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Abstract

Large scale image search has recently attracted consid-

erable attention due to easy availability of huge amounts of

data. Several hashing methods have been proposed to al-

low approximate but highly efficient search. Unsupervised

hashing methods show good performance with metric dis-

tances but, in image search, semantic similarity is usually

given in terms of labeled pairs of images. There exist super-

vised hashing methods that can handle such semantic sim-

ilarity but they are prone to overfitting when labeled data

is small or noisy. Moreover, these methods are usually very

slow to train. In this work, we propose a semi-supervised

hashing method that is formulated as minimizing empiri-

cal error on the labeled data while maximizing variance

and independence of hash bits over the labeled and unla-

beled data. The proposed method can handle both metric as

well as semantic similarity. The experimental results on two

large datasets (up to one million samples) demonstrate its

superior performance over state-of-the-art supervised and

unsupervised methods.

1. Introduction

Due to explosive growth of visual content on the Web,

such as personal photographs and videos, there is an emerg-

ing need of searching visually relevant images and videos

from very large databases. Besides the widely-used text-

based commercial search engines, content based image re-

trieval (CBIR) has attracted substantial attention over the

past decade. Instead of taking query words as input, CBIR

techniques directly take an image q as query and try to

return its nearest neighbors from a given database of im-

ages X using a pre-specified similarity metric M. Since

databases containing even billions of samples are not that

uncommon, such large-scale search demands highly effi-

cient and accurate retrieval methods.

Exhaustively comparing the query q with each sample

in the database X is infeasible because linear complexity

O(|X |) is not scalable in practical settings. For example,

the photo sharing website Flickr has over 4 billion images.

Another visual content sharing website YouTube receives

more than 20 hours of uploaded videos per minute. Be-

sides the scalability issue, most large scale CBIR applica-

tions also suffer from the curse of dimensionality since vi-

sual descriptors usually have hundreds or even thousands of

dimensions. Therefore, beyond the infeasibility of exhaus-

tive search, storage of the original data also becomes a big

problem. Instead of doing exact nearest neighbor search

through linear scan, a fast and accurate indexing method

with sublinear (o(|X |)), logarithmic (O(log |X |)) or even
constant (O(1)) query time is desired for realizing large

scale CBIR applications. Over the past decade, several ap-

proximate nearest neighbor (ANN) search techniques have

been developed for large scale applications. Although there

exist many tree-based methods e.g., [3, 1, 11, 14, 10], for

applications with memory constraints, hashing based ANN

techniques have attracted more attention. They have con-

stant query time and also substantially reduced storage as

they usually store only compact binary codes for each point

in X .

Hashing methods can be divided into two main cate-

gories: unsupervised methods and supervised methods. Un-

supervised methods use just the unlabeled data X to gener-

ate binary codes for the given points. Locality Sensitive

Hashing (LSH) [4] is arguably one of the most popular un-

supervised hashing methods in computer vision. Its kernel-

ized version has also been developed in [9]. Another ef-

fective method called Spectral Hashing (SH) was proposed

recently by Weiss et al. [17]. Since unsupervised methods

do not require any labeled data, their parameters are easy to

learn given a pre-specified distance metric. However, in vi-

sion problems, sometimes similarity (or distance) between

data points is not defined with a simple metric. Metric sim-

ilarity of image descriptors may not preserve semantic sim-

ilarity. For example, Figure 2 shows erroneous retrieval re-

sults by LSH and SH without considering the image label

information. Ideally, one would like to provide pairs of im-

ages that one believes contain ‘similar’ or ‘dissimilar’ im-

ages. From such pairwise labeled data, one would like the



Method Projection Dependency Learning Paradigm

LSH [4] data-independent unsupervised

SH [17] data-dependent unsupervised

RBMs [6][16] – unsupervised/supervised

SSH data-dependent semi-supervised

Table 1. The conceptual comparison of the proposed SSH method

with LSH, SH and RBMs.

hashing mechanism to automatically generate codes that re-

spect this semantic similarity.

