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Abstract Semi-supervised clustering algorithms aim to improve clustering results using
limited supervision. The supervision is generally given as pairwise constraints; such con-
straints are natural for graphs, yet most semi-supervised clustering algorithms are designed
for data represented as vectors. In this paper, we unify vector-based and graph-based ap-
proaches. We first show that a recently-proposed objective function for semi-supervised
clustering based on Hidden Markov Random Fields, with squared Euclidean distance and
a certain class of constraint penalty functions, can be expressed as a special case of the
weighted kernel k-means objective (Dhillon et al., in Proceedings of the 10th International
Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical con-
nection between weighted kernel k-means and several graph clustering objectives enables
us to perform semi-supervised clustering of data given either as vectors or as a graph. For
graph data, this result leads to algorithms for optimizing several new semi-supervised graph
clustering objectives. For vector data, the kernel approach also enables us to find clusters
with non-linear boundaries in the input data space. Furthermore, we show that recent work
on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence, 2003) may be viewed as a special case of our formulation.
We empirically show that our algorithm is able to outperform current state-of-the-art semi-
supervised algorithms on both vector-based and graph-based data sets.
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1 Introduction

Semi-supervised clustering algorithms have recently received a significant amount of atten-
tion in the machine learning and data mining communities. In traditional clustering algo-
rithms, only unlabeled data is used to generate clusterings; in semi-supervised clustering,
the goal is to incorporate prior information about clusters into the algorithm in order to
improve the clustering results. A related but different problem is semi-supervised classi-
fication (Chapelle et al. 2006), which considers how unlabeled data can be used to im-
prove the performance of classification on labeled data. A number of recent papers have
explored the problem of semi-supervised clustering. Research on semi-supervised cluster-
ing has considered supervision in the form of both labeled points (Demiriz et al. 1999;
Sinkkonen and Kaski 2002; Basu et al. 2002) or constraints (Wagstaff et al. 2001;
Klein et al. 2002; Xing et al. 2003; Bar-Hillel et al. 2003; Bie et al. 2003; Kamvar et al. 2003;
Bilenko et al. 2004; Basu et al. 2004a, 2004b; Chang and Yeung 2004; Davidson and Ravi
2005a, 2005b; Law et al. 2005; Lu and Leen 2005; Lange et al. 2005).

As is common for most semi-supervised clustering algorithms, we assume in this paper
that we have pairwise must-link constraints (pairs of points that should belong in the same
cluster) and cannot-link constraints (pairs of points that should belong in different clus-
ters) provided with the input. Pairwise constraints occur naturally in many domains, e.g.,
the Database of Interacting Proteins (DIP) data set in biology contains information about
proteins co-occurring in processes, which can be viewed as must-link constraints during
gene clustering. Constraints of this form are also natural in the context of the graph cluster-
ing problem (a.k.a. graph partitioning or vertex partitioning), where edges in the graph en-
code pairwise relationships. Different application areas of semi-supervised clustering with
constraints have been studied recently, including (1) image segmentation for object iden-
tification in Aibo robots (Davidson and Ravi 2005a), where cluster-level constraints are
used to improve the pixel clustering; (2) object recognition in video sequences (Yan et al.
2004), where must-link constraints are used to group pixels belonging to the same object and
cannot-link constraints are used to separate different objects; (3) clustering for lane finding
from GPS traces (Wagstaff et al. 2001), where constraints are used to encode lane-contiguity
and max-separation criteria; and (4) speaker identification and categorization (Bar-Hillel et
al. 2003), where constraints are used to encode whether two speakers are similar or not.

Recently, a probabilistic framework for semi-supervised clustering with pairwise con-
straints was proposed based on Hidden Markov Random Fields (Basu et al. 2004b). The
HMRF framework proposed a general semi-supervised clustering objective based on maxi-
mizing the joint likelihood of data and constraints in the HMRF model, as well as a k-means-
like iterative algorithm for optimizing the objective. However, HMRF-KMEANS can cluster
input data only in the form of vectors. While much of the work on semi-supervised clus-
tering has focused on vector-based inputs, very little work has gone into the study of semi-
supervised graph clustering algorithms. In this paper, we unify vector-based and graph-based
semi-supervised clustering using a kernel approach; in particular, our main contributions in
this paper are as follows:

• We show that the HMRF semi-supervised clustering objective with squared Euclidean dis-
tance and cluster-size weighted penalties is a special case of the weighted kernel k-means
objective function (Dhillon et al. 2004a). Given input data in the form of vectors and pair-
wise constraints, we show how to construct a kernel such that running kernel k-means
results in a monotonic decrease of this semi-supervised clustering objective function at
every iteration of the kernel k-means algorithm.
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• The weighted kernel k-means algorithm can be used to monotonically optimize a wide
class of graph clustering objectives such as minimizing the normalized cut (Dhillon et
al. 2007). As a result, our approach can be generalized to optimize a number of differ-
ent semi-supervised graph clustering objectives for which constraint-based supervision is
more natural, including semi-supervised normalized cut, semi-supervised ratio cut, and
semi-supervised ratio association objective functions. This equivalence gives us a new
semi-supervised clustering algorithm SS-KERNEL-KMEANS that can cluster data given
either as vectors or a graph, along with supervision in the form of constraints.

• For vector-based data we have the ability to apply a kernel function, which allows SS-
KERNEL-KMEANS to discover clusters with non-linear boundaries in the input space.

• We show how a previously proposed algorithm SPECTRAL-LEARNING (Kamvar et al.
2003) can be viewed as a special case of our framework. The SPECTRAL-LEARNING al-
gorithm can be viewed as optimizing an underlying semi-supervised clustering objective;
specifically, it optimizes a relaxation of semi-supervised ratio cut.

• We empirically demonstrate that SS-KERNEL-KMEANS outperforms HMRF-KMEANS

(Basu et al. 2004b) and SPECTRAL-LEARNING on several vector-based and graph-based
data sets, including handwritten digits data, protein data, a gene network, and a data set
of images.

We note that an earlier version of this paper appears as Kulis et al. (2005). This extended
version further develops the mathematical connection between kernel k-means and graph
clustering for semi-supervised clustering, and presents several new experimental results.

