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Abstract

This paper presents a semi-supervised graph-based method for the classification of hyperspectral

images. The method is designed to handle the special characteristics of hyperspectral images, namely

high input dimension of pixels, low number of labeled samples, and spatial variability of the spectral

signature. To alleviate these problems, the method incorporates three ingredients, respectively. First,

being a kernel-based method, it combats the curse of dimensionality efficiently. Second, following a

semi-supervised approach, it exploits the wealth of unlabeled samples in the image, and naturally gives

relative importance to the labeled ones through a graph-based methodology. Finally, it incorporates

contextual information through a full family of composite kernels. Noting that the graph method relies

on inverting a huge kernel matrix formed by both labeled and unlabeled samples, we originally introduce

the Nyström method in the formulation to speed up the classification process.

The presented semi-supervised graph-based method is compared to state-of-the-art support vector

machines (SVMs) in the classification of hyperspectral data. The proposed method produces better

classification maps which capture the intrinsic structure collectively revealed by labeled and unlabeled

points. Good and stable accuracy is produced in ill-posed classification problems (high dimensional

spaces and low number of labeled samples). Also, the introduction of the composite kernels framework

drastically improves results, and the new fast formulation ranks almost linearly in the computational
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cost, rather than cubic as in the original method, thus allowing the use of this method in remote sensing

applications.

Index Terms

Hyperspectral image classification, semi-supervised learning, ill-posed problem, composite kernel,

graph Laplacian, undirected graph, Nyström method.

I. INTRODUCTION

The information contained in hyperspectral images allows the characterization, identification,

and classification of the land-covers with improved accuracy and robustness. However, several

critical problems should be considered in the classification of hyperspectral data, among which:

(i) the high number of spectral channels, (ii) the spatial variability of the spectral signature,

(iii) the high cost of true sample labeling, and (iv) the quality of data. In particular, the high

number of spectral channels and low number of labeled training samples pose the problem of

the curse of dimensionality (i.e. the Hughes phenomenon [1]) and, as a consequence, result in

the risk of overfitting the training data. For these reasons, desirable properties of hyperspectral

image classifiers should be the ability to produce accurate land cover maps when working with

high number of features, low-sized training datasets and high levels of spatial variability of the

spectral signature [2].

In the remote sensing literature, many supervised and unsupervised classifiers have been

developed to tackle the multi- and hyperspectral data classification problem [3]. Supervised

methods, such as artificial neural networks [4]–[6] readily revealed inefficient when dealing with

a high number of spectral bands, and thus in the recent years, kernel-based methods in general

and support vector machines (SVMs) [7], [8] in particular have been successfully used for

hyperspectral image classification [9]–[12]. Certainly, kernel-based classifiers are able to handle

large input spaces efficiently, and deal with noisy samples in a robust way [13]. However, the main

difficulty with all supervised methods is that the learning process heavily depends on the quality

of the training dataset, which is only useful for simultaneous images, or for images with the same

classes taken under the same conditions. Even worse, the training set is frequently not available,

or in a very reduced number, given the very high cost of true sample labeling. On the other

hand, unsupervised methods have demonstrated good results [14]–[19] in multi and hyperspectral
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image classification. Unsupervised methods are not sensitive to the number of labeled samples

since they work on the whole image, but the relationship between clusters and classes is not

ensured. Moreover, a preliminary feature selection/extraction step is usually undertaken to reduce

the high input space dimension, which is time-consuming, scenario-dependent, and needs prior

knowledge.

In this context, it becomes natural that using semi-supervised classifiers can yield improved

performance. In semi-supervised learning (SSL), the algorithm is provided with some available

supervised information in addition to the wealth of unlabeled data. The framework of semi-

supervised learning is very active and has recently attracted a considerable amount of research

[20]–[22]. Essentially, three different classes of SSL algorithms are encountered in the literature:

1) Generative models which involve estimating the conditional density p(x|y), such as ex-

pectation-maximization (EM) algorithms with finite mixture models [23], which have been

extensively applied in the context of remotely sensed image classification [24].

2) Low density separation algorithms, which maximize the margin for labeled and unlabeled

samples simultaneously, such as Transductive SVM [25], which have been recently applied

to hyperspectral image classification [26].

3) Graph-based methods [27], [28], in which each sample spreads its label information to its

neighbors until a global stable state is achieved on the whole dataset.

This paper concentrates on graph-based methods, which have been lately paid attention because

of their solid mathematical background, their relationship with kernel methods, sparseness prop-

erties, model visualization, and good results in many areas, such as computational biology [29],

web mining [30], or text categorization [22].

In this paper, we introduce a semi-supervised graph-based method, previously presented in

[31], in the context of hyperspectral image classification. The method is then further improved

to tackle the problems imposed by the special characteristics of hyperspectral images, namely

high input dimension of pixels, low number of labeled samples, and spatial variability of the

spectral signature. To this end, the method has the following characteristics:

1) Kernel method. Since the proposed method is kernel-based, the high dimensionality of

samples is treated efficiently [12].

2) Semi-supervised method. Being a semi-supervised method, the huge number of unlabeled
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samples in the image is exploited to improve performance [22].

3) Graph-based method. The method follows a graph-based methodology, and thus relative

importance to the labeled samples is given in a natural way [31].

4) Context-based method. We incorporate contextual information in the classifier through the

introduction of a family of composite kernels, extending the works [32], [33].

5) Fast method. Finally, noting that the method relies on inverting large kernel matrices

(built with labeled and unlabeled pixels together), we reformulate the algorithm using the

Nyström method to enable a dramatic speed-up of the classification process [34].

The method is evaluated in ill-posed classification problems, that is low number of high dimen-

sional labeled samples. Evaluation is carried out in terms of accuracy and robustness when low

number of labeled samples is available, and by visual inspection of the provided classification

maps. Also, special attention is given to the issues of computational cost, and free parameters

tuning.