Many supervised hashing methods have been developed

to handle this issue. Modifying unsupervised LSH, in [7],

authors have suggested merging LSH with a learned Ma-

halanobis metric to reflect semantic indexing. A Boosting

Similarity Sensitive Coding (BoostSSC) technique was pro-

posed by [13] which tries to learn a series of weighted hash-

ing functions from labeled data. A deep neural network

stacked with Restricted Boltzmann Machines (RBMs)1 was

recently applied to learn compact binary codes from high

dimensional inputs [6, 16], which has shown superior per-

formance over BoostSSC. One of the problems with all of

these supervised methods is that they are much slower in

comparison to the unsupervised methods. Another prob-

lem stems from limited or noisy training data. The perfor-

mance of these methods degrades with less training data due

to overfitting.

In this paper, we propose a Semi-Supervised Hashing

(SSH) technique that can leverage semantic similarity using

labeled data while remaining robust to overfitting. SSH is

also much faster than existing supervised hashing methods

and can be easily scaled to large datasets. The SSH problem

is cast as a data-dependent projection learning problem. We

provide a rigorous formulation in which a supervised term

tries to minimize the empirical error on the labeled data

while an unsupervised term provides effective regulariza-

tion by maximizing desirable properties like variance and

independence of individual bits. We show that the resulting

formulation can be easily relaxed and solved as a standard

eigenvalue problem. Furthermore, by relaxing the orthogo-

nality constraints, one can get even better hash codes at no

added computational cost. Table 1 summarizes a taxonomy

of popular methods and places our method in context.

The remainder of this paper is organized as follows. In

Section 2, we briefly introduce the related work on repre-

sentative hashing methods. Section 3 presents our proposed

approach, i.e. Semi-Supervised Hashing (SSH). Section 4

provides extensive experimental validation on real image

datasets. The conclusions and future work are given in Sec-

tion 5.

1RBMs use both labeled and unlabeled data but unlabeled data is used

in a pre-training phase, which provides a good initialization for the super-

vised back-propagation phase. Hence RBM is a supervised method.

2. Background and Related Work

Given a set containing n points, X = {xi}, i = 1, · · · , n
and xi ∈ R

D, the objective in nearest neighbor search is to

find a set of nearest neighbors R ⊂ X for a given query

q. For large-scale applications, to avoid excessive compu-

tational and memory costs, one would like to instead do an

Approximate Nearest Neighbor (ANN) search with sublin-

ear query complexity [12]. For example, the ǫ-approximate
nearest neighbor returns sample r to query q satisfying

d(r, q) ≤ (1+ ǫ) ·d(r∗, q), where r∗ is the nearest neighbor
point of q and ǫ > 0.

In the next section, in addition to the popularly used

LSH, we briefly review the state-of-the-art methods from

supervised as well as unsupervised domains. Specifically,

we discuss SH and RBM techniques along with their pros

and cons for the application of image retrieval.

2.1. Locality Sensitive Hashing (LSH)

A key ingredient of Locality Sensitive Hashing is map-

ping similar samples to the same bucket with high probabil-

ity. In other words, the property of locality in the original

space will be largely preserved in the hamming space. More

precisely, the hashing functions h(·) from LSH family sat-

isfy the following elegant locality preserving property:

P {h(x) = h(y)} = sim(x,y) (1)

where the similarity measure can be directly linked to

the distance function d, for example, sim(x,y) =

exp{−‖x−y‖2

σ2 }. A typical category of LSH functions con-

sists of random projections and thresholds as:

h(x) = sign(w⊤x+ b) (2)

where w is a random hyperplane and b is a random inter-

cept. Clearly, the random vector w is data-independent,

which is usually constructed by sampling each component

of w randomly from a p-stable distribution e.g., standard

Gaussian [2]. Although there exists an asymptotic theoret-

ical guarantee for random projection based LSH, it is not

very efficient in practice since it requires multiple tables

with long codes [4]. For example, for a normalized data

set (‖x‖ = 1) with zero mean, the approximately balanced

partition is obtained with b = 0. Constructing a total of l
K-bit length hash tables H(x) = [h1(x), · · · , hK(x)] pro-
vides the following collision probability:

P {H(x) = H(y)} ∝ l ·

[

1−
cos−1x⊤y

π

]K

(3)

For a large scale application, the value ofK should be con-

siderably large to reduce the size of each hash bucket (i.e.,

the number of samples falling in the same bucket). However



a large value of K decreases the collision probability be-

tween similar samples. In order to overcome this drawback,

multiple hash tables have to be constructed. Obviously, this

is inefficient due to extra storage cost and larger query time.

