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Abstract—Mean shift clustering is a powerful nonparametric technique that does not require prior knowledge of the number

of clusters and does not constrain the shape of the clusters. However, being completely unsupervised, its performance suffers

when the original distance metric fails to capture the underlying cluster structure. Despite recent advances in semi-supervised

clustering methods, there has been little effort towards incorporating supervision into mean shift. We propose a semi-supervised

framework for kernel mean shift clustering (SKMS) that uses only pairwise constraints to guide the clustering procedure. The

points are first mapped to a high-dimensional kernel space where the constraints are imposed by a linear transformation of

the mapped points. This is achieved by modifying the initial kernel matrix by minimizing a log det divergence-based objective

function. We show the advantages of SKMS by evaluating its performance on various synthetic and real datasets while comparing

with state-of-the-art semi-supervised clustering algorithms.

Index Terms—semi-supervised kernel clustering; log det Bregman divergence; mean shift clustering;

✦

1 INTRODUCTION

Mean shift is a popular mode seeking algorithm, which

iteratively locates the modes in the data by maximizing the

kernel density estimate (KDE). Although the procedure was

initially described decades ago [17], it was not popular in

the vision community until its potential uses for feature

space analysis and optimization were understood [8], [12].

The nonparametric nature of mean shift makes it a powerful

tool to discover arbitrarily shaped clusters present in the

data. Additionally, the number of clusters is automatically

determined by the number of discovered modes. Due to

these properties, mean shift has been applied to solve

several computer vision problems, e.g., image smoothing

and segmentation [11], [41], visual tracking [9], [19] and

information fusion [7], [10]. Mean shift clustering was

also extended to nonlinear spaces, for example, to perform

clustering on analytic manifolds [36], [38] and kernel

induced feature space [34], [39] under an unsupervised

setting.

In many clustering problems, in addition to the un-

labeled data, often some additional information is also

easily available. Depending on a particular problem, this

additional information could be available in different forms.

For example, the number of clusters or a few must-link

(similarity) and cannot-link (dissimilarity) pairs could be

known a-priori. In the last decade, semi-supervised clus-

tering methods that aim to incorporate prior information

into the clustering algorithm as a guide, have received
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considerable attention in machine learning and computer

vision [2], [6], [18]. Increasing interest in this area has trig-

gered the adaptation of several popular unsupervised clus-

tering algorithms into a semi-supervised framework, e.g.,

background constrained k-means [40], constrained spectral

clustering [23], [28] and kernel graph clustering [24]. It is

shown that unlabeled data, when used in conjunction with

a small amount of labeled data, can produce significant

improvement in clustering accuracy. However, despite these

advances, mean shift clustering has largely been ignored

under the semi-supervised learning framework. To leverage

all the useful properties of mean shift, we adapt the original

unsupervised algorithm into a semi-supervised clustering

technique.

The work in [37] introduced weak supervision into the

kernel mean shift algorithm where the additional infor-

mation was provided through a few pairwise must-link

constraints. In that framework, each pair of must-link points

was collapsed to a single point through a linear projection

operation, guaranteeing their association with the same

cluster. In this paper, we extend that work by generalizing

the linear projection operation to a linear transformation

of the kernel space that permits us to scale the distance

between the constraint points. Using this transformation,

the must-link points are moved closer to each other, while

the cannot-link points are moved farther apart. We show

that this transformation can be achieved implicitly by

modifying the kernel matrix. We also show that given

one constraint pair, the corresponding kernel update is

equivalent to minimizing the log det divergence between

the updated and the initial kernel matrix. For multiple

constraints, this result proves to be very useful since we

can learn the kernel matrix by solving a constrained log det
minimization problem [22].

Fig. 1 illustrates the basic approach. The original data



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY XXXX 2

(a) (b)

(c) (d)

(e) (f)

Fig. 1: Olympic Circles. (a) Original data in the input space with
five different clusters. (b) Labeled points used to generate pairwise
constraints. (c) Pairwise distance matrix (PDM) using the modes
discovered by unsupervised mean shift clustering performed in
the kernel space. The points are ordered according to class. (d)
PDM using the modes found after supervision was added. Sample
clustering results using (e) unsupervised and (f) semi-supervised
kernel mean shift clustering.

with five circles, each containing 300 points, is shown in

Fig. 1a. We assume that 20 labeled points from each cluster

are selected at random (only 6.7% of the data) to generate

pairwise must-link and cannot-link constraints (Fig. 1b).