The rest of the paper is organized as follows. Section II reviews the main ideas underlying

graph methods and the consistency assumption in semi-supervised learning. The latter motivates

Section III, in which we present the proposed semi-supervised graph-based composite kernel

classification method. Section IV discusses the classification results of this approach compared

to standard SVMs in ill-posed problems. Also, in this section we address the problem of free

parameters tuning and computational cost. Finally, section V includes some concluding remarks

and indications on further work.

II. SEMI-SUPERVISED LEARNING WITH GRAPHS

The key issue in semi-supervised learning is the assumption of consistency, which means

that: (1) nearby points are likely to have the same label; and (2) points on the same structure

(typically referred to as a cluster or a manifold) are likely to have the same label. In our case,

nearby points are those pixels spectrally similar and thus the assumption is applied to the high

dimensional space of hyperspectral image pixels. This argument is akin to that in [20], [35]–

[38] and is often called the cluster assumption [20], [37]. Note that the first assumption is local,

whereas the second one is global. Traditional supervised learning algorithms, such as k-NN, in

general depend only on the first assumption of local consistency.

February 13, 2007 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH Z 2007 5

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Toy Data (Two Moons)

unlabeled point
labeled point  −1
labeled point +1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
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(d) Ideal Classification

Fig. 1. Classification on the ‘two moons’ dataset. (a) Toy data set with only two labeled points and many unlabeled samples

conforming a structured domain with intuitively discernable clusters (manifolds); (b) classification result given by the SVM with

an RBF kernel; (c) k-NN with k = 1; and (d) ideal classification (and the one provided by our method).

To illustrate the prior assumption of consistency underlying semi-supervised learning, let us

consider a toy dataset generated according to a pattern of two intertwining moons (see Fig. 1[a]).

Every point should be similar to points in its local neighborhood, and furthermore, points in one

moon should be more similar to each other than to points in the other moon. The classification

results given by the Support Vector Machine (SVM) with an RBF kernel and k-NN are shown

in Fig. 1[b] and 1[c], respectively. According to the assumption of consistency, however, the two

moons should be classified as shown in Fig. 1[d].

The main differences between the various semi-supervised learning algorithms, such as spectral

methods [35], [37], [39], random walks [38], [40], graph mincuts [36] and transductive SVM

[25], lie in their way of realizing the assumption of consistency. A principled approach to

formalize the assumption is to design a classification function which is sufficiently smooth on

the intrinsic structure revealed by known labeled and unlabeled points. In order to construct

such a smooth function, we propose here a simple iteration algorithm inspired by the work on

spreading activation networks [41], [42] and diffusion kernels [43]–[45], recent work on semi-
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supervised learning and clustering [35], [37], [46], and more specifically by the work of Zhu et

al. [38]. The keynote of our method is to let every point iteratively spread its label information

to its neighbors until a global stable state is achieved.

Graph-based methods rely upon the construction of a graph representation, where the vertices

are the (labeled and unlabeled) samples, and edges represent the similarity among samples in

the dataset (see Fig. 2). Typically, graph methods utilize the graph Laplacian, which is defined

as follows. Let G = (V, E) be a graph with a set of vertices, V , connected by a set of edges,

E. The edge connecting nodes (or samples) i and j has an associated weight, {Wij}. Then,

the weight (or affinity) matrix W is constructed among all labeled and unlabeled samples. The

(normalized) graph Laplacian is defined as

L = I − D−1/2WD−1/2, (1)

where D is a diagonal matrix defined by Dii =
∑

j Wij. See [22] (Ch. 11) for more details on

different families of graph-based methods.

At this point, it is worth noting that prediction consists in labeling the unlabeled nodes, and

thus, these are intrinsically transductive classifiers, i.e. the graph only returns the predicted class

label for the unlabeled samples, not a decision function defined on the whole domain. This graph-

based classification can be viewed as estimating a function F over the graph, which should be

in accordance with the smoothness assumption, that is, a good classification function should not

change too much between similar points. This smoothness assumption can be reinforced in the

problem of hyperspectral image classification through the integration of spatial and contextual

information, as will be described in the next section.

III. GRAPH-BASED COMPOSITE KERNEL CLASSIFICATION

In this section, we present the whole formulation of the graph-based method proposed in

this paper. We start by presenting the general graph approach, and introduce a full family of

composite kernels to integrate the spatial (contextual) and spectral formulation in the method.

Finally, noting the high computational cost of the method, we propose to use the Nyström method

(in combination with Woodbury’s formula) which allow us to speed up the solution.
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Fig. 2. Graph classification on a toy graph. (a) The two shaded circles are the initially labeled vertices (±1), while the white

nodes represent unlabeled samples. The thickness of the edges represent the similarity among samples. (b) Graph methods

classify the unlabeled samples according to the weighted distance, not just to the shortest path lengths, the latter leading to

incorrectly classified samples. The two clusters (shaded) are intuitively correct, even being connected by (thin weak) edges.

A. Semi-supervised graph-based method

1) Formulation: Given a dataset of pixels in an N-dimensional input space (being N the

number of bands or spectral channels), X = {x1, . . ., xl, xl+1, . . ., xn} ⊂ R
N and a label set

L = {1, . . . , c}, the first l points xi (i ≤ l) are labeled as yi ∈ L and the remaining points xu

(l + 1 ≤ u ≤ n) are unlabeled. The goal in semi-supervised learning is to predict the labels of

the unlabeled points.

Let F denote the set of n×c matrices with non-negative entries. A matrix F = [F �
1 , . . . , F�

n ]� ∈
F corresponds to a classification on the dataset X by labeling each point xi with a label

yi = arg maxj≤c Fij. We can understand F as a vectorial function F : X → R
c which assigns a

vector Fi to each point xi. Define an n× c matrix Y ∈ F with Yij = 1 if xi is labeled as yi = j

and Yij = 0 otherwise. Note that Y is consistent with the initial labels assigned according to the

decision rule. At each iteration t, the algorithm can be summarized as follows:

1.- Calculate the affinity matrix W , for instance using the RBF kernel1:

Wij ≡ W (xi,xj) = exp(−‖xi − xj‖2/2σ2), ∀i 	= j (2)

1In the kernel and graph-based frameworks, the use of RBF kernels is a common choice because it has less numerical

difficulties, and only the Gaussian width (σ) has to be tuned, which is an easy way to control the smoothness of the mapping

function and relates the closeness of samples (spectra) in the feature space. In addition, the RBF kernel is a universal kernel

and includes other valid kernels as particular cases [13].
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and make Wii = 0 to avoid self-similarity.