2.2. Spectral Hashing (SH)

Due to the limitation of random projection based LSH

approach, machine learning techniques have been applied

to improve the efficiency of hashing. Particularly, Spectral

Hashing (SH) was recently proposed to design compact bi-

nary codes for ANN search. Besides the common property

of maintaining sample similarity in the reduced hamming

space, SH requires the codes to be balanced and uncorre-

lated. Strictly speaking, SH codes H(x) = {hk(x)}, k =
1, · · · ,K satisfy the following criteria [17]:

min
∑

ij

sim(xi,xj)‖H(xi)−H(xj)‖
2 (4)

subject to: hk(xi) ∈ {−1, 1}
∑

i

hk(xi) = 0, k = 1, · · · ,K

∑

i

hk(xi)hl(xi) = 0, for k 6= l

The direct solution for the above optimization is non-trivial

since even a single bit partition (K=1) is a balanced graph

partition problem, which is NP hard. The combination of

K-bit balanced partition will be even harder because of the

pairwise independence constraints. After relaxing the con-

straints, the above optimization was solved using spectral

graph analysis. Especially, with the assumption of uniform

data distribution, the spectral solution can be efficiently

generalized to out of samples extension with a close form

solution [17].

The final SH algorithm consists of three key steps: 1) ex-

traction of maximum variance directions through Principal

Component Analysis (PCA) on the data; 2) direction selec-

tion, which prefers to partition projected dimensions with

large range and small spatial frequency; 3) partition of pro-

jected data by a sinusoidal function with previously com-

puted angular frequency. SH has been shown to be very ef-

fective in encoding large-scale, low-dimensional data since

the important PCA directions are selected multiple times to

create binary bits. However, for high dimensional problems

(D >> K) where many directions contain enough vari-

ance, usually each PCA direction is picked only once. This

is because the top few projections have similar range and

thus, a low spatial frequency (k = 1) is preferred. In this

case, SH approximately replicates a PCA projection fol-

lowed by a mean partition. In SH, the projection directions

are data dependent but learned in an unsupervised manner.

Moreover, the assumption of uniform data distribution is

usually not true for real-world data.

2.3. Restricted Boltzmann Machines (RBMs)

Learning deep belief networks via stacking Restricted

Boltzmann Machines (RBMs) to obtain compact binary

codes was recently proposed in [6]. This type of trained

networks are capable of capturing higher order correlations

between different layers of the network. Since the net-

work structure gradually reduces the number of units in

each layer, the high-dimensional input can be projected to a

much more compact binary vector space.

A practical implementation of RBMs has two criti-

cal stages: unsupervised pre-training and supervised fine-

tuning. The greedy pre-training phase is progressively exe-

cuted layer by layer from input to output. After achieving

convergence of the parameters of a layer via contrastive di-

vergence, the derived activation probabilities are fixed and

treated as input to drive the training of the next layer. Dur-

ing the fine-tuning stage, the labeled data is used to help re-

fine the trained network through back-propagation. Specifi-

cally, a cost function is first defined to estimate the number

of correctly classified points in the training set [5]. Then,

the network weights are refined to maximize this objective

function through gradient descent. RBM-based binary en-

coding involves estimating a large number of weights. For

example, the RBMs structure used in [16] has five layers of

size 512−512−256−32 nodes requiring a total of 663552
weights to learn. This not only involves an extremely costly

training procedure, but also demands sufficient training data

for fine-tuning.

3. Semi-Supervised Hashing

In this section, we present our hashing method, i.e. Semi-

Supervised Hashing (SSH). In the setting of SSH, one is

given a set of n points, X = {xi}, i = 1 . . . n, xi ∈ R
D,

in which a fraction of pairs are associated with two cat-

egories of label information, M and C. Specifically, a

pair (xi,xj) ∈ M is denoted as a neighbor-pair in which

xi and xj are either neighbors in a metric space or share

common class labels. Similarly, (xi,xj) ∈ C is called

a nonneighbor-pair if two samples are far away in metric

space or have different class labels. Let us denote the data

matrix by X ∈ R
D×n where each column is a data point.