We use all the 5×
(
20
2

)
unique intra-class pairs as must-link

constraints and a same number of cannot-link constraints.

Note that, although we generate pairwise constraints using

a small fraction of labeled points, the algorithm does not

require the explicit knowledge of class labels. The data

is first mapped to a kernel space using a Gaussian kernel

(σ = 0.5). In the first case, kernel mean shift is directly

applied to the data points in the absence of any supervision.

Fig. 1c shows the corresponding 1500 × 1500 pairwise

distance matrix (PDM) obtained using modes recovered by

mean-shift. The lack of a block diagonal structure implies

the absence of meaningful clusters discovered in the data. In

the second case, the constraint pairs are used to transform

the initial kernel space by learning an appropriate kernel

matrix via log det divergence minimization. Fig. 1d shows

the PDM between the modes obtained when kernel mean

shift is applied to the transformed feature points. In this

case, the five-cluster structure is clearly visible in the PDM.

Finally, Fig. 1e and 1f show the corresponding clustering

labels mapped back to the input space. Through this exam-

ple, it becomes evident that a small amount of supervision

can improve the clustering performance significantly.

In the following, we list our key contributions (•) and

present the overall organization of the paper.

◦ In Section 2, we present an overview of the past work

in semi-supervised clustering.

• In Section 3.1, we briefly review the Euclidean mean

shift algorithm and in Section 3.2 we discuss its exten-

sion to high-dimensional kernel spaces. By employing

the kernel trick, the explicit representation of the

kernel mean shift algorithm in terms of the mapping

function is transformed into an implicit representation

described in terms of the kernel function inducing that

mapping.

• In Section 4.1, we derive the expression for performing

kernel updates using orthogonal projection of the

must-link constraint points. With little manipulation

of the distances between the constraint points, in

Section 4.2, we extend this projection operation to

the more general linear transformation, that can also

utilize cannot-link constraints. By allowing relaxation

on the constraints, we motivate the formulation of

learning the kernel matrix as a Bregman divergence

minimization problem.

◦ In Section 5, we review the optimization algorithm

of [22], [25] for learning the kernel matrix using

log det Bregman divergences. More details about this

algorithm are also furnished in the supplementary

material.

• In Section 6, we describe the complete semi-

supervised kernel mean shift (SKMS) algorithm. In

addition, several practical enhancements like automat-

ically estimating various algorithmic parameters and

low-rank kernel learning for significant computation

gains are also discussed in detail.

◦ In Section 7, we show experimental results on sev-

eral synthetic and real data sets that encompass a

wide spectrum of challenges encountered in practical

machine learning problems. We also present detailed

comparison with state-of-the-art semi-supervised clus-

tering techniques.

◦ Finally, in Section 8, we conclude with a discussion

around the key strengths and limitations of our work.

2 RELATED WORK

Semi-supervised clustering has received a lot of attention in

the past few years due to its highly improved performance

over traditional unsupervised clustering methods [3], [6].

As compared to fully-supervised learning algorithms, these

methods require a weaker form of supervision in terms of

both the amount and the form of labeled data used. In

clustering, this is usually achieved by using only a few

pairwise must-link and cannot-link constraints. Since gen-

erating pairwise constraints does not require the knowledge

of class labels or the number of clusters, they can easily be

generated using additional information. For example, while
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clustering images of objects, two images with similar text

annotations could be used as a must-link pair. We discuss

some of the traditional unsupervised clustering methods and

their semi-supervised variants below.

Partitioning based clustering: k-means is one of the

oldest and most popular clustering algorithm. See [21] for

an extensive review of all the variants of k-means algo-

rithm. One of its popular semi-supervised extensions using

pairwise constraints was proposed in [40]. The method

partitions the data into k non-overlapping regions such that

must-link pairs are enforced to lie in the same cluster while

the cannot-link pairs are enforced to lie in different clusters.

However, since the method enforces all constraints rigidly,

it is sensitive to labeling errors in pairwise constraints. Basu

et al. [2] proposed a more robust, probabilistic model by

explicitly allowing relaxation for a few constraints in k-

means clustering. Similarly, Bilenko et al. [4] proposed a

metric learning based approach to incorporate constraints

into k-means clustering framework. Since the clustering in

both these methods is performed in the input space, these

methods fail to handle non-linear cluster boundaries. More

recently, Kulis et al. proposed semi-supervised kernel k-

means (SSKK) algorithm [24], that constructs a kernel ma-

trix by adding the input similarity matrix to the constraint

penalty matrix. This kernel matrix is then used to perform

k-means clustering.