2.- Construct the matrix

S = D−1/2WD−1/2 (3)

in which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row

of W. Note that this step corresponds to the normalization in feature spaces. Certainly, if

we consider a semi-definite kernel matrix formed by the dot products of mapped samples,

W = 〈φ(xi), φ(xj)〉 = φ(xi)
�φ(xj), the normalized version is given by:

Ŵ (xi,xj) =

〈
φ(xi)

‖φ(xi)‖ ,
φ(xj)

‖φ(xj)‖
〉

=
W (xi,xj)√

W (xi,xi)W (xj,xj)
. (4)

3.- Iterate the following spreading function until convergence:

F (t + 1) = αSF (t) + (1 − α)Y, (5)

where α is a parameter in (0, 1).

These three steps should be iteratively repited until convergence. Now, if F ∗ denotes the limit

of the sequence {F (t)}, the predicted labels for each point xi is done using:

yi = arg max
j≤c

F ∗
ij . (6)

However, it is worth noting here that one can demonstrate [31] that in the limit:

F ∗ = lim
t→∞

F (t) = (1 − α)(I − αS)−1Y, (7)

and thus the final estimating function F ∗ can be computed directly without iterations.

2) Graph interpretation: This algorithm can be understood intuitively in terms of spreading

activation networks from experimental psychology [41], [42], and explained as random walks on

graphs [47]. Basically, the proposed method can be interpreted as a graph G = (V, E) defined

on X , where the vertex set V is just X and the edges E are weighted by W . In the second step,

the weight matrix W of G is normalized symmetrically, which is necessary for the convergence

of the following iteration. The first two steps are exactly the same as in spectral clustering [46].

During the third step, each sample receives the information from its neighbors (first term), and

also retains its initial information (second term).

With regard to the free parameter α, one can see that it specifies the relative amount of the

information from its neighbors and its initial label information. It is worth noting that self-

reinforcement is avoided since the diagonal elements of the affinity matrix are set to zero in
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the first step. Moreover, the information is spread symmetrically since S is a symmetric matrix.

Finally, the label of each unlabeled point is set to be the class of which it has received most

information during the iterative process.

B. Spatio-Spectral composite kernels

Note that, in its standard use, the graph-based method proposed before only would take

advantage of the spectral information. Here we propose a toolbox of composite kernels ac-

counting for the spatial, spectral, and cross-information between spatial and spectral parts. For

this purpose, a pixel entity xi ∈ R
N (recall that N represents the number of spectral bands) is

redefined simultaneously both in the spectral domain using its spectral content, xω
i ∈ R

Nω , and

in the spatial domain by applying some feature extraction to its surrounding area, xs
i ∈ R

Ns ,

which yields Ns spatial (contextual) features. These separated entities lead to two different

similarity matrices, which can be easily computed and combined. At this point, one can sum

spectral and spatial dedicated affinity matrices (Wω and Ws, respectively), and introduce the

cross-information between contextual and spectral features (Wωs and Wsω) in the formulation.

This simple methodology yields a full family of composite methods for hyperspectral image

classification, which was originally presented in [32] for supervised SVM-based classification

and we now extend and apply it to semi-supervised classification with graphs.

1) The stacked features approach: The common approach to introduce spatial or contextual

information in a (hyperspectral image) classifier consists of stacking the spectral and spatial

features of a given pixel and then feeding the classifiers with them. This simple method has

provided good results with neural networks and SVMs, but a main problem is readily identified;

as the number of features increases, the curse of dimensionality is more likely to happen.

In the context of kernel methods, the stacked approach can be formalized as follows. Let

us define the mapping Φ as a transformation of the concatenation x∗
i ≡ {xs

i , xω
i }, then the

corresponding ‘stacked’ affinity matrix is:

W{s,ω} ≡ W (x∗
i ,x

∗
j) = 〈Φ(x∗

i ),Φ(x∗
j )〉, (8)

which does not include explicit cross-relations between xs
i and xω

j . Here the angle brackets

indicate inner product in the feature space.
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2) The direct summation kernel: Another possibility to avoid building very high dimensional

samples to be classified is to treat spectral and spatial features separately. Let us assume two

nonlinear (vectorial) transformations ϕ1(·) and ϕ2(·) into Hilbert spaces H1 and H2, respectively.

Then, the following transformation can be constructed:

Φ(xi) = {ϕ1(x
s
i ), ϕ2(x

ω
i )} (9)

and the corresponding kernel matrix can be obtained by computing the dot product implicitely

in the direct summation space H = H1

⊕H2 (i.e. there is no need to know the expression of

the mappings, only their dot products) as follows:

W (xi,xj) = 〈Φ(xi),Φ(xj)〉 (10)

= 〈{ϕ1(x
s
i ), ϕ2(x

ω
i )}, {ϕ1(x

s
j), ϕ2(x

ω
j )}〉

= Ws(x
s
i ,x

s
j) + Wω(xω

i ,xω
j )

where Ws = 〈ϕ1(x
s
i ), ϕ1(x

s
j)〉 and Wω = 〈ϕ2(x

ω
i ), ϕ2(x

ω
j )〉 are the kernel matrices computed

using a valid kernel function such as the RBF kernel function in (2) over spatial or spectral

features, respectively. Note that dim(xω
i ) = Nω, dim(xs

i ) = Ns, and dim(W ) = dim(Ws) =

dim(Wω) = n× n. Therefore, the solution is expressed as the sum of positive definite matrices

accounting for the spatial and spectral counterparts independently, and thus the number of features

is not duplicated by stacking them and to feed one classifier. This has the noticeable advantage

of alleviating the curse of dimensionality in the scenario when a low number of labeled samples

is available.