Also, suppose there are L points, L < n, which are as-

sociated with at least one of the categories M or C. Let

us denote the matrix formed by these L columns of X as

Xl ∈ R
D×L. The goal of SSH is to learn hash func-

tions that minimize the error on the labeled training data

Xl, while maximally satisfying the desirable properties of

hashing e.g., independence of bits and balanced partition-

ing. We start the discussion of our learning paradigm with

the basic formulation of SSH.



3.1. Formulation

Hashing aims to map the data X ∈ R
D×n to a Ham-

ming space to obtain its compact representation. Suppose

we want to learnK hash functions leading to aK-bit Ham-

ming embedding of X given by Y ∈ B
K×n. Without loss

of generality, letX be normalized to have zero mean. In this

work, we use linear projection coupled with mean thresh-

olding as a hash function. In other words, given a vector

wk ∈ R
D, the kth hash function is defined as,

hk(xi) = sgn(w⊤
k xi + bk) (5)

where bk is the mean of the projected data, i.e., bk =
− 1

n

∑n
j=1 w

⊤
k xj = 0 since X is zero-mean. One can get

the corresponding binary bit as,

yki =
1

2
(1 + hk(xi)) =

1

2
(1 + sgn(w⊤

k xi)) (6)

Let H = [h1, . . . , hK ] be a sequence of K hash functions

and W = [w1, . . . ,wK ] ∈ R
D×K . We want to learn a W

that gives the same bits for (xi,xj) ∈ M and different bits

for (xi,xj) ∈ C. We define the following objective function

measuring the empirical accuracy on the labeled data for a

family of hash functions H:

J(H)=
∑

k







∑

(xi,xj)∈M

hk(xi)hk(xj)−
∑

(xi,xj)∈C

hk(xi)hk(xj)







(7)

One can express the above objective function in a compact

matrix form by first defining a matrix S ∈ R
L×L incorpo-

rating the pairwise labeled information from Xl as:

Sij =







1 : (xi,xj) ∈ M
−1 : (xi,xj) ∈ C
0 : otherwise.

(8)

Also, suppose H(Xl) ∈ R
K×L maps the points in Xl to

their K-bit hash codes. Then, the objective function J(H)
can be represented as,

J(H) =
1

2
tr

{

H(Xl) S H(Xl)
⊤
}

(9)

⇒J(W)=
1

2
tr
{

sgn(W⊤Xl) S sgn(W⊤Xl)
⊤
}

where sgn(W⊤Xl) is the matrix of signs of individual el-

ements. Since the above function measures only the empir-

ical accuracy, it is prone to overfitting especially when the

size of labeled set is small compared to the entire dataset

(i.e. L ≪ n). To get better generalization ability, one needs
to add “regularization” by incorporating conditions that lead

to desirable properties of hash codes, independent of the

performance on the labeled training data. These additional

regularization terms use all the data X including the unla-

beled ones leading to a semi-supervised learning paradigm.

Motivated by spectral hashing [17], we would like to

generate hash codes in which bits are independent and each

bit maximizes the information by generating a balanced par-

tition of the data. Further, we relax the stronger condition of

independence to pairwise decorrelation of bits. The balanc-

ing property specifies that each hash function hk(·) should
partition the entire dataset X into two sets of equal size.

In summary, we intend to learn optimal hash functions H∗

by maximizing the modified objective function with con-

straints as:

H∗ = argmax
H

J(H) (10)

subject to

n
∑

i=1

hk(xi) = 0, k = 1, . . . ,K

1

n
H(X)H(X)⊤ = I

The above problem is difficult to solve even without the

constraints since the objective function J(H) itself is non-
differentiable. Furthermore, the balancing contraint makes

the problem NP hard [17]. In the next section, we propose

to relax the objective function as well as the constraints to

obtain an approximate solution.