2 Background and related work

In this section, we provide the necessary background for our proposed kernel-based semi-
supervised clustering algorithm SS-KERNEL-KMEANS, and also describe related research.

2.1 Graph clustering and kernel k-means

In graph clustering, the input is assumed to be a graph G = (V, E ,A), where V is the set
of vertices, E is the set of edges, and A is the edge adjacency matrix. Aij represents the
edge-weight between vertices i and j .

Let links(A, B) = ∑
i∈A,j∈B Aij , where A and B are subsets of vertices. Furthermore,

let degree(A) = links(A, V). We seek to find a k-way disjoint partitioning1 {Vc}k
c=1 of V to

minimize a particular objective. Table 1 gives a list of some common graph clustering ob-
jectives. Ratio association tries to maximize the affinity/similarity of points within a cluster,

Table 1 Examples of graph
clustering objectives Name Objective function

Ratio association maximize
V1, . . . , Vk

∑k
c=1

links(Vc,Vc)|Vc |

Ratio cut minimize
V1, . . . , Vk

∑k
c=1

links(Vc,V \Vc)|Vc |

Normalized cut minimize
V1, . . . , Vk

∑k
c=1

links(Vc,V \Vc)

degree(Vc)

1k disjoint data subsets, whose union is the whole data.
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normalizing each cluster’s contribution to the objective by the size of the cluster in order to
balance the size of the clusters. Ratio cut (Chan et al. 1994), on the other hand, tries to min-
imize the total cost of the edges crossing the cluster boundaries—this is again normalized
by the size of the clusters, to encourage balanced cluster sizes. The normalized cut crite-
rion (Shi and Malik 2000) uses the same objective as ratio cut but normalizes by the total
degree of each cluster (the sum of the degrees of all nodes in the cluster)—this encourages
the clusters to have similar degrees.

To make the connection between graph clustering and vector-based clustering, we in-
troduce the weighted kernel k-means objective function (Dhillon et al. 2004a). Given a set
of data vectors X = {xi}n

i=1 with xi ∈ R
n, the goal of weighted kernel k-means is to find a

k-way disjoint partitioning {πc}k
c=1 of the data (where πc represents the cth cluster) such that

the following objective is minimized:

J ({πc}k
c=1) =

k∑

c=1

∑

xi∈πc

αi‖φ(xi ) − mc‖2 where mc =
∑

xi∈πc
αiφ(xi )

∑
xi∈πc

αi

.

Each vector xi has a pre-specified non-negative weight αi associated with it, and φ is a
function mapping vectors in X to a (generally) higher-dimensional space. If all weights are
set to one and φ is the identity function, this reduces to standard k-means.

If we expand the distance computation ‖φ(xi ) − mc‖2 in the weighted kernel k-means
objective function, we obtain the following:

φ(xi ) · φ(xi ) −
2
∑

xj ∈πc
αjφ(xi ) · φ(xj )

∑
xj ∈πc

αj

+
∑

xj ,xl∈πc
αjαlφ(xj ) · φ(xl )

(
∑

xj ∈πc
αj )2

.

Notice that all computation involving data points is in the form of inner products. We can
therefore use the kernel trick: if we can compute the inner product Kij = φ(xi )

T φ(xj ) be-
tween φ(xi ) and φ(xj ) efficiently, we are able to compute distances between points in this
mapped space without explicitly knowing the mapping of xi and xj to φ(xi ) and φ(xj ). We
assume that the input is the kernel matrix K of inner products; it can easily be shown that
any positive semidefinite matrix K can be thought of as a kernel matrix (Cristianini and
Shawe-Taylor 2000).

Using the kernel matrix K , the distance computation d(xi ,mc) = ‖φ(xi ) − mc‖2 is
rewritten as:

Kii −
2
∑

xj ∈πc
αjKij

∑
xj ∈πc

αj

+
∑

xj ,xl∈πc
αjαlKjl

(
∑

xj ∈πc
αj )2

. (1)

As a result, we may derive an algorithm analogous to k-means to monotonically decrease
the weighted kernel k-means objective function without knowledge of the map φ. Algo-
rithm 1 shows the pseudo-code for the basic weighted kernel k-means algorithm, which is
identical to standard k-means except for the fact that distances are computed using the kernel
matrix. Note that as opposed to regular k-means, this algorithm does not update the cluster
centroids mc explicitly.

Using the weighted form of the kernel k-means objective function is important because it
is equivalent to a weighted graph-cut objective function, of which many existing graph clus-
tering objectives are special cases (Dhillon et al. 2007). For example, the normalized cut
criterion for graph clustering can be written exactly as the weighted kernel k-means objec-
tive function, where the kernel matrix K and weights α are derived from the input adjacency
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ALGORITHM 1: Basic weighted kernel k-means.

KERNEL-KMEANS(K , k, tmax , α, {π(0)
c }k

c=1)
Input: K : kernel matrix, k: number of clusters, tmax : optional maximum number
of iterations, α: weight vector, {π(0)

c }k
c=1: optional initial clusters

Output: {πc}k
c=1: final partitioning of the points

1. Initialize the k clusters from {π(0)
c }k

c=1, if provided as input, else randomly.
2. Set t = 0.
3. For each point xi and every cluster c, compute d(xi ,mc) as in (1).
4. Find c∗(xi ) = argminc d(xi ,mc), resolving ties arbitrarily.
5. Compute the updated clusters as

π(t+1)
c = {xi : c∗(xi ) = c}.

6. If not converged or tmax > t , set t = t + 1 and go to Step 3; Otherwise, stop and
output final clusters {π(t+1)

c }k
c=1.

Table 2 Popular graph
clustering objectives and
corresponding weights and
kernels given affinity matrix A

Objective Node weights Kernel

Ratio association 1 for all nodes K = σI + A

Ratio cut 1 for all nodes K = σI − L

Normalized cut Degree of the node K = σD−1 + D−1AD−1

matrix A. Other objective functions for graph clustering can similarly be expressed as spe-
cial cases of the weighted kernel k-means objective functions. This allows us the flexibility
of having as input to the algorithm either a graph or data vectors that have been mapped to
a kernel space.