3) The weighted summation kernel: By exploiting properties of Mercer’s kernels (see Ap-

pendix I), a composite kernel that balances the spatial and spectral content can also be created,

as follows:

W (xi,xj) = μWs(x
s
i ,x

s
j) + (1 − μ)Wω(xω

i ,xω
j ) (11)

where μ is a positive real-valued free parameter (0 < μ < 1), which is tuned in the training

process, and constitutes a trade-off between the spatial and spectral information to classify a

given pixel.
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4) The cross-information kernel: The preceding kernel-based classifiers can be conveniently

modified to account for the cross relationship between the spatial and spectral information. As-

sume a nonlinear (vectorial) mapping ϕ(·) to a Hilbert space H and three linear transformations

Ak from H to Hk, for k = 1, 2, 3. Let us construct the following composite vector:

Φ(xi) = {A1ϕ(xs
i ),A2ϕ(xω

i ),A3(ϕ(xs
i ) + ϕ(xω

i ))} (12)

and compute the dot product

W (xi,xj) = 〈Φ(xi),Φ(xj)〉 (13)

= Φ(xs
i )

�R1Φ(xs
j) + Φ(xω

i )�R2Φ(xω
j )

+ Φ(xs
i )

�R3Φ(xω
j ) + Φ(xω

i )�R3Φ(xs
j)

where R1 = A�
1 A1 + A�

3 A3, R2 = A�
2 A2 + A�

3 A3, and R3 = A�
3 A3 are three independent

positive definite matrices. The important trick here is that including linear transformations A i

in the definition of the mapping yields as the main subproduct that the induced kernel matrix

in (13) takes into account the similarity between contextual and spectral information among

samples, while keeping the size of the input space the same size as in the approaches before.

Similarly to the direct summation kernel, it can be demonstrated that (13) can be expressed

as the sum of positive definite matrices, accounting for the spatial, spectral, and cross-terms

between spatial and spectral counterparts:

W (xi,xj) = Ws(x
s
i ,x

s
j) + Wω(xω

i ,xω
j )

+ Wsω(xs
i ,x

ω
j ) + Wωs(x

ω
i ,xs

j) (14)

The only restriction for this formulation to be valid is that xs
i and xω

j need to have the same

dimension (Nω = Ns). Otherwise, cross kernels (Wωs and Wsω) can not be computed. This

condition can be easily ensured by extracting one spatial feature per spectral band.

5) Kernels for improved versatility: Also note that one can build up a full family of kernel

composition to account for cross-information between spatial and spectral features. For instance,

one could think of the following combination of kernels for improved versatility:

W (xi,xj) = Ws(x
s
i ,x

s
j) + Wω(xω

i ,xω
j ) + W{s,ω}(x∗

i ,x
∗
j), (15)
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which combines the summation kernel and the stacked approach. Similarly, another possibility

is to construct the kernel:

W (xi,xj) = Ws(x
s
i ,x

s
j) + Wω(xω

i ,xω
j )

+ Wsω(xs
i ,x

ω
j ) + Wωs(x

ω
i ,xs

j) (16)

+ W{s,ω}(x∗
i ,x

∗
j)

which combines the cross-information and the stacked vector approach in one similarity matrix.

C. Nyström method formulation

The formulation of the method proposed so far involves three basic steps: firstly building the

W matrix according to a composite specification; secondly, normalizing W to obtain S; and

finally, solving the inversion problem given by (7). The algorithm in MATLAB code is given

below:

% Encode outputs in Y (e.g., Class +1: [0 1], Class -1: [1 0], Unlabeled: [0 0])

% Precompute a W kernel (similarity) matrix

W = W - eye(n); % Avoid self-similarity

D = diag(1./sqrt(sum(W))); % Diagonal factor

S = D*W*D; % Normalize the affinity matrix

F = (1-alpha)*inv(eye(N)-alpha*S)*Y; % Solution

Note that direct inversion of (I − αS) induces a high computational cost of O(n3), since

matrix size is size n×n, where n is the number of labeled and unlabeled samples. One method

to reduce the computational complexity is to retain only the first largest p eigenvalues of the

eigen-decomposition of the normalized matrix S:

S = V ΛV � (17)

where V represents the unitary matrix of eigenvectors and Λ is a diagonal matrix containing

their associated eigenvalues. There are methods to find the first eigenvalues without explicitly

solving the whole eigenproblem [48]. However, computational time is drastically reduced only

when p � n.

In order to reduce the computational cost involved, we introduce here the Nyström method.

The Nyström method is commonly used to produce an approximate matrix S̃ by randomly
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choosing m rows/columns of the original matrix S and then making S̃n,n = Sn,mS−1
m,mSm,n,

m ≤ n, where Sn,m represents the n × m block of S. As a result, the method simplifies the

solution of the problem to computing an approximated eigen-decomposition of the low-rank

kernel matrix S̃ = Ṽ Λ̃Ṽ �, involving O(mn2) computational cost [34]. See Appendix II for the

full formulation of the Nyström method.

Therefore, if we approximate the normalized matrix S by expanding a small p × p matrix,

S̃ = Ṽ Λ̃Ṽ �, and substitute it into (7), we obtain:

F ∗ = (1 − α)(I − αṼ Λ̃Ṽ �)−1Y. (18)

Let us recall now the Woodbury formula from linear algebra, which states the identity:

(C + AB)−1 = C−1 − C−1A(I + BC−1A)−1BC−1 (19)

where C is an invertible n× n matrix, A ∈ R
n×m and B ∈ R

m×n. By using this formula in our

problem statement (18), it is straightforward to demonstrate that:

F ∗ = (1 − α)(Y − Ṽ (Λ̃Ṽ �Ṽ − α−1I)−1Λ̃Ṽ �Y ), (20)

which involves inverting a matrix of size p×p (with p ≤ m ≤ n) and thus the computational cost

is O(p2n), i.e. linear with the number of samples. This method was first applied in the context of

Gaussian Processes [34] but readily extended to spectral clustering and normalized-cut method

[49]. In this paper, we have formally presented the method in the context of semi-supervised

graph-based classification.