3.2. Relaxing Objective Function

In the relaxed version of the objective function, we re-

place the sign of projection with its signed magnitude in

(7). This relaxation is quite intuitive in the sense that it not

only desires similar points to have the same sign but also

large projection magnitudes, meanwhile projecting dissim-

ilar points not only with different signs but also as far as

possible. With this relaxation, the new objective can be di-

rectly written as a function of W as,

J(W)=
∑

k







∑

(xi,xj)∈M

w⊤
k xix

⊤
j wk −

∑

(xi,xj)∈C

w⊤
k xix

⊤
j wk







(11)

Without loss of generality, we also assume ‖wk‖ = 1, ∀k.
The above function can be expressed in a matrix form as,

J(W) =
1

2
tr

{

W⊤XlSX
⊤
l W

}

. (12)

We now address how to relax the balancing constraint
∑

i hk(xi) = 0 by first showing that this constraint is equiv-
alent to maximizing the variance for the kth bit.

Proposition 3.1 (maximum variance condition). A hash

function with maximum variance on data X must satisfy the

balancing constraint, and vice-versa.
∑

i

h(xi) = 0 ⇐⇒ max var[h(x)]



Proof. In the set X, suppose m points are assigned a hash

value −1, and the remaining n − m points are associated

with a hash value 1. Then, the expected hash value is,

µ = E[h(x)] =
1

n

∑

i

h(xi) =
n− 2m

n

and the variance is:

var[h(x)] = E[(h(x)− µ)2]

= (1−
n− 2m

n
)2
(n−m)

n
+ (−1−

n− 2m

n
)2
m

n

=
4

n2
(mn−m2)

Clearly, var[h(x)] is concave with respect tom and its max-

imum is reached at m = n/2, i.e. µ = 0. Also since

var[h(x)] has a unique maximum, it is easy to see that the

balanced partitioning also maximizes the variance of hash-

ing function.

Since we use the sign of projections to generate bits, it

is hard to ensure perfectly balanced partitions. Hence, we

replace the hard balancing constraint by a “soft” constraint

maximizing the variance of the bits as:

J(W)=
1

2
tr
[

W⊤XlSX
⊤
l W

]

+
η

2

∑

k

E[‖hk(x)−µk‖
2]. (13)

Here η is a positive scalar, which relatively weights the vari-
ance based regularization term. Furthermore, to avoid deal-

ing with non-differentiable sgn(·) function, we maximize

directly the variance of the projected data2. With this as-

sumption, one can rewrite (13) as:

J(W) =
1

2
tr

[

W⊤XlSX
⊤
l W

]

+
η

2

∑

k

E[‖w⊤
k x‖

2], (14)

since E[w⊤
k x] = 0. One can further express the variance

term in a matrix form as,

∑

k

E[‖w⊤
k x‖

2] =
∑

k

E[w⊤
k xx

⊤wk]

=
1

n
tr

[

W⊤XX⊤W
]

(15)

Replacing (15) in (14), and absorbing n in η, one can

rewrite the overall objective function as:

J(W) =
1

2
tr

[

W⊤XlSX
⊤
l W

]

+
η

2
tr

[

W⊤XX⊤W
]

=
1

2
tr{W⊤MW} (16)

2If data is unit-norm, one can show that the variance of the projected

data provides a lower bound on the maximum variance of bits.

whereM = XlSX
⊤
l +ηXX⊤. Next, we relax the pairwise

decorrelation of bits by imposing orthogonality constraints

on the projection directions, which coupled with unit-norm

assumption leads to new constraints W⊤W = I. Now, the

learning of optimal projectionsW becomes a typical eigen-

problem, which can be easily solved by doing an eigenvalue

decomposition on matrixM:

max
W

J(W) =

K
∑

k=1

λk

W∗ = [e1 · · · eK ] (17)

where λ1 > λ2 > · · · > λK are the top eigenvalues of M

and ek, k = 1, · · · ,K are the corresponding eigenvectors.

To summarize, the objective function in (16) consists of

two components. The first (supervised) term is the empir-

ical accuracy of the learned hash functions on the pairwise

labeled data, while the second (unsupervised) term is a reg-

ularizer that prefers those directions that maximize the vari-

ance of the projections subject to orthogonality constraints.