Table 2 shows how to set the weights and kernel for three popular graph clustering objec-
tives to be equivalent to the weighted kernel k-means objective function. The node weights
in this table are weights on the nodes in the graph that correspond to the weights of the
data vectors in k-means, signifying the importance of the data vectors (i.e., the degree of
their contribution to the clustering objective function). Here, D is a diagonal matrix whose
entries correspond to the sum of the rows of the input affinity matrix A (which is the input
similarity matrix or kernel matrix), L is the Laplacian matrix (D − A), and σ is a positive
real number chosen to be sufficiently large such that K is positive definite. Using simple
eigenvalue bounds, one can appropriately compute σ without resorting to expensive eigen-
vector computation. We note that, in practice, one can typically set σ = 0 and still observe
monotonic convergence despite the matrix K not being positive definite. See Dhillon et al.
(2004b) for a more complete discussion on the choice and computation of σ .

While not equivalent, the kernels formed over these graphs bear resemblance to other
graph kernels, such as those discussed by Smola and Kondor (2003); for example, the nor-
malized cut criterion can be interpreted in terms of random walks. See Meila and Shi (2001)
for a detailed analysis of this connection.

2.2 Semi-supervised clustering

Often when clustering, we have some background knowledge about the cluster structure.
As mentioned previously, in this work we assume that this knowledge comes in the form
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of pairwise must-link or cannot-link constraints. Such constraints are natural for graphs, as
pairwise relationships are explicitly captured via edges in a graph. However, most semi-
supervised clustering with pairwise constraints assumes that the input is in the form of data
vectors (Wagstaff et al. 2001; Sinkkonen and Kaski 2002; Klein et al. 2002; Xing et al. 2003;
Bar-Hillel et al. 2003; Basu et al. 2004b; Bilenko et al. 2004). In contrast, recent work
by Bansal et al. (2002), Charikar et al. (2003), Demaine and Immorlica (2003) in semi-
supervised clustering considers inputs only in the form of constraints, and does not consider
an underlying distance function between the points.

2.2.1 HMRF model

We now briefly describe a recently proposed objective function for semi-supervised cluster-
ing of data vectors, which we will use in our formulation. Basu et al. (2004b) proposed a
framework for semi-supervised clustering based on Hidden Markov Random Fields (HM-
RFs). Choosing squared Euclidean distance as the cluster distortion measure and the gener-
alized Potts potential (Kleinberg and Tardos 1999) as the constraint violation potential, the
semi-supervised clustering objective can be expressed as:

J ({πc}k
c=1) =

k∑

c=1

∑

xi∈πc

‖xi − mc‖2 +
∑

xi ,xj ∈ M
s.t. li �= lj

wij +
∑

xi ,xj ∈ C
s.t. li = lj

wij , (2)

where M is the set of must-link constraints, C is the set of cannot-link constraints, wij is
the penalty cost for violating a constraint between xi and xj , and li refers to the cluster label
of xi . The first term in this objective function is the standard k-means objective function,
the second term is a penalty function for violating must-link constraints, and the third term
is a penalty function for violating cannot-link constraints. The algorithm HMRF-KMEANS

developed for minimizing this objective (Basu et al. 2004b) uses an iterative relocation ap-
proach like k-means. One of the drawbacks to HMRF-KMEANS is that, in the E-step of
the algorithm, given the current cluster centroids, the order in which points are greedily re-
assigned to clusters determines the new clusters; that is, different orderings produce different
clusterings. It is computationally intractable to solve for the optimal ordering. Several recent
extensions of the HMRF-KMEANS model address this order-dependence issue and propose
approximations that must be employed in the E-step, e.g., loopy belief propagation (Bilenko
and Basu 2004; Law et al. 2005), Gibbs sampling (Lu and Leen 2005), and mean field ap-
proximation (Lange et al. 2005). As we will see in Sect. 3, our proposed algorithm naturally
avoids such an order-dependence problem.

2.2.2 Spectral learning

Recently, spectral methods have become increasingly popular for clustering. These algo-
rithms cluster data given in the form of a graph. One spectral approach to semi-supervised
clustering is the SPECTRAL-LEARNING algorithm of Kamvar et al. (2003):

• Form the affinity matrix A: the entries of A are assumed to be normalized between 0 and
1, where entry Aij is the similarity between points i and j .

• For all points i, j that have a must-link constraint, set Aij = 1 (maximum affinity); for all
points i, j that have a cannot-link constraint, set Aij = 0 (minimum affinity).

• Re-normalize the matrix using additive normalization (Kamvar et al. 2003): N =
1

dmax
(A + dmaxI − D). N now represents a normalized Markov transition process.
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• Take the top k eigenvectors of A to be the columns of the matrix V , and cluster the
rows of V . If N has k piecewise constant eigenvectors, then N has k strong cliques—so
clustering the eigenvectors effectively tries to find these k strongly connected components
or clusters.

In the above algorithm, dmax is the maximum row-sum of A and D is the degree matrix.
Notice that the additive normalization is equal to I − 1

dmax
L, which is equivalent to dmaxI −L

up to a scalar factor, where L = D − A is the graph Laplacian of A. Furthermore, the top
eigenvectors of dmaxI − L are the same as the bottom eigenvectors of L. In the presentation
of Kamvar et al. (2003), the SPECTRAL-LEARNING algorithm does not have an explicit
underlying objective function. However in Sect. 4.3, we will show that this algorithm can
be viewed as a special case of our unified semi-supervised clustering framework. Note that
the SPECTRAL-LEARNING algorithm needs O(kn) memory to store the k eigenvectors for
n points, which can be a substantial overhead for large graphs.

Another recent paper (Yu and Shi 2004) considered a semi-supervised formulation of
the normalized cut objective and had a spectral algorithm associated with it. The main dif-
ferences between this work and our algorithm are: (1) only must-link constraints are con-
sidered in their formulation, and there is no way to specify penalty weights for constraint
violations: SS-KERNEL-KMEANS considers both must-link and cannot-link constraints and
allows constraint violation with an associated penalty, thereby making it more robust to
constraint noise; (2) their formulation solves an expensive constrained eigen-decomposition
problem while SS-KERNEL-KMEANS uses an efficient iterative algorithm, making it easily
scalable to large data sets.