IV. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed family of semi-supervised contextual

graph-based classifiers for hyperspectral image classification. We also pay attention to the free

parameters tuning, and propose a non-exhaustive procedure for this purpose.

A. The AVIRIS Indian Pines dataset

In our experiments, we used the familiar AVIRIS image taken over NW Indiana’s Indian

Pine test site in June 1992. The data set represents a very challenging land-cover classification

scenario, in which the primary crops of the area (mainly corn and soybeans) were very early

in their growth cycle, with only about 5% canopy cover. Discriminating among the major
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crops under these circumstances can be very difficult (in particular, given the moderate spatial

resolution of 20 meters). This fact has made the scene a challenging benchmark to validate

classification accuracy of hyperspectral imaging algorithms. The calibrated data is available

online (along with detailed ground-truth information) from http://dynamo.ecn.purdue.

edu/∼biehl/MultiSpec.

Two different data sets were considered in the experiments. Following [9], we first used a

part of the scene, called the subset scene, consisting of pixels [27 − 94]×[31 − 116] for a size

of 68×86, which contains four labeled classes (the background pixels were not considered for

classification purposes). In this subimage, there are four classes with uneven number of labeled

samples: ‘Corn-notill’ (1008), ‘Grass/Trees’ (732), ‘Soybeans-notill’ (727), and ‘Soybeans-min’

(1926). The latter two classes have very similar spectral signatures as they belong to the same

super-class ‘Soybeans’. Second, we used the whole scene, consisting of the full 145×145 pixels,

which contains 16 classes, ranging in size from 20 − 2468 pixels, and thus constituting a very

difficult situation. From the 16 different land-cover classes available in the original ground-truth,

7 were discarded since an insufficient number of training samples were available and thus, this

fact would dismiss the planned experimental analysis. The finally selected classes were: ‘Corn-no

till’ (1434), ‘Corn-min till’ (834), ‘Grass/Pasture’ (497), ‘Grass/Trees’ (747), ‘Hay-windrowed’

(489), ‘Soybean-no till’ (968), ‘Soybean-min till’ (2468), ‘Soybean-clean till’ (614), and ‘Woods’

(1294). In both images, we removed 20 noisy bands covering the region of water absorption,

and finally worked with 200 spectral bands. Before training, data was normalized to give zero

mean and unit variance.

B. Model Development

The spectral samples xω
i are, by definition, the spectral signature of pixels xi. The contextual

samples, xs
i , were computed as the mean of a 3× 3 window surrounding xi for each band. This

simple method is motivated by the local assumption in the spatial domain, which has previously

produced good results in the context of SVMs [32]. In all cases, we used the RBF kernel to

construct the similarity matrices, W (xi,xj) = exp (−‖xi − xj‖2/(2σ2)), and depending on the

composite kernel used, a different σ parameter was to be tuned for each counterpart. All RBF

kernel widths were tuned in the range σ = {10−3, . . . , 103}, the regularization parameter for

SVM was varied in C = {100, . . . , 103}, and the α parameter for the graph-based method was
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tuned in the range α = {0.01, . . . , 0.99}. In the case of the weighted summation kernel, μ was

varied in steps of 0.1 in the range [0,1]. A one-against-one multi-classification scheme was

adopted in the case of SVMs. Complementary material (MATLAB source code, demos, and

datasets) is available at http://www.uv.es/gcamps/graph/ for those interested readers.

TABLE I

RESULTS FOR THE SUBSET IMAGE. OVERALL ACCURACY (OA[%]) AND KAPPA STATISTIC (IN BRACKETS) AS A FUNCTION

OF THE NUMBER OF LABELED SAMPLES PER CLASS†. AVERAGE RESULTS OVER 10 REALIZATIONS OF THE RANDOMLY

SELECTED TRAINING SAMPLES ARE SHOWN FOR THE SVM (FIRST ROW) AND GRAPH (SECOND ROW) METHODS.

� Labeled samples per class

Composite kernel 3 5 10 15 20 25 30 100

Spectral 58.43 (0.54) 58.70 (0.55) 67.66 (0.63) 69.63 (0.65) 74.57 (0.69) 77.68 (0.72) 78.08 (0.73) 85.09 (0.79)

60.28 (0.56) 60.54 (0.56) 69.17 (0.64) 71.15 (0.66) 75.93 (0.71) 79.34 (0.74) 79.60 (0.74) 85.11 (0.79)

Spatial 51.77 (0.48) 55.96 (0.52) 65.49 (0.61) 70.22 (0.65) 68.00 (0.63) 71.27 (0.66) 75.28 (0.70) 83.22 (0.77)

52.42 (0.49) 57.69 (0.54) 66.60 (0.62) 71.73 (0.67) 69.63 (0.65) 72.48 (0.67) 76.79 (0.71) 83.84 (0.78)

Stacked 52.01 (0.48) 55.68 (0.52) 67.02 (0.62) 72.86 (0.68) 71.90 (0.67) 78.90 (0.73) 78.18 (0.73) 84.84 (0.79)

53.48 (0.50) 57.18 (0.53) 68.16 (0.63) 75.30 (0.70) 73.49 (0.68) 80.70 (0.75) 79.98 (0.74) 85.01 (0.79)

Summation 61.26 (0.57) 64.89 (0.60) 69.43 (0.65) 77.46 (0.72) 76.05 (0.71) 77.98 (0.73) 78.09 (0.73) 85.23 (0.79)

62.39 (0.58) 66.86 (0.62) 71.32 (0.66) 79.49 (0.74) 77.80 (0.72) 78.84 (0.73) 80.19 (0.75) 86.22 (0.80)

Weighted 55.09 (0.51) 58.40 (0.54) 66.18 (0.62) 71.79 (0.67) 73.93 (0.69) 77.90 (0.72) 75.67 (0.70) 83.33 (0.77)

56.77 (0.53) 59.40 (0.55) 67.72 (0.63) 73.16 (0.68) 75.35 (0.70) 79.05 (0.74) 77.58 (0.72) 82.78 (0.77)