Mathematically it is very similar to finding maximum vari-

ance direction using PCA except that the original covari-

ance matrix gets “adjusted” by another matrix arising from

the labeled data. Hence, our framework provides an intu-

itive and easy way to learn hashing in a semi-supervised

paradigm.

3.3. Relaxing Orthogonality Constraints

In the previous section, we imposed orthogonality con-

straints on the projection directions in order to approxi-

mately decorrelate the hash bits. However, these orthogo-

nality constraints sometimes lead to a practical problem. It

is well known that for most real-world datasets, most of the

variance is contained in top few projections. The orthogo-

nality constraints force one to progressively pick those di-

rections that have very low variance, substantially reducing

the quality of lower bits, and hence the whole embedding.

We empirically verify this behavior in Section 4. Depend-

ing on the application, it may make sense to pick a direction

that is not necessarily orthogonal to the previous directions

but has higher variance as well as low empirical error on the

labeled set. On the other hand, one doesn’t want to pick a

previous direction again since the fixed thresholds will gen-

erate the same hash codes in our case. Hence, instead of

imposing hard orthogonality constraints, we convert them

into a penalty term added to the objective function. This

allows the learning algorithm to pick suitable directions by

balancing various terms. With this, one can write the new

objective function as,

J(W) =
1

2
tr{W⊤MW} −

ρ

2
‖W⊤W − I‖2F (18)

=
1

2
tr{W⊤MW}−

ρ

2
tr

[

(W⊤W−I)⊤(W⊤W−I)
]

.
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Figure 1. Experimental results on MNIST digit dataset. a): The precision of the first 500 retrieved neighbors; b): The precision recall curve

using 48-bit codes; c) Training cost (in seconds) using different number of bits.

The new formulation has certain tolerance to non-

orthogonality, which is modulated by a positive coefficient

ρ. However, the above objective function is non-convex and
there is no easy way to find the global solution unlike the

previous case. To maximize with respect toW,

∂J(W)

∂W
= 0 ⇒ (WW⊤ − I−

1

ρ
M)W = 0 (19)

Though the above equation admits an unlimited number

of solutions since W has a non-empty nullspace, we can

obtain a solution by ensuring,

WW⊤W =

(

I+
1

ρ
M

)

W. (20)

One can get a simple solution for the above condition if

I + 1
ρM is positive definite. From (16), M is symmetric

but not necessarily positive definite. Let Q = I + 1
ρM.

Clearly, Q is also symmetric. In the following proposition

we show that Q is positive definite if the coefficient ρ is

chosen appropriately.

Proposition 3.2. The matrix Q is positive definite if ρ >
max(0,−λ̄min), where λ̄min is the smallest eigenvalue of

M.

Proof. By definition in (18), ρ > 0. Since M is symmet-

ric, it can be represented as M = Udiag(λ1, · · · , λD)U⊤

where all λi’s are real. Let λ̄min = min(λ1, · · · , λD).
Then Q can be written as

Q = I+Udiag

(

λ1

ρ
, · · · ,

λD

ρ

)

U⊤

= Udiag

(

λ1

ρ
+ 1, · · · ,

λD

ρ
+ 1

)

U⊤

Clearly, Q will have all eigenvalues positive if λmin

ρ + 1 >
0 ⇒ ρ > −λmin.

When Q is positive definite, one can easily verify that

the following solution of W satisfies Eq. (20):

W∗
nonorth = UkΣ

1/2
k (21)

where Uk are the top k eigenvectors of M and Σk is a di-

agonal matrix consisting of entries (1 + λi/ρ) where λi is

one of the top k eigenvalues. It is interesting to note that the

solution for non-orthogonal W is also obtained by direct

eigendecomposition ofM similar to the orthogonal version

in (17) resulting in negligible computational overhead.

4. Experiments

We evaluated the two versions of our method, SSH and

SSHnonorth (with orthogonality constraint relaxed) on the

MNIST digit dataset and a Gist dataset, and compared with

three state-of-the-art binary coding methods, LSH, SH, and

RBMs.