3 Kernel-based semi-supervised clustering for HMRF-KMEANS

This section demonstrates the connection between the semi-supervised clustering objective
for the HMRF-KMEANS algorithm and the kernel k-means objective function. This leads
to a kernel-based algorithm for optimizing the HMRF-KMEANS objective function with
squared Euclidean distance and penalties weighted by the cluster size.

3.1 Constructing the kernel

Recall the objective for semi-supervised clustering on a HMRF from (2), using squared
Euclidean distance as the clustering distortion measure and the generalized Potts potential
for constraint penalty. Let us alter this penalty function: instead of adding a penalty term
for a must-link violation if the two points are in different clusters, we give a reward for
constraint satisfaction if the points are in the same cluster, by subtracting the corresponding
penalty term from the objective. If the sum of weights for all must-link constraints is a
constant, then this is equivalent to the original objective function up to an additive constant.
Therefore minimizing J ({πc}k

c=1) is equivalent to minimizing:

k∑

c=1

∑

xi∈πc

‖xi − mc‖2 −
∑

xi ,xj ∈ M
li = lj

wij +
∑

xi ,xj ∈ C
li = lj

wij .

We also introduce the notion of cluster-size weighted penalties: if there are two points that
have a cannot-link constraint in the same cluster, we will penalize higher if the correspond-
ing cluster is smaller. Similarly, we will reward higher if two points in a small cluster have
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a must-link constraint. Thus, we divide each wij by the size of the cluster that the points are
in. This gives us:

J ({πc}k
c=1) =

k∑

c=1

∑

xi∈πc

‖xi − mc‖2 −
∑

xi ,xj ∈ M
li = lj

wij

|πli |
+

∑

xi ,xj ∈ C
li = lj

wij

|πli |
. (3)

Using the following simple result (see Duda and Hart 1973):

k∑

c=1

∑

xi∈πc

2‖xi − mc‖2 =
k∑

c=1

∑

xi ,xj ∈πc

‖xi − xj‖2

|πc| ,

and re-writing the sums, minimizing the objective in (3) becomes equivalent to minimizing:

J ({πc}k
c=1) =

k∑

c=1

∑

xi ,xj ∈πc

‖xi − xj‖2

|πc| −
∑

xi ,xj ∈ M
li = lj

2wij

|πli |
+

∑

xi ,xj ∈ C
li = lj

2wij

|πli |
. (4)

Rewriting the sums yields the following:

J ({πc}k
c=1) =

k∑

c=1

∑

xi ,xj ∈πc

‖xi − xj‖2

|πc| −
k∑

c=1

∑

xi ,xj ∈ πc

(xi ,xj ) ∈ M

2wij

|πc|

+
k∑

c=1

∑

xi ,xj ∈ πc

(xi ,xj ) ∈ C

2wij

|πc| .

Let E be the matrix of pairwise squared Euclidean distances among the data points, such
that Eij = ‖xi − xj‖2 and W be the constraint matrix such that Wij is −wij for a cannot
link, wij for a must link, and 0 otherwise. Furthermore, we introduce an indicator vector zc

for cluster c. This vector is of length n and zc(i) = 0 if xi is not in cluster c, and 1 otherwise.
We can now write the above objective in the following way:

J ({πc}k
c=1) =

k∑

c=1

zT
c (E − 2W)zc

zT
c zc

, (5)

where zT
c zc is the size of cluster πc , and zT

c (E − 2W)zc gives the sum of Eij − 2Wij over all
xi and xj in πc .

Now define a matrix Z̃ such that Z̃·c , the column c of Z̃, is equal to zc/(zT
c zc)

1/2. Z̃

is an orthonormal matrix (Z̃T Z̃ = Ik), and the objective that we want to minimize can be
re-written as:

k∑

c=1

Z̃T
·c(E − 2W)Z̃·c = trace(Z̃T (E − 2W)Z̃). (6)

It has been shown that the kernel k-means objective function can also be expressed as a trace
optimization problem (Dhillon et al. 2004a). In particular, the kernel k-means objective is
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ALGORITHM 2: Semi-supervised kernel k-means for HMRF-KMEANS.

KERNEL-HMRF-KMEANS(S, k, W , tmax )
Input: S: input similarity matrix, k: number of clusters, W : constraint penalty
matrix, tmax : optional maximum number of iterations
Output: {πc}k

c=1: final partitioning of the points
1. Form the matrix K = S + W .
2. Diagonal-shift K by adding σI to guarantee positive definiteness.
3. Get initial clusters {π(0)

c }k
c=1 using constraints encoded in W and farthest-first

initialization (see Algorithm 3).
4. Return {πc}k

c=1 = KERNEL-KMEANS(K , k, tmax , 1, {π(0)
c }k

c=1), where 1 is the
vector of all ones.

ALGORITHM 3: Farthest-first initialization.
FARTHESTFIRSTINIT(A, k, W )
Input: A: input affinity matrix, k: number of clusters, W : constraint penalty matrix
Output: {π(0)

c }k
c=1: initial partitioning of the points

1. M = transitive closure of must-link constraints in W .
2. CM = connected components in M .
3. CC = components from CM disconnected across cannot-link boundaries.
4. Set π

(0)

1 = largest connected component from CC; set i = 1.
5. If k > i, go to Step 6. Else, go to Step 8.
6. Find component CCj that is farthest from the current set of selected components
{π(0)

c }i
c=1.

7. Set π
(0)

i+1 = CCj ; set i = i + 1. Go to Step 5.
8. Return {π(0)

c }k
c=1.

written as a maximization of trace(Y T KY ), with Y analogous to Z̃ (an orthonormal indicator
matrix). The only difference between these objectives is that our semi-supervised objective
is expressed as a trace minimization, while kernel k-means is expressed as a trace maximiza-
tion. To make our problem into a maximization problem, we note that for squared Euclidean
distance, ‖xi − xj‖2 = xT

i xi + xT
j xj − 2xT

i xj . Let S be the similarity matrix (Sij = xT
i xj )

and let S̃ be the matrix such that S̃ij = Sii + Sjj . Then, E = S̃ − 2S.
By replacing E in the trace minimization, the problem is equivalent to the minimiza-

tion of trace(Z̃T (S̃ − 2S − 2W)Z̃). We calculate trace(Z̃T S̃Z̃) as 2 · trace(S), which
is a constant and can be ignored in the optimization. This leads to a maximization of
trace(Z̃T (S + W)Z̃). If we define a matrix K = S + W , our problem is expressed as a
maximization of trace(Z̃T KZ̃), and is mathematically equivalent to unweighted kernel k-
means.