Sum+Stacked 63.50 (0.59) 62.31 (0.58) 68.96 (0.64) 77.35 (0.72) 78.25 (0.73) 80.07 (0.74) 82.71 (0.77) 84.55 (0.79)

65.41 (0.61) 63.88 (0.59) 71.03 (0.66) 78.64 (0.73) 79.68 (0.74) 82.08 (0.76) 83.81 (0.78) 85.01 (0.79)

Cross 64.57 (0.60) 65.02 (0.60) 66.36 (0.62) 77.16 (0.72) 80.12 (0.75) 80.99 (0.75) 80.32 (0.75) 85.55 (0.80)

66.09 (0.61) 67.13 (0.62) 67.87 (0.63) 78.87 (0.73) 82.04 (0.76) 82.14 (0.76) 82.13 (0.76) 86.44 (0.80)

Cross+Stacked 64.96 (0.60) 64.01 (0.60) 69.60 (0.65) 77.39 (0.72) 79.91 (0.74) 81.75 (0.76) 82.80 (0.77) 84.22 (0.78)

66.73 (0.62) 65.41 (0.61) 70.96 (0.66) 79.00 (0.73) 81.75 (0.76) 83.12 (0.77) 84.99 (0.79) 84.22 (0.78)

Average 58.95 (0.55) 60.63 (0.56) 67.59 (0.63) 74.24 (0.69) 75.35 (0.70) 78.32 (0.73) 78.90 (0.73) 84.50 (0.79)

60.59 (0.56) 62.42 (0.58) 69.15 (0.64) 75.75 (0.70) 76.93 (0.72) 79.85 (0.74) 80.68 (0.75) 84.83 (0.79)

† Best results (bold) and second best (italics) are highlighted for each problem.

C. Experimental results for the subset image

In this first experiment, we test the presented method in different ill-posed scenarios where a

reduced amount of labeled samples is used ({3, 5, 10, 15, 20, 25, 30, 100} samples per class).

The best free parameters were selected through 3-fold cross validation, and then we show the

results for the whole image. Table I shows the test results in the subset image (averaged over 10

realizations of the randomly selected training samples) for all composite methods and for both

the SVM and the proposed graph-based semi-supervised classifiers.
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Several conclusions can be obtained from Table I. First, the proposed graph-based method

produces better classification results than the SVM in all situations, and the average gain in

terms of overall accuracy (∼ 2%) remains almost constant as we increase the number of

labeled samples for building the model, which confirms good robustness and stability capabilities.

However, similar accuracy ratios and kappa statistics are observed when 100 labeled samples

per class are used for training the classifiers. Even in this situation, when there is enough labeled

sample density to estimate the class boundary, the presented semi-supervised classifier produces

slightly better results than SVMs. It is also worth noting that the contextual classifier Ws alone

produces good results, mainly due to the presence of large homogeneous classes and the high

spatial resolution of the sensor. Note that the extracted contextual features xs
i contain spectral

information to some extent as we computed them per spectral channel, thus they can be regarded

as contextual or local spectral features. However, the accuracy is lower than the rest of the

methods, which demonstrates the relevance of the spectral information for hyperspectral image

classification. With regard to the standard stacked approach, it is worth to note that poor results

are generally obtained, probably due to the curse of dimensionality induced when working with

such limited amount of labeled samples and higher dimension. The best composite kernels in our

experiments have been the summation kernel, the cross-information kernel, and the combination

of cross-information and stacked-based kernels.

Furthermore, it is worth mentioning that all composite classifiers improved the results obtained

by the state-of-the-art approach in hyperspectral image classification, namely the SVM working

with the spectral kernel, in which a SVM works with the spectral signature only. The improve-

ment is especially significant (∼6%) when low number of labeled samples is used. These results

confirm the validity of the presented graph-based method for classification in ill-posed situations

and, at the same time, the usefulness of the composite kernels framework.

Figure 3 shows the classified images with SVM and the graph-based method using different

composite kernels for integrating the spatial and spectral information. Methods were trained

with only 5 randomly selected training samples per class (second column in Table I). The

numerical results shown in Table I are confirmed by inspecting these classification maps, where

better integration of the spatial information is achieved by the graph-based semi-supervised

method, and smoother classification maps are obtained, more noticeable for the minority classes

(‘Grass/Trees’ and ‘Soybeans-notill’) and class borders (see for instance the middle left and the
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upper right parts of the image).

D. Experimental results for the whole image

Results for the whole scene dataset are shown in Table II. In this case, and merely for

illustration purposes, we use five labeled samples per class in both methods. Note that this

constitutes a very difficult problem for pure inductive classifiers as few information is available

about class distributions, and also for semi-supervised classifiers since the wealth of unlabeled

samples could bias the learning process.

Several conclusions can be obtained from Table II. First, it is remarkable that in this problem,

the graph-based method produces better results than the inductive SVM. This fact is appreciated

for all composite kernels used and for all classes. Second, the best results are observed when

using the cross-information kernel in combination with the graph-based method, which drastically

improves the results of the classical SVM working with the spectral signature only (about a

20% in accuracy). This result suggests that when few labeled samples are available, the best

approach must consider unlabeled samples but also, and very important, a sophisticated model

that includes contextual and spectral relationhips. Related with this observation is the fact that

results are not improved by using more complicated composites, such as those combining the

summation or cross-information kernels with the stacked approach. The most plausible reason

for this result is that the stacked approach alone obtains very poor results and when combined

with other (richer) kernels, the overall accuracy becomes affected negatively. Certainly, the use

of a stacked approach in ill-posed situations is a common, but extremely dangerous approach, as

the dimension is two fold while the number of labeled samples remains the same, thus worsening

the Hughes phenomenon. Third, by looking at the table in more detail, it is noteworthy that, in

general, all classifiers obtain higher scores on classes C3, C4, C5, and C9, and that the most

troublesome classes are C1, C6, C7, and C8. This has been also observed in [12], [50], and can

be explained because grass, pasture, trees, and woods are homogeneous areas which are clearly

defined and labeled. Contrarily, corn and soybean classes can be particularly misrecognized

because they have specific sub-classes (no till, min till, clean till). In conclusion, the use of

the graph-based method presented here, in combination with the cross-information or even the

weighted composite kernel, have yielded a very noticeable gain in accuracy over standard SVM.
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Fig. 3. Best thematic maps produced with the SVM-based (left) and the graph-based composite methods (right) with five

training pixels by class for the subset dataset.February 13, 2007 DRAFT
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TABLE II

