to improve the generalization performance on benchmark data sets.



156 P.K. Srijith, S. Shevade, and S. Sundararajan

(a) Boston housing (b) Stocks domain (c) Abalone

(d) Bank (e) California (f) Census

Fig. 3. Comparison of SSGPOR and EPGPOR using mean absolute error on varying
the fraction of labeled examples. Error bars denote the standard deviation.

Table 3. T-test statistic computed with respect zero-one and absolute errors for dif-
ferent datasets for the smallest fraction of labeled examples. We use the bold face style
to indicate the cases for which the t-test statistic is greater than the critical value.

Error Boston Stocks Abalone Bank California Census

Zero-one 1.83312.9394 1.0179 2.2251 4.4971 2.4149

Absolute2.31414.0553 3.4269 3.2525 4.8434 2.9454

Statistical Significance Test: We use the paired t-test [27] to check if the pro-
posed SSGPOR performs significantly better than EPGPOR. For each data set,
we compute the t-test statistic with respect to zero-one and absolute errors for the
smallest fraction of labeled data. The errors are obtained on 10 instances of train-
ing and test data sets. The null hypothesis is that both SSGPOR and EPGPOR
have similar performance. Under the null hypothesis, the t-test statistic follows
the Student’s t-distribution with 9 degrees of freedom1. For the confidence level of
95% and degrees of freedom 9, critical value for the one-sided t-test is 1.833. We
reject the null hypothesis if the computed t-test statistic is greater than the critical
value. Table 3 reports the t-test statistic computed for each dataset. FromTable 3,
we observe that the computed t-statistic with respect to zero-one error is greater
than the critical value for all datasets except for the Abalone data set.With respect
to absolute error, it is greater than the critical value for all the data sets. Therefore,
the performance of SSGPOR is significantly better than that of EPGPOR and is
a better approach than EPGPOR to perform semi-supervised ordinal regression.

1 Under null hypothesis t-statistic follows the Student’s t-distribution with s−1 degrees
of freedom, where s is the sample size.
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Table 4. Comparison of SSGPOR and EPGPOR in the transductive setting for dif-
ferent labeled data sizes. The numbers in bold face style indicate the best results.

50 labeled examples 100 labeled examples

zero-one error absolute error zero-one error absolute error

Data EPGPORSSGPOREPGPORSSGPOREPGPORSSGPOREPGPORSSGPOR

Boston 0.3860 0.3816 0.4656 0.4498 0.3590 0.3538 0.4192 0.4039

Stocks 0.2732 0.2503 0.2894 0.2669 0.2079 0.1977 0.2165 0.2059

Abalone 0.5764 0.5643 0.8834 0.7947 0.5453 0.5407 0.7781 0.7378

Bank 0.6626 0.6571 1.1657 1.0287 0.6130 0.6091 0.9358 0.8756

California 0.5253 0.5141 0.6998 0.6649 0.4976 0.4934 0.6331 0.6201

Census 0.5837 0.5823 0.9028 0.8566 0.5553 0.5540 0.8215 0.7822

Table 5. Comparison of EPGPOR, SSGPOR and TOR when labeled data size is 100.
The numbers in bold face style indicate the best results.

zero-one error absolute error

Data EPGPORSSGPOR TOR EPGPORSSGPOR TOR

Abalone 0.5453 0.5407 0.5420 0.7781 0.7378 0.7700

Bank 0.6130 0.6091 0.6220 0.9358 0.8756 0.9200

California 0.4976 0.4934 0.5200 0.6331 0.6201 0.6750

Census 0.5553 0.5540 0.5700 0.8215 0.7822 0.7900

Transductive Setting: We conduct experiments to study the performance
of the proposed approach in a transductive setting. Here, we assume the unla-
beled test examples are available at the time of training. The experiments are
conducted on all the data sets. The mean zero-one and absolute errors (over
20 independent partitions of training and test data), when labeled data sizes
are 50 and 100, are given in Table 4. Transductive setting experiments show a
similar behavior as that of the semi-supervised setting. Comparison with EPG-
POR shows that the improvement in performance is higher when the fraction of
labeled data are small and the improvement decreases with more labeled data.
Again, we observe that the improvements are larger for the absolute error than
for the zero-one error.

Comparison with TOR [13]: The transductive setting experiments provide
us an opportunity to compare EPGPOR and SSGPOR with TOR. We note
that TOR uses a Perceptron kernel [13]. Table 5 compares the mean zero-one
and absolute errors obtained for EPGPOR and SSGPOR with the reported
TOR results [13] on Abalone, Bank, California and Census data sets, when the
labeled data size is fixed to 100. We observe that the performance of EPGPOR
is comparable with that of TOR whereas, SSGPOR performs better than TOR.
Also, we get the predictive probability information using SSGPOR unlike TOR.

Sentiment Data: We conduct experiments on real-world sentiment data
sets2. The data sets consist of reviews and ratings of users on products at

2 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Table 6. Mean zero one and absolute errors on the sentiment data when labeled data
size is 100. The numbers in bold face style indicate the best results.

zero-one error absolute error

Data EPGPOR SSGPOR EPGPOR SSGPOR

Book 0.7385 0.6546 1.3022 0.9424

Kitchen 0.7266 0.6547 1.2370 0.9642

Dvd 0.7276 0.6476 1.1558 0.9288

Electronics 0.7327 0.6613 1.3714 0.9696

Amazon.com [13]. The task is to predict the rating of a user review on a scale of
1 to 5. We consider four categories of products, Book, Kitchen, Dvd and Elec-
tronics. The data sets are preprocessed and the best 1000 words are selected
based on the tf-idf value to form the feature vector. The data sets consist of
around 5000 samples. We conduct the transductive setting experiments on the
data sets with the labeled data size as 100. Table 6 reports the mean zero one
and mean absolute errors obtained using SSGPOR and EPGPOR for the data
sets. We observe that SSGPOR significantly boosts the performance with the
additional unlabeled data, on the sentiment data sets.

5 Conclusion

In this work, we proposed an approach to perform ordinal regression using
Gaussian processes in a semi-supervised setting. A semi-supervised approach to
ordinal regression is important as it is expensive to obtain labeled data, whereas
unlabeled data are easily available. The proposed approach, semi-supervised
Gaussian process ordinal regression (SSGPOR), was based on the assumption
that the distribution on unlabeled data is similar to that on labeled data. The
approach used an alternating optimization method to learn the model param-
eters and the label matrix. The label matrix was learnt efficiently using the
label switching algorithm. Experimental results on synthetic, benchmark and
real-world data sets showed that the SSGPOR approach performed better than
the supervised EPGPOR approach and the TOR approach. Thus, it is a useful
approach for semi-supervised ordinal regression.
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