4.1. MNIST Digits

The MNIST dataset consists of a total of 70000 hand-

written digit samples, each of size 28 × 28 pixels 3. Each

sample is associated with a label from 0 to 9. Since this

dataset is fully annotated, the ground truth semantic neigh-

bors can be easily obtained based on the image labels. The

entire dataset is partitioned into two parts: a training set

with 69000 samples and a test set with 1000 samples. The

training set is used for learning hashing functions and con-

structing the hashed look-up tables. For RBMs and SSH, we

additionally randomly sample 2000 points from the training

set and assign semantic nearest neighbor information (i.e.

construct the pairwise label matrix S for SSH) based on

the image labels. The gray-scale intensity values of im-

ages are directly used as features resulting in a 784-dim
vector space. For LSH, we randomly select projections

from a Gaussian distribution with zero-mean and identity

covariance to construct the hash tables. For RBMs, we

applied the similar neural network structure and parame-

ters as discussed in [16]. The search results are inspected

based on whether the returned images and the query share

the same semantic labels. Hamming ranking based eval-

uation is used for quantitative performance measurement.

The Hamming distance from the query and each sample in

training dataset is computed and sorted. Then the preci-

3http://yann.lecun.com/exdb/mnist/



Figure 2. The 49 nearest neighbors of two example digits returned by different methods on the MNIST dataset. The left most digit with

red bounding box is the query sample. From top to bottom (separated by color lines), the nearest neighbor samples are retrieved by LSH,

SH, RBMs, and two variants of our method (SSH, and SSHnonorth) using 48-bit codes.

sion on the top 500 samples is recorded. We vary the num-

ber of bits from 12 to 48 and show the performance curve

in Figure 1 (a). From this figure, orthogonal SSH has su-

perior performance for small number of bits (i.e. 8, 12,
and 16 bits) because there is enough variance in top few

orthogonal directions computed in SSH. But when using

large number of bits, SSHnonorth performs the best. In ad-

dition, the precision-recall curve for 48-bit codes is shown
in Figure 1 (b), which clearly shows that non-orthogonality

helps SSHnonorth achieve the best performance over the en-

tire Hamming ranking space when using a large number of

bits. Figure 1 (c) provides the training time for different

techniques. RBMs are the most expensive to train, needing

roughly three orders of magnitude more time than the other

methods. LSH needs negligible training time since the pro-

jections are randomly generated, instead of being learned.

In terms of the query time, RBMs also need about 10 times

more time to compute the binary codes through the trained

neural network. SH method requires a little more time than

the other three methods due to the calculation of the sinu-

soidal function. The code generation time can be ranked as:

RBMs ≫ SH > LSH ≃ SSH = SSHnonorth. To visual-

ize the quality of nearest neighbors, we show top neighbors

retrieved by different techniques on two example digits in

Figure 2. SSHnonorth tends to return more semantically

consistent neighbors when using 48− bit hashing codes.

4.2. One Million Gist Data

Next we apply our method on a large-scale application

using a gist feature set sampled from the tiny images dataset

[15], which has been used as a benchmark dataset for de-

signing binary encoding approaches [8, 17, 16]. However,

only a small portion of the dataset is manually labeled and

the associated meta information is very noisy. We designed

our experimental protocol for quantitative evaluation as be-

low. A subset of one million data points is sampled to con-

struct the training set and a separate set of 2000 samples

is used as the test set. For SSH and RBMs, we randomly

select 10000 samples from training set and compute a pair-

wise distance matrix D using L2 norm. From D, we de-

rive the pairwise label matrix S using the following rule.

The neighbor-pair is the pair of samples whose distance is

within the 5th percentile of the whole set of distances inD,

and the nonneighbor-pair is the pair of samples whose dis-

tance is more than the 95th percentile. The 5th percentile

distance threshold from a query is also used as the measure-

ment of good neighbors.

For quantitative evaluation, we compute the precision

under two different scenarios, i.e. Hamming ranking and

Hash lookup. For Hamming ranking based evaluation, the

precision of the first 1000 retrieved samples is recorded. For

Hash lookup evaluation, the ratios of good neighbors among

the retrieved samples within hamming radius 2 are reported
as the precision value. Moreover, if the query point does

not have any returned samples within the Hamming ball of

radius 2, it is treated as a failed query with precision zero.