Graph based clustering: Spectral clustering [31] is an-

other very popular technique that can also cluster data

points with non-linear cluster boundaries. In [23], this

method was extended to incorporate weak supervision by

updating the computed affinity matrix for the specified

constraint points. Later, Lu et al. [28] further modified the

algorithm by propagating the specified constraints to the

remaining points using a Gaussian process. More recently,

Lu and Ip [29] showed improved clustering performances

by applying exhaustive constraint propagation and handling

soft constraints (E2CP). One of the fundamental problems

with this method is that it can be sensitive to labeling noise

since the effect of a mislabeled data point pair could easily

get propagated throughout the affinity matrix. Moreover, in

general, spectral clustering methods suffer when the clusters

have very different scales and densities [30].

Density based clustering: Clustering methods in this

category make use of the estimated local density of the

data to discover clusters. Gaussian Mixture Models (GMM)

are often used for soft clustering where each mixture

represents a cluster distribution [27]. Mean shift [11],

[12], [37] was employed in computer vision for clustering

data in the feature space by locating the modes of the

nonparametric estimate of the underlying density. There

exist other density based clustering methods that are less

known in the vision community, but have been applied

to data mining applications. For example, DBSCAN [15]

groups together points that are connected through a chain

of high-density neighbors that are determined by the two

parameters: neighborhood size and minimum allowable

density. SSDBSCAN [26] is a semi-supervised variant of

DBSCAN that explicitly uses the labels of a few points

to determine the neighborhood parameters. C-DBSCAN

[33] performs a hierarchical density based clustering while

enforcing the must-link and cannot-link constraints.

3 KERNEL MEAN SHIFT CLUSTERING

First, we briefly describe the Euclidean mean shift clus-

tering algorithm in Section 3.1 and then derive the kernel

mean shift algorithm in Section 3.2.

3.1 Euclidean Mean Shift Clustering

Given n data points xi on a d-dimensional space R
d and

the associated diagonal bandwidth matrices hiId×d, i =
1, ..., n, the sample point density estimator obtained with

the kernel profile k(x) is given by

f(x) =
1

n

n∑

i=1

1

hd
i

k

(∥∥∥∥
x− xi

hi

∥∥∥∥
2
)
. (1)

We utilize multivariate normal profile

k(x) = e−
1
2
x x ≥ 0. (2)

Taking the gradient of (1), we observe that the stationary

points of the density function satisfy

2

n

n∑

i=1

1

hd+2
i

(xi − x) g

(∥∥∥∥
x− xi

hi

∥∥∥∥
2
)

= 0 (3)

where g(x) = −k′(x). The solution is a local maximum of

the density function which can be iteratively reached using

mean shift procedure

δx =

∑n

i=1
xi

h
d+2

i

g

(∥∥∥x−xi

hi

∥∥∥
2
)

∑n

i=1
1

h
d+2

i

g

(∥∥∥x−xi

hi

∥∥∥
2
) − x (4)

where x is the current mean and δx is the mean shift vector.

To recover from saddle points adding a small perturbation

to the current mean vector is usually sufficient. Comaniciu

and Meer [11] showed that the convergence to a local mode

of the distribution is guaranteed.

3.2 Mean Shift Clustering in Kernel Spaces

We extend the original mean shift algorithm from the

Euclidean space to a general inner product space. This

makes it possible to apply the algorithm to a larger class of

nonlinear problems, such as clustering on manifolds [38].

We also note that a similar derivation for fixed bandwidth

mean shift algorithm was given in [39].

Let X be the input space such that the data points xi ∈ X ,

i = 1, ..., n. Although, in general, X may not necessarily

be a Euclidean space, for sake of simplicity, we assume

X corresponds to R
d. Every point x is then mapped to a

dφ-dimensional feature space H by applying the mapping

functions φl, l = 1, . . . , dφ, where

φ(x) = [φ1(x) φ2(x) . . . φdφ
(x)]⊤. (5)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY XXXX 4

(a) (b) (c)

Fig. 2: Clustering with must-link constraints. (a) Input space. Red markers are the constraint pair (x1, x2). (b) The input space is

mapped to the feature space via quadratic mapping φ(x) = [x x2]⊤. The black arrow is the constraint vector (φ(x1) − φ(x2))
⊤,

and the red dashed line is its null space. (c) The feature space is projected to the null space of the constraint vector. Constraint points
collapse to a single point and are guaranteed to be clustered together. Two clusters can be easily identified.