Note that this matrix K may not be positive semidefinite, a requirement for kernel k-
means to converge. One can avoid this problem by performing diagonal shifting (Dhillon et
al. 2007) for kernelizing K , as shown in Step 2 of Algorithm 2. This is done by adding σI

to K . Note that

trace(Z̃T (σI + K)Z̃) = σ · trace(Z̃T Z̃) + trace(Z̃T KZ̃)

= σk + trace(Z̃T KZ̃).



10 Mach Learn (2009) 74: 1–22

A constant is added to the objective function, so the globally optimal solution is the same
for both the shifted and unshifted matrices. Thus, shifting the diagonal allows one to con-
struct a positive semi-definite matrix K (since adding σI to K increases the eigenvalues
by σ ), which guarantees monotonic convergence of the kernel k-means algorithm to a lo-
cal optimum, while maintaining the globally optimal solution. As mentioned in Sect. 2.1,
one can run kernel k-means directly on K—even though there is no theoretical guarantee of
convergence in this case, the algorithm generally monotonically converges in practice.

3.2 The algorithm

Summarizing the result from the previous section, we have shown an equivalence be-
tween unweighted kernel k-means and HMRF-KMEANS with squared Euclidean distance
and cluster-size weighted penalties. We can now discuss a kernel-based algorithm for this
HMRF-KMEANS objective by constructing the appropriate kernel matrix K (see Algo-
rithm 2). This algorithm simply constructs the kernel (as derived in the previous section),
performs proper cluster initialization and runs kernel k-means.

A key advantage to this approach is that the algorithm assumes a similarity matrix as
input. As given in the derivation, the similarity matrix is the matrix of vector inner products
(i.e. the Gram matrix), but one can easily generalize this by applying a kernel function on
the vector data to form the similarity matrix. Thus, unlike previous approaches to optimizing
the HMRF-KMEANS objective function, our approach is easily generalized to handle non-
linear cluster boundaries—for example, by applying a Gaussian kernel when forming the
similarity matrix.

A step that we have not yet discussed is the initialization of the clusters prior to running
kernel k-means. In standard k-means, many different initialization schemes are possible for
generating starting clusters. However, in our case, the constraint information gives us im-
portant clues about the cluster structure, and this information may be incorporated into the
initialization step of the algorithm. For cluster initialization, we follow the approach of Basu
et al. (2004b). We first take the transitive closure of the must-link constraints, assuming that
all constraints are consistent. This gives us a set of connected components of must-link con-
straints.

We then infer additional cannot-link constraints in the following way: if there exists a
cannot-link constraint between two connected components, we add cannot-link constraints
between all pairs of points a and b, where a belongs to the first connected component and
b belongs to the second connected component.

After this step, we generate initial clusters by using a farthest-first algorithm. We com-
pute the connected components and then choose k of these as the k initial clusters. The
farthest first algorithm selects the largest connected component, then iteratively chooses the
cluster farthest away from the currently chosen cluster, where the distance between clusters
is measured by the total pairwise distance between the points in these clusters. Once these
k initial clusters are chosen, we initialize all points by placing them in their closest cluster.
Note that all the distance computations in this procedure can be performed efficiently in
kernel space.

4 Semi-supervised graph clustering

As discussed earlier, there is a direct mathematical connection between the weighted kernel
k-means objective function and a wide class of graph clustering objectives. So far we have
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considered the vector case while deriving the connection between HMRF-KMEANS and ker-
nel k-means. In this section, we generalize this result for the case of several semi-supervised
graph clustering objective functions.

4.1 Objective functions

The HMRF-KMEANS objective function was motivated as a three-term objective function:
one term for the clustering objective, one term for enforcing must-link constraints, and one
term for enforcing cannot-link constraints. In the same vein, we now consider three semi-
supervised graph clustering objectives, where the clustering objectives are graph-based in-
stead of vector-based.

Semi-supervised normalized cut A semi-supervised version of the normalized graph cut
objective seeks to minimize:

k∑

c=1

links(Vc, V \ Vc)

degree(Vc)
−

∑

xi ,xj ∈ M
li = lj

wij

deg(Vli )
+

∑

xi ,xj ∈ C
li = lj

wij

deg(Vli )
· (7)

Notice that, instead of cluster-size weighted penalties, we use degree-weighted penalties.

Semi-supervised ratio cut Similarly, a semi-supervised ratio cut objective can be written
as the minimization of:

k∑

c=1

links(Vc, V \ Vc)

|Vc| −
∑

xi ,xj ∈ M
li = lj

wij

|Vli |
+

∑

xi ,xj ∈ C
li = lj

wij

|Vli |
· (8)

Semi-supervised ratio association Finally, the semi-supervised ratio association objective
can be written as the maximization of:

k∑

c=1

links(Vc, Vc)

|Vc| +
∑

xi ,xj ∈ M
li = lj

wij

|Vli |
−

∑

xi ,xj ∈ C
li = lj

wij

|Vli |
· (9)

Note that the second and third terms in this objective function have opposite signs to the
corresponding terms in the semi-supervised ratio cut and semi-supervised normalized cut
objectives; this is because we aim to maximize the association.

4.2 A kernel-based algorithm for semi-supervised graph clustering

We now provide a general algorithm for semi-supervised graph clustering that can optimize
each of the three objectives given above. To do that, we must show that each of these objec-
tives can be written as a special case of the weighted kernel k-means objective function.