RESULTS FOR THE 9 CLASSES PROBLEM DATASET FROM THE WHOEL AVIRIS IMAGE. SEVERAL ACCURACY MEASURES ARE

INCLUDED: PRODUCERS AND USERS (IN BRACKETS), OVERALL ACCURACY (OA[%]) AND KAPPA STATISTIC (κ) IN THE

TEST SET FOR DIFFERENT SVM (FIRST ROW) AND GRAPH-BASED (SECOND ROW) CLASSIFIERS TRAINED WITH 5 LABELED

SAMPLES ONLY. THE BEST SCORES FOR EACH CLASS ARE HIGHLIGHTED IN BOLD FACE FONT. WE ALSO INDICATE WITH AN

ASTERISC ‘�’ THOSE COMPOSITE KERNELS IN WHICH NO SIGNIFICANT STATISTICAL DIFFERENCES (AT 95% CONFIDENCE

LEVEL) ARE OBSERVED BETWEEN USING AN SVM OR THE GRAPH METHOD, AS TESTED THROUGH PAIRED WILCOXON

RANK SUM TEST.

Composite kernel C1 C2 C3 C4 C5 C6 C7 C8 C9 OA[%] κ

Spectral 44.68(46.56) 41.19(47.35) 48.51(49.35) 50.96(48.65) 51.10(50.90) 42.81(42.99) 46.46(44.40) 46.97(45.21) 50.70(50.86) 45.79 0.43

45.08(50.77) 44.01(47.50) 54.73(53.01) 51.25(49.39) 59.08(54.79) 50.56(48.27) 47.29(45.97) 54.06(46.84) 53.08(52.85) 48.96 0.46

Spatial� 36.29(37.81) 33.46(38.46) 39.40(40.08) 41.39(39.51) 41.50(41.34) 34.77(34.92) 37.74(36.06) 38.15(36.72) 41.18(41.31) 36.50 0.34

36.62(41.24) 35.75(38.58) 44.46(43.06) 41.63(40.12) 47.99(44.50) 41.07(39.20) 38.41(37.34) 43.91(38.05) 43.11(42.93) 39.03 0.36

Stacked� 37.23(38.80) 34.33(39.46) 40.43(41.12) 42.46(40.54) 42.58(42.42) 35.68(35.83) 38.72(37.00) 39.14(37.67) 42.25(42.38) 36.66 0.34

37.57(42.31) 36.68(39.58) 45.61(44.18) 42.71(41.16) 49.23(45.66) 42.14(40.22) 39.41(38.31) 45.05(39.04) 44.23(44.04) 39.60 0.36

Summation 49.64(51.73) 45.77(52.62) 53.91(54.83) 56.62(54.06) 56.78(56.56) 47.57(47.77) 51.63(49.33) 52.19(50.24) 56.34(56.52) 48.88 0.46

50.10(56.42) 48.91(52.78) 60.82(58.91) 56.95(54.89) 65.65(60.88) 56.19(53.63) 52.55(51.08) 60.08(52.05) 58.98(58.73) 52.27 0.49

Weighted 54.66(56.96) 50.40(57.94) 59.36(60.38) 62.35(59.52) 62.52(62.28) 52.38(52.60) 56.85(54.32) 57.46(55.31) 62.04(62.23) 55.50 0.53

55.16(62.12) 53.85(58.11) 66.97(64.86) 62.71(60.43) 72.29(67.03) 61.87(59.05) 57.87(56.24) 66.15(57.32) 64.95(64.67) 59.35 0.56

Sum+Stacked� 44.73(46.62) 41.25(47.42) 48.58(49.41) 51.02(48.71) 51.17(50.97) 42.87(43.05) 46.52(44.45) 47.03(45.27) 50.77(50.93) 45.47 0.44

45.14(50.84) 44.07(47.56) 54.80(53.08) 51.32(49.46) 59.16(54.86) 50.63(48.33) 47.35(46.03) 54.13(46.91) 53.15(52.92) 48.62 0.47

Cross 60.20(62.73) 55.50(63.80) 65.37(66.49) 68.66(65.55) 68.85(68.58) 57.68(57.92) 62.60(59.82) 63.28(60.91) 68.31(68.53) 61.75 0.60

60.74(68.41) 59.30(63.99) 73.75(71.43) 69.06(66.55) 79.60(73.82) 68.13(65.03) 63.72(61.94) 72.84(63.12) 71.52(71.21) 66.04 0.64

Cross+Stacked� 45.29(47.20) 41.76(48.01) 49.18(50.03) 51.66(49.32) 51.81(51.60) 43.40(43.58) 47.10(45.01) 47.62(45.83) 51.40(51.56) 46.47 0.46

45.71(51.48) 44.62(48.15) 55.49(53.75) 51.96(50.08) 59.90(55.54) 51.26(48.93) 47.95(46.60) 54.81(47.49) 53.81(53.58) 49.69 0.49

E. Analysis of the free parameters

Given the experimental nature of this work, and the number of parameters to be tuned, in this

section we pay special attention to their selection.

1) Free parameters selection procedure: Note that each kernel constitutes, in principle, a

different implicit mapping function. As a result, one has to select a different parameter (σ) for

each kernel included in the composition, and thus an exhaustive search is unfeasible. Therefore,

a non-exhaustive iterative search strategy (τ iterations) is presented here (see Fig. 4). At each

iteration, a sequential search of the minimum 3-fold cross-validation error on each parameter

domain is performed by splitting the range of the parameter in L points. Values of τ = 3 and

L = 20 exhibited good performance in our simulations.
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FREE PARAMETER SELECTION

1) Split the data into training and validation sets.

2) Initialize regularization and kernel parameters (C, α, σi).