Figure 3 shows the results for different methods. SSH and

SSHnonorth outperform the other methods in most of the

cases with SSHnonorth performing significantly better than

all the compared methods for higher bits as expected. Be-

sides the quantitative evaluation, we also inspect some ex-

emplar queries and retrieved nearest neighbors when using

48-bit hash codes (Figure 4). SSHnonorth tends to give bet-

ter retrieval results with more visual relevance.

For the training cost, RBMs again have much longer

training time (days) than that for all the other methods

(around one minute). Particularly, the increase in training

time from MNIST (70K) to Gist set (1 M) is nominal for

the proposed SSH method, which shows that SSH is highly

scalable.

5. Conclusions and Future Work

In this paper, we have proposed a semi-supervised

paradigm to learn efficient hash codes which can handle se-

mantic similarity/dissimilarity among the data points. The

proposed method combines empirical loss over the labeled

data with other desirable properties e.g., balancing over

both labeled and unlabeled data. The proposed method

leads to a very simple eign-decomposition based solution

which is extremely efficient. In fact, one can make the
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Figure 3. Experimental results on one million gist dataset. a): Pre-

cision of the first 1000 retrieved samples; b): Precision within

hamming radius 2.

computations even faster by using iterative solvers to get

top eigenvalues and eigenvectors. We further show that by

relaxing the commonly used orthogonality constraints, one

can achieve even better results, especially for larger num-

ber of bits. The experiments on two large datasets show

superior performance of the proposed method over exist-

ing state-of-the-art techniques. In the future, we would like

to explore the theoretical properties of the proposed SSH

method. In particular, it will be useful to investigate if SSH

can provide theoretical guarantees on the performance.

Acknowledgments

The authors would like to thank Dr. Zhenguo Li for

his valuable comments. J. Wang was supported in part by

Google Intern Scholarship. S.-F. Chang is supported in part

by National Science Foundation Award CNS-07-51078.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching. Journal of ACM, 45(6):891–923, 1998.

[2] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions. In

Proceedings of the twentieth annual Symposium on Compu-

tational Geometry, pages 253–262. ACM, 2004.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm

for finding best matches in logarithmic expected time. ACM

Trans. Math. Softw., 3(3):209–226, 1977.

Query

LSH

SH

RBMs

SSH

SSHnonorth

Figure 4. Top three nearest neighbors of four queries returned by

different methods on one million Gist dataset. The images in the

top row are the query samples. From top to bottom, the near-

est neighbor samples retrieved by LSH, SH, RBMs, SSH, and

SSHnonorth) using 48-bit codes.

[4] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Proc. of 25th VLDB, 1999.

[5] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov.

Neighbourhood components analysis. In Proc. of NIPS, vol-

ume 17, pages 513–520. 2005.

[6] G. Hinton and R. Salakhutdinov. Reducing the dimension-

ality of data with neural networks. Science, 313(5786):504,

2006.

[7] P. Jain, B. Kulis, and K. Grauman. Fast image search for

learned metrics. In Proc. of the CVPR, pages 1–8, 2008.

[8] B. Kulis and T. Darrell. Learning to Hash with Binary Re-

constructive Embeddings. In Proc. of NIPS, volume 20,

pages 1042–1050. 2009.

[9] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing for scalable image search. Proc. of ICCV, 2009.

[10] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest

neighbors algorithm for finding similar patches in images?

In ECCV, pages 364–378, 2008.

[11] M. Muja and D. G. Lowe. Fast approximate nearest neigh-

bors with automatic algorithm configuration. In VISAPP,

2009.

[12] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-

Neighbor Methods in Learning and Vision: Theory and

Practice (Neural Information Processing). The MIT Press,

2006.

[13] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estima-

tion with parameter-sensitive hashing. In Proc. of the ICCV,

2003.

[14] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast

image descriptor matching. In CVPR, pages 1–8, 2008.

[15] A. Torralba, R. Fergus, W. Freeman, and C. MIT. 80 mil-

lion tiny images: A large data set for nonparametric object

and scene recognition. IEEE Trans. on PAMI, 30(11):1958–

1970, 2008.

[16] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large

image databases for recognition. In Proc. of CVPR, pages

1–8, 2008.

[17] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Proc. of NIPS, volume 21, pages 1753–1760. 2008.