First, consider minimizing semi-supervised normalized cut. Based on the analysis of Yu
and Shi (2003), the first term in the semi-supervised normalized cut objective function
can be expressed as k − trace(Ỹ T D−1/2AD−1/2Ỹ ), where Ỹ is an orthonormal cluster in-
dicator matrix, D is the diagonal matrix of node degrees, and A is the graph adjacency
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Table 3 Semi-supervised graph clustering objectives and corresponding weights and kernels given affinity
matrix A and constraint matrix W

Objective Node weights Kernel

SS ratio association 1 for all nodes K = σI + A + W

SS ratio cut 1 for all nodes K = σI − L + W

SS normalized cut Degree of the node K = σD−1 + D−1(A + W)D−1

ALGORITHM 4: Semi-supervised graph clustering algorithm.

SS-KERNEL-KMEANS(A, obj, k, W , tmax )
Input: A: input affinity matrix, obj : clustering objective, k: number of clusters,
W : constraint penalty matrix, tmax : optional maximum number of iterations
Output: {πc}k

c=1: final partitioning of the points
1. Generate a vector α of node weights based on obj using Table 3.
2. If obj is SS-ratio-cut, reset A as A − D.
3. Form K = σ · diag(α)−1 + diag(α)−1(A + W)diag(α)−1.
4. Get initial clusters {π(0)

c }k
c=1 using the constraints encoded in W and weighted

farthest-first initialization (see Algorithm 3).
5. Return {πc}k

c=1 = KERNEL-KMEANS(K , k, tmax , α, {π(0)
c }k

c=1).

matrix. The second and third term of the objective function may be expressed concisely
as −trace(Ỹ T D−1/2WD−1/2Ỹ ), using similar analysis as in the derivations of (5) and (6).
Combining these two terms, we get that the semi-supervised normalized cut objective is
equivalent to minimizing k − trace(Ỹ T D−1/2(A+W)D−1/2Ỹ ) or, equivalently, maximizing
trace(Ỹ T D−1/2(A + W)D−1/2Ỹ ). A generalization of the analysis of Dhillon et al. (2007)
allows us to express this trace maximization exactly as weighted kernel k-means, as fol-
lows. We set A′ = A + W as in the unweighted case, and run weighted kernel k-means on
σD−1 + D−1A′D−1 with weights equal to the degree of the node. Running weighted kernel
k-means with this kernel and weights will then monotonically decrease the objective in (7)
for a graph with adjacency matrix A.

Analogous results may be obtained for semi-supervised ratio cut and semi-supervised
ratio association, using similar analysis. For semi-supervised ratio cut, we run weighted
kernel k-means on σI − L + W (L is the Laplacian of A) with all weights equal to one. In
ratio association, we run weighted kernel k-means on σI + A + W with all weights equal
to one. In all cases, the addition of supervision to weighted kernel k-means simply requires
adding a constraint matrix W appropriately to the kernel matrix.

Table 3 summarizes the kernel and weight construction for each of these semi-supervised
clustering objective functions to be equivalent to the weighted kernel k-means objective, and
Algorithm 4 describes the general kernel-based semi-supervised clustering algorithm. Note
that further generalizations are possible; one could have a general, weighted semi-supervised
graph clustering objective that is normalized by the sum of arbitrary weights instead of the
degrees of a cluster or the cluster sizes. In this case α would be an arbitrary weight vector.

Also note that the case of semi-supervised ratio association is identical to the earlier
algorithm for HMRF-KMEANS, with a graph adjacency matrix used as the input similarity
matrix.
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4.3 Connections to spectral learning

We can view SPECTRAL-LEARNING (Kamvar et al. 2003), described in Sect. 2.2.2, in our
framework as follows: for a must-link constraint, if Aij is the similarity between xi and
xj , we set Wij = 1 − Aij (and hence the corresponding value in A + W is 1). Similarly,
for cannot-links, we set Wij = −Aij (and hence the corresponding value in A + W is 0).
With this particular choice of constraint weights, the matrix A+W is identical to the matrix
from SPECTRAL-LEARNING before additive normalization. This leaves just the additive
normalization step, which is the same normalization required for semi-supervised ratio cut
(up to a diagonal shift, which does not change the globally optimal solution).

A well-known relaxation to our trace maximization problem, trace(Y T KY ), is achieved
by taking the top k eigenvectors of K . The matrix formed by these eigenvectors is the opti-
mal Y matrix, under the relaxation that Y is an arbitrary orthonormal matrix. Such a relax-
ation leads to the SPECTRAL-LEARNING algorithm that was detailed in Sect. 2.2.2.

Thus, the SPECTRAL-LEARNING algorithm may be viewed as solving a relaxed semi-
supervised ratio cut objective. Moreover, our earlier analysis shows that the fast iterative
kernel k-means algorithm can be used to optimize this objective, thus removing any require-
ment for the expensive operation of eigen-decomposition (for large data sets). Alternatively,
this analysis suggests other spectral algorithms based on semi-supervised normalized cut or
semi-supervised ratio association.

One could analogously hope to employ kernel k-means to optimize the semi-supervised
formulation of Yu and Shi (2004). However, because of the additional constraint introduced
for must-link constraints into the formulation, it is not possible to apply kernel k-means
directly. However, recent results have shown how to express kernel k-means as a continuous
optimization problem (Kulis et al. 2007). The extra must-link constraints may be added
naturally in this setting, and the algorithm of Kulis et al. (2007) may then be applied to
optimize the semi-supervised clustering objective introduced by Yu and Shi. As a result, no
eigenvector decomposition would be required. We leave this as a potential area of future
work.

5 Experimental results

In this section, we present experimental results on both vector data and graph data. First,
we compare SS-KERNEL-KMEANS to HMRF-KMEANS on vector data, which optimizes
an HMRF-based objective function using squared Euclidean distance as the distortion mea-
sure. We present results on a synthetic data set, handwritten character recognition data sets,
and a protein data set, demonstrating that SS-KERNEL-KMEANS has better performance on
these data sets with a proper choice of the kernel. We then present results of SS-KERNEL-
KMEANS on graph-based data—a gene network and an image data set, both of which can-
not be clustered with HMRF-KMEANS. In this case, we compare results to SPECTRAL-
LEARNING.