Note that in many problems, this mapping is sufficient to

achieve the desired separability between different clusters.

We first derive the mean shift procedure on the feature

space H in terms of the explicit representation of the

mapping φ. The point sample density estimator at y ∈ H,

with the diagonal bandwidth matrices hiIdφ×dφ
is

fH(y) =
1

n

n∑

i=1

1

h
dφ

i

k

(∥∥∥∥
y − φ(xi)

hi

∥∥∥∥
2
)
. (6)

Taking the gradient of (6) w.r.t. φ, like (4), the solution can

be found iteratively using the mean shift procedure

δy =

∑n

i=1
φ(xi)

h
dφ+2

i

g

(∥∥∥y−φ(xi)
hi

∥∥∥
2
)

∑n

i=1
1

h
dφ+2

i

g

(∥∥∥y−φ(xi)
hi

∥∥∥
2
) − y. (7)

By employing the kernel trick, we now derive the implicit

formulation of the kernel mean shift algorithm. We define

K : X × X 7→ R, a positive semidefinite, scalar kernel

function satisfying for all x,x′ ∈ X

K(x,x′) = φ(x)⊤φ(x′). (8)

K(·) defines an inner product which makes it possible to

map the data implicitly to a high-dimensional kernel space.

Let

Φ = [φ(x1) φ(x2) . . . φ(xn)] (9)

be the dφ ×n matrix of the mapped points and K = ΦTΦ

be the n × n kernel (Gram) matrix. We observe that at

each iteration of the mean shift procedure (7), the estimate

ȳ = y + δy always lies in the column space of Φ. Any

such point ȳ can be written as

ȳ = Φαȳ (10)

where αȳ is an n-dimensional weighting vector. The dis-

tance between two points y and y′ in this space can

be expressed in terms of their inner product and their

respective weighting vectors

‖y − y′‖2= ‖Φαy −Φαy′‖2 (11)

= α⊤
yΦ

⊤Φαy +α⊤
y′Φ

⊤Φαy′ − 2α⊤
yΦ

⊤Φαy′

= α⊤
yKαy +α⊤

y′Kαy′ − 2α⊤
yKαy′ .

Let ei denote the i-th canonical basis vector for R
n.

Applying (11) to compute distances in (7) by using the

equivalence φ(xi) = Φei, the mean shift algorithm itera-

tively updates the weighting vector αy

αȳ =

∑n

i=1
ei

h
dφ+2

i

g

(
α⊤

y
Kαy+e⊤

i Kei−2α⊤

y
Kei

h2
i

)

∑n

i=1
1

h
dφ+2

i

g
(

α⊤
y
Kαy+e⊤

i
Kei−2α⊤

y
Kei

h2
i

) . (12)

The clustering starts on the data points on H, therefore

the initial weighting vectors are given by αyi
= ei, such

that, yi = Φαyi
= φ(xi), i = 1 . . . n. At convergence,

the mode ȳ can be recovered using (10) as Φᾱy. The

points converging close to the same mode are clustered

together, following the original proof [11]. Since any pos-

itive semidefinite matrix K is a kernel for some feature

space [13], the derived method implicitly applies mean

shift on the feature space induced by K. Note that under

this formulation, mean shift in the input space can be

implemented by simply choosing the mapping function φ(·)
to be identity, i.e. φ(x) = x.

An important point is that the dimensionality of the

feature space dφ can be very large, for example it is infinite

in case of the Gaussian kernel function. In such cases

it may not be possible to explicitly compute the point

sample density estimator (6) and consequently the mean

shift vectors (7). Since the dimensionality of the subspace

spanned by the feature points is equal to rankK ≤ n,

it is sufficient to use the implicit form of the mean shift

procedure using (12).

4 KERNEL LEARNING USING LINEAR

TRANSFORMATIONS

A nonlinear mapping of the input data to a higher-

dimensional kernel space often improves cluster separa-

bility. By effectively enforcing the available constraints,

it is possible to transform the entire space and guide the

clustering to discover the desired structure in the data.