3) Repeat τ = 3 times

a) Search in logarithmic scale σi for kernel i.

• Find model weights using training samples.

• Choose σi that minimizes the v-fold cross-validation error.

b) Search in logarithmic scale C (or α) for kernel i.

• Find model weights using training samples.

• Choose C (or α) that minimizes the V-fold cross-validation error.

4) Build the model with current values of the free parameters using the whole data.

5) Test the built model on the whole image.

Fig. 4. Non-exhaustive procedure for free parameters tuning.

2) Searching the optimal α: The only free parameter introduced by the method is α, which

is a critical parameter to be tuned, specially difficult in ill-posed situations such as the ones

tested in this paper. Figure 5 shows the overall accuracy in the test set (whole image) as a

function of (1 − α) for all methods. As can be observed, stability is obtained for low values of

α, suggesting that samples are similar to its neighbors. Also, from this figure, one can appreciate

a clear regularization effect of the composite kernels, in which cross-information and summation

composite kernels yield smoother curves than the rest, specially significant for high values of

1−α (higher accuracy). Finally, the maximum value of the overall accuracy for each method is

achieved for high values of 1−α, specially in the case of the cross-information or the summation

composite kernels. This suggests that not only better results are obtained by these composite

kernels but also more stable, thus avoiding an alleviating intensive search of the α parameter.

3) Analysis of m and p for the Nyström method: In this paper, we have introduced a novel

formulation based on the Nyström method in order to make feasible the work with a high

number of samples. Two free parameters are to be tuned; m is the number of samples used to

compute the approximate decomposition of the kernel matrix, and p is the number of demanded

largest eigenvalues (and corresponding eigenvectors). In this section, we analyze in greater detail

the trade-off between the accuracy of the approximation and the computational cost. For this
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Fig. 5. Overall accuracy (OA[%]) of the method as a function of the α parameter for some composite kernels.

purpose, we focus on the ‘two moons’ toy example for illustration purposes (cf. Section 1). We

randomly generated 100 datasets of 2000 samples, computed the corresponding kernel matrices,

and performed two different eigendecompositions: (1) a fast implementation with the ARPACK

method [48], in which only the largest p eigenvalues and corresponding eigenvectors are returned

(λ(a)
i , v

(a)
i ), and (2) the Nyström method that yields the (λ(n)

i , v
(n)
i ).

Figure 6(a) shows the average root-mean-square-error (RMSE) of the estimated Nyström

eigenvalues, computed as RMSE =
√

1
p

∑p
i=1(λ

(a)
i − λ

(n)
i )2. Results suggest that as the number

of m is increased a lower error is observed, something that is more evident as we demand more

eigenvectors. One can obtain accurate estimations with relatively low number of p and m. In our

case, a good choice was p = 10, m = 80. This conforms a clear trade-off with the computational

burden for the methods (CPU cost), as shown in Fig. 6(b).

V. CONCLUSIONS

This paper proposed a graph-based method for hyperspectral image classification. The method

takes advantage of both the high number of unlabeled samples present in the image, and the

integration of contextual information. The obtained results suggest good robustness and accuracy

to limited sized labeled datasets, as compared to the state-of-the-art SVM.
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Fig. 6. Analysis of the eigendecomposition for the ARPACK (dotted lines) and the Nyström method (solid lines). Average

results for 100 kernel matrices embedding the ‘two moons’ datasets. (a) RMSE and (b) CPU time [s] as a function of m and p.

Next steps will consider the use of other kernel distances, such as the spectral angle mapper

[51], and more sophisticated texture techniques for describing the spatial structure of the classes,

such as Gabor filters, co-occurrence matrices [52], [53] or Markov Random Fields [54], [55].

Also interesting is the analysis of the impact that noise has on the classification performance

and how the composite kernels embedded in the graph deal with it thanks to the regularization

phenomenon observed in this work.
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APPENDIX I

PROPERTIES OF MERCER’S KERNELS

Theorem 1. Mercer’s kernel. Let X be any input space and K: X × X −→ R a symmetric

function, K is a Mercer’s kernel if and only if the kernel matrix formed by restricting K to any

finite subset of X is positive semi-definite, i.e. having no negative eigenvalues.

Properties. Let k1, k2 and k3 be valid Mercer’s kernels over C ×C, with xi ∈ C ⊆ R
n, with A
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being a symmetric positive semi-definite N×N matrix, and α > 0. Then the following functions

are valid kernels: (1) k(xi,xj) = k1(xi,xj) + k2(xi,xj), (2) k(xi,xj) = αk1(xi,xj), and (3)

k(xi,xj) = x�
i Axj. From here, an interesting lemma can be derived:

Lemma 1, Subspaces property [13]: Let K be a Mercer’s kernel defined on X × X then, for

any finite A, B ⊆ X , k4(A, B) =
∑

x∈A

∑
y∈B k(x, y) is a valid Mercer’s kernel.

APPENDIX II

NYSTRÖM METHOD

Given a Gram matrix S = (Sij), and (i1, . . . , im) a set of randomly chosen m indices such

as 1 ≤ i1 < i2 < · · · < im ≤ l, define matrices Sm,m and Sl,m such as Sm,m(j, k) = S(ij , ik)

for 1 ≤ j, k ≤ m and Sl,m(i, k) = S(i, ik) for 1 ≤ i ≤ l and 1 ≤ k ≤ m. If λ
(m)
i and v

(m)
i are

the ith largest eigenvalue and its corresponding eigenvector, exploiting the eigendecomposition

principle, we can approximate S with:

S̃ =

p∑
i=1

λ̃
(l)
i ṽ

(l)
i

(
ṽ

(l)
i

)�
(21)

where

λ̃
(l)
i ≡ (l/m)λ

(m)
i (22)

and

ṽ
(l)
i ≡

√
l/m(1/λ

(m)
i )Sl,mv

(l)
i (23)

which define the l × p matrix Ṽ formed by column vectors ṽ
(l)
i (i = 1, . . . , p), and the p × p

(diagonal) matrix Λ̃ whose (i, i) components are Λ̃
(l)
i .
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