5.1 Data sets

We performed experiments on the following vector-based datasets:

1. TwoCircles: A synthetic data set comprising of 200 data points in 2 dimensions—
100 points in an inner circle are labeled to be in one class, and 100 data points in a
surrounding outer circle are labeled to be in another class, as shown in Fig. 1.
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Fig. 1 TwoCircles data set
with correct clustering

2. Digits: A subset of 10% of the data points chosen randomly from three classes {3,8,9}
of the Pendigits handwritten digit recognition data set from the UCI Machine Learning
Repository2—these three classes were chosen since distinguishing between sample hand-
written digits from these classes visually is a difficult task. Each image is a black-and-
white rectangular pixel display of a handwritten digit (either 3, 8 or 9). Using features like
statistical moments and edge counts, each image was transformed to a 16-dimensional
vector. This dataset has 317 points, each in a 16 dimensional-space. Note that this data set
has been used for testing other semi-supervised clustering algorithms, such as Bilenko
et al. (2004), and that a subset of all the digits are used to make the clustering problem
more challenging.

3. Letters: A subset of 10% of the data points chosen randomly from three classes
{I, J,L} of the Letters handwritten character recognition data set from the UCI Machine
Learning Repository. This particular subset of 227 points in a 16 dimensional-space was
chosen since it is a difficult visual problem to discriminate between these 3 types of
handwritten characters.

4. Protein: This dataset contains 20-dimensional feature vectors representing 116 pro-
teins from 6 functional classes (Xing et al. 2003).

We also performed experiments on the following graph-based datasets:

1. GeneNetwork: An interaction network between 216 yeast genes, where each gene is
labeled with one of 3 KEGG (Ogata et al. 1999) functional pathway labels. This data is
a subgraph of a high-quality probabilistic functional network of yeast genes (Lee et al.
2004): each edge weight in this network represents a probability of linkage between two
genes, estimated by integrating diverse functional genomic data sources. The genes do
not have an explicit vector representation in this data set.

2. Caltech Image Data: We experimented with the Caltech-4 data set which contains
1155 automobile, 800 airplane, 435 face, and 798 motorcycle images (http://www.robots.
ox.ac.uk/~vgg/data3.html). The pyramid match kernel (Grauman and Darrell 2005),
a kernel function between images, was used to generate a kernel matrix on a subset

2http://www.ics.uci.edu/˜mlearn/MLRepository.html.

http://www.robots.ox.ac.uk/~vgg/data3.html
http://www.robots.ox.ac.uk/~vgg/data3.html
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Fig. 2 Example images from the Caltech-4 data set

of 300 images in this data set. This kernel function takes as input sets of image features
from two images (the sets may have different cardinality), and does an appropriate par-
tial matching between these sets. As with the gene network, there is no explicit vector
representation of this data set—the kernel function defines a matrix of kernel function
evaluations, which is then viewed as a dense graph. Figure 2 contains examples from this
data set.

Two different kernel matrices were constructed from this data set, generated using
different methods. The first matrix, Caltech1, was generated using vocabulary-guided
bins with SIFT descriptors from Harris and MSER detectors. The second, Caltech2,
used uniform grid cells and SIFT descriptors extracted from a uniformly spaced grid on
the image (Grauman and Darrell 2005).

5.2 Methodology

Figures 3–9 show learning curves with 2-fold cross validation. These plots show the im-
provement in clustering quality on the test set with increasing amount of pairwise constraints
provided as supervision from the training set. These constraints are obtained by randomly
selecting pairs of points from the training set, and creating must-link or cannot-link con-
straints depending on whether the underlying classes of the two points are the same or
different. Each point on the learning curve is an average of results over 20 runs. We generate
constraints only using the training set, cluster the whole data without the labels, and evaluate
the cluster quality only on the test set (Basu et al. 2004b). We set each penalty weight wij

to be equal to n/(kC), where n is the number of data points, k is the number of clusters,
and C is the total number of constraints – this was done to make the constraint penalty term
approximately of the same scale as the distance penalty term between data points and the
cluster centroids.

To evaluate clusters, we use Normalized Mutual Information (NMI): it is a standard tech-
nique for determining the quality of clusters, by measuring the amount of statistical informa-
tion shared by the random variables representing the cluster distribution and the underlying
class distribution of the data points (Strehl et al. 2000). If C is the random variable denoting
the cluster assignments of the points, and K is the random variable denoting the underlying
class labels on the points then the NMI measure is defined as:

NMI = I (C;K)

(H(C) + H(K))/2
, (10)

where I (X;Y ) = H(X)−H(X|Y ) is the mutual information between the random variables
X and Y , H(X) is the Shannon entropy of X, and H(X|Y ) is the conditional entropy of X

given Y (Cover and Thomas 1991). The normalization by the average entropy of C and K

makes the value of NMI stay between 0 and 1.
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Fig. 3 Results on
TwoCircles data set

5.3 Results and discussion

Figure 3 shows the results on the TwoCircle data set. This synthetic dataset is used to
demonstrate the effectiveness of SS-KERNEL-KMEANS with the exponential kernel: this
data set is not linearly separable in the original input space, but an exponential kernel
K(x,y) = exp(−‖x−y‖2/2ρ2) is able to linearly separate the 2 classes in the mapped space.
Parameters such as ρ are typically chosen via cross-validation (for this simple example, an
arbitrary value was chosen). SS-KERNEL-KMEANS with the exponential kernel (SS-Kernel-
KMeans-Exp) gives improved results with increasing number of pairwise constraints, until it
reaches a NMI score of 1.0 on the test set. On the other hand, as expected, HMRF-KMEANS

and SS-KERNEL-KMEANS with a linear kernel (SS-Kernel-KMeans-Linear) are not able to
get any improvement in performance on this dataset (NMI close to 0), since both algorithms
split the data linearly into two clusters and are completely unable to re-construct the non-
linear class structure, even with as many as 200 constraints. For this figure and the other
figures, the NMI score with 0 constraints corresponds to the performance of the unsuper-
vised clustering algorithm.

Figure 4 shows results on the Digits dataset. SS-KERNEL-KMEANS gives the best
performance when used with an exponential kernel, outperforming both HMRF-KMEANS

with squared Euclidean distance and SS-KERNEL-KMEANS with a linear kernel. Note that
the SS-KERNEL-KMEANS learning curves display a characteristic “dip”, where clustering
accuracy decreases as a few initial constraints are provided, but after a certain point starts
to increase and eventually rises above the initial point on the learning curve. We conjecture
that this phenomenon is due to the fact that the kernel parameters learned using too few
constraints are unreliable, and with higher number of constraints the parameter estimation
becomes more accurate.