To illustrate this intuition, we present a simple two class

example from [37] in Fig. 2. The original data lies along the

x-axis, with the blue points associated with one class and

the black points with the second class (Fig. 2a). This data
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appears to have originated from three clusters. Let (x1, x2)
be the pair of points marked in red which are constrained

to be clustered together. We map the data explicitly to

a two-dimensional feature space via a simple quadratic

mapping φ(x) = [x x2]⊤ (Fig. 2b). Although the data

is linearly separable, it still appears to form three clusters.

Using the must-link constraint pair, we enforce the two red

points to be clustered together. The black arrow denotes

the constraint vector φ(x1) − φ(x2) and the dashed red

line is its null space. By projecting the feature points to the

null space of the constraint vector, the points φ(x1) and

φ(x2) are collapsed to the same point, guaranteeing their

association with the same mode. From Fig.2c, we can see

that in the projected space, the data has the desired cluster

structure which is consistent with its class association.

This approach, although simple, does not scale well with

increasing number of constraints for a simple nonlinear

mapping like above. Given m linearly independent con-

straint vectors in a dφ-dimensional space, the dimensional-

ity of the null space of the constraint matrix is dφ−m. This

implies that if dφ or more constraints are specified, all the

points collapse to a single point and are therefore grouped

together in one cluster. This problem can be alleviated if a

mapping function φ(·) is chosen such that dφ is very large.

Since explicitly designing the mapping function φ(x) is

not always practical, we use a kernel function K(x,x′) to

implicitly map the input data to a very high-dimensional

kernel space. As we show in Section 4.1, the subsequent

projection to the null-space of the constraint vectors can

also be achieved implicitly by appropriately updating the

kernel matrix. In Section 4.2, we further generalize the

projection operation to a linear transformation that also

utilizes cannot-link constraints.

4.1 Kernel Updates Using Orthogonal Projection

Recall the matrix Φ in (9), obtained by mapping the input

points to H via the nonlinear function φ. Let (j1, j2) be

a must-link constraint pair such that φ(xj1) = Φej1 and

φ(xj2)=Φej2 are to be clustered together. Given a set of

m such must-link constraint pairs M, for every (j1, j2) ∈
M, the dφ-dimensional constraint vector can be written as

aj = Φ (ej1 − ej2) = Φzj . We refer to the n-dimensional

vector zj as the indicator vector for the jth constraint. The

dφ×m dimensional constraint matrix A can be obtained by

column stacking all the m constraint vectors, i.e., A = ΦZ,

where Z = [z1, . . . , zm] is the n × m matrix of indicator

vectors. Similar to the example in Fig. 2, we impose the

constraints by projecting the matrix Φ to the null space of

A using the the projection matrix

P = Idφ
−A

(
A⊤A

)+
A⊤ (13)

where Idφ
is the dφ-dimensional identity matrix and ‘+’

denotes the matrix pseudoinverse operation. Let S = A⊤A

be the m×m scaling matrix. The matrix S can be computed

using the indicator vectors and the initial kernel matrix K

without knowing the mapping φ as

S = A⊤A = Z⊤Φ⊤ΦZ = Z⊤KZ. (14)

Given the constraint set, the new mapping function φ̂(x)
is computed as φ̂(x) = Pφ(x). Since all the constraints in

M are satisfied in the projected subspace, we have

||PΦZ||
2
F = 0 (15)

where || · ||F denotes the Frobenius norm. The initial kernel

function (8) correspondingly transforms to the projected

kernel function K̂(x,x′) = φ̂(x)⊤φ̂(x′). Using the pro-

jection matrix P, it can be rewritten in terms of the initial

kernel function K(x,x′) and the constraint matrix A

K̂(x,x′) = φ(x)⊤P⊤Pφ(x′) = φ(x)⊤Pφ(x′)

= φ(x)⊤(Idφ
−AS+A⊤)φ(x′)

= K(x,x′)− φ(x)⊤AS+A⊤φ(x′). (16)

Note that the identity P⊤P = P follows from the fact that

P is a symmetric projection matrix. The m-dimensional

vector A⊤φ(x) can also be written in terms of the initial

kernel function as

A⊤φ(x) = Z⊤Φ⊤φ(x)

= Z⊤ [K(x1,x), . . . ,K(xn,x)]
⊤
. (17)

Let the vector kx = [K(x1,x), . . . ,K(xn,x)]
⊤

. From

(16), the projected kernel function can be written as

K̂(x,x′) = K(x,x′)− k⊤
xZS

+Z⊤kx′ (18)

The projected kernel matrix can be directly computed as

K̂ = K−KZS+Z⊤K (19)

where the symmetric n × n initial kernel matrix K has

rank r ≤ n. The rank of the matrix S is equal to the

number of linearly independent constraints, and the rank

of the projected kernel matrix K̂ is r − rank S.

4.2 Kernel Updates Using Linear Transformation

By projecting the feature points to the null space of the

constraint vector a, their components along the a are

fully eliminated. This operation guarantees that the two

points belong to the same cluster. As proposed earlier,

by appropriately choosing the kernel function K(·) (such

that dφ is very large), we can make the initial kernel

matrix K full-rank. However, a sufficiently large number

of such linearly independent constraints could still result in

a projected space with dimensionality that is too small for

meaningful clustering.

From a clustering perspective, it might suffice to bring

the two must-link constraint points sufficiently close to each

other. This can be achieved through a linear transformation

of the kernel space that only scales down the component

along the constraint vector. Such a linear transformation

would preserve the rank of the kernel matrix and is po-

tentially capable of handling a very large number of must-

link constraints. A similar transformation that increases the

distance between two points also enables us to incorporate

cannot-link constraints.
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Given a constraint vector a = Φz, a symmetric transfor-

mation matrix of the form

T = Idφ
− s

(
aa⊤

)
(20)

allows us to control the scaling along the vector a using

the scaling factor s. When s = 1
a⊤a the transformation

becomes a projection to the null space of a. The trans-

formation decreases distances along a for 0 < s < 2
a⊤a ,

while it is increased for s < 0 or s > 2
a⊤a .

We can set a target distance d > 0 for the constraint

point pair by applying an appropriate transformation T.

The constraint equation can be written as

||TΦz||
2
F = z⊤K̂z = d (21)

where K̂ = Φ⊤T⊤TΦ = Φ⊤T2Φ is the corresponding

transformed kernel matrix. To handle must-link constraints,

d should be small, while it should be large for cannot-link

constraint pairs. Using the specified d, we can compute s

and therefore the transformed kernel matrix

K̂ = Φ⊤
(
Idφ

− saa⊤
)2

Φ. (22)

Substituting a = Φz the expression for K̂ is

K̂ = K− 2sKzz⊤K+ s2
(
z⊤Kz

)
Kzz⊤K. (23)

From (21), we can solve for s

s =
1

p

(
1±

√
d

p

)
where p = z⊤Kz > 0 (24)

and the choice of s does not affect the following kernel

update† such that the constraint (21) is satisfied

K̂ = K+ βKzz⊤K, β =

(
d

p2
−

1

p

)
. (25)

The case when p = 0 implies that the constraint vector is

a zero vector and T = Idφ
and a value of β = 0 should be

used.

When multiple must-link and cannot-link constraints are

available, the kernel matrix can be updated iteratively for

each constraint by computing the update parameter βj

using corresponding dj and pj . However, by enforcing the

distance between constraint pairs to be exactly dj , the linear

transformation imposes hard constraints for learning the

kernel matrix which could potentially have two adverse

consequences:

1) The hard constraints could make the algorithm dif-

ficult (or even impossible) to converge, since previ-

ously satisfied constraints could easily get violated

during subsequent updates of the kernel matrix.

2) Even when the constraints are non-conflicting in

nature, in the absence of any relaxation, the method

becomes sensitive to labeling errors. This is illus-

trated through the following example.

†. This update rule is equivalent to minimizing the log det divergence
(29) for a single equality constraint using Bregman projections (31).

The input data consists of points along five concentric

circles as shown in Fig.3a. Each cluster comprises of 150
noisy points along a circle. Four labeled points per class

(shown by square markers) are used to generate a set of(
4
2

)
×5 = 30 must-link constraints. The initial kernel matrix

K is computed using a Gaussian kernel with σ = 5, and

updated by imposing the provided constraints (19). The

updated kernel matrix K̂ is used for kernel mean shift

clustering (Section 3.2) and the corresponding results are

shown in Fig. 3b. To test the performance of the method

under labeling errors, we also add one mislabeled must-

link constraint (shown in black line). The clustering per-

formance deteriorates drastically with just one mislabeled

constraint as shown in Fig. 3c.

In order to overcome these limitations, the learning

algorithm must accommodate for systematic relaxation of

constraints. This can be achieved by observing that the