Since the GeneNetwork dataset is not vector-based, it cannot be clustered using
HMRF-KMEANS. Three graph clustering objectives were used while clustering this dataset
using SS-KERNEL-KMEANS — normalized cut (SS-Kernel-KMeans-NormCut), ratio cut
(SS-Kernel-KMeans-RatioCut) and ratio association (SS-Kernel-KMeans-RatioAssoc). The
fourth plot in the figure (Spectral-Learning) corresponds to the SPECTRAL-LEARNING al-
gorithm (Kamvar et al. 2003). As shown in Fig. 5, all these algorithms have an improvement
in performance with increasing supervision, but SS-KERNEL-KMEANS with normalized cut
has the best performance for this dataset.
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Fig. 4 Results on Digits data
set

Fig. 5 Results on
GeneNetwork data set

The benefit of using SS-KERNEL-KMEANS is clearly demonstrated in this experiment.
A closer look showed that the GeneNetwork data set has 3 clusters of different sizes
and different edge densities, which explains why performing degree normalization in the
normalized cut objective gives good results. While SPECTRAL-LEARNING can only use the
ratio cut objective, SS-KERNEL-KMEANS can work with other graph clustering objectives
like normalized cut, therefore making it useful in domains where graph clustering objectives
other than ratio cut are more effective.

Figures 6 and 7 show the results on the Letters and Protein data respectively.
As expected, the NMI improves with increasing number of constraints, demonstrating
that semi-supervised kernel KMeans performs better than the unsupervised version for
these datasets too. The ratio association using an exponential kernel (SS-Kernel-Ratio-
Association) outperforms normalized cut and ratio cut on these two datasets. For a detailed
analysis of why different graph clustering objectives perform well on different datasets,
please see Dhillon et al. (2007). Note that on these datasets, HMRF-KMEANS outperforms
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Fig. 6 Results on Letters
data set

Fig. 7 Results on Protein
data set

or matches the performance of our methods, implying that it is necessary to try different
kernels for these particular datasets.

Figures 8 and 9 show the results on the Caltech1 and Caltech2 kernel matrices.
Again, we see an increase in the NMI as the number of constraints increases. Moreover, we
see that semi-supervised ratio cut performs much worse than the other methods; this may be
due to the positive-definite shifting issues inherent in using kernel k-means for ratio cut.

For comparison, we also ran SPECTRAL-LEARNING on the Caltech image data sets.
Surprisingly, we found that Spectral Learning demonstrates extremely poor clustering gen-
eralization accuracy on this data. The NMI of the clustering results on all the data points
improves with increasing supervision, but the NMI on the test data points (which is what is
shown in the plots) actually decreases as the number of constraints increases. For example,
on Caltech1, the NMI goes from 0.11 with 50 constraints to 0.01 with 500 constraints.
Similar performance is achieved on the Caltech2 data. Thus, spectral learning appears
to be overfitting on this data. We hypothesize that the penalty weights inherent in spectral
learning lead to perturbation in the kernel matrix, which ultimately degrades generalization
performance. In our kernel-based algorithms, the penalties decrease as the number of con-
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Fig. 8 Results on Caltech1
data set

Fig. 9 Results on Caltech2
data set

straints increase, which empirically appears to be an effective strategy in the presence of
many constraints.

Regarding run-time complexity, the different variants of the semi-supervised clustering
algorithms took substantially less time than the SPECTRAL-LEARNING algorithm. This
is because SPECTRAL-LEARNING requires expensive eigenvalue calculations, while the
SS-KERNEL-KMEANS algorithms are pseudo-linear in the size of the input (i.e., linear in
the size of the graph × the number of iterations until convergence). In particular, on the
GeneNetwork data set, the SS-KERNEL-KMEANS algorithm required 0.307 seconds on
average to converge, while SPECTRAL-LEARNING cost 4.787 seconds on average (15.6
times longer). Given that this is a small data set, even more substantial gains will occur for
larger data sets. For example, in Dhillon et al. (2007), it was shown that an implementa-
tion of kernel k-means is hundreds to thousands of times faster than spectral methods for
unsupervised large-scale graph clustering.
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6 Conclusions and future work

In this paper, a new algorithm SS-KERNEL-KMEANS was developed to optimize a semi-
supervised clustering objective that can cluster both vector-based and graph-based data.
The analysis for this algorithm used kernel methods: by constructing an appropriate ker-
nel, we were able to prove an equivalence between a special case of the HMRF-based
semi-supervised clustering objective and the kernel k-means objective function. The result-
ing algorithm provided a number of advantages over previously studied methods for semi-
supervised clustering: (1) our analysis allows us to (locally) optimize the semi-supervised
objective for both vector-based and graph-based inputs; (2) for vector-based inputs, the in-
puts can be mapped to a higher-dimensional kernel space to get non-linear cluster bound-
aries; (3) we can easily generalize the result to handle a number of semi-supervised graph
clustering objectives; (4) the analysis allows us to link prior work on spectral learning to our
semi-supervised clustering framework.

There are a number of interesting potential avenues for future research in kernel methods
for semi-supervised clustering. Along with learning the kernel matrix before the clustering,
one could additionally incorporate kernel matrix learning into the clustering iteration, as was
done in Basu et al. (2004b). One way to incorporate learning into the clustering step is to de-
vise a way to learn the weights in weighted kernel k-means, by using the constraints. Another
possibility would be to explore the generalization of techniques in this paper beyond squared
Euclidean distance, for unifying semi-supervised graph clustering with kernel-based clus-
tering on an HMRF using other popular clustering distortion measures, e.g., KL-divergence,
or cosine distance (Basu et al. 2004b). We would also like to extend the work of Basu et
al. (2004a) to explore techniques of active learning and model selection in the context of
semi-supervised kernel clustering. To speed up the algorithm further, the multi-level meth-
ods of Dhillon et al. (2007) can be employed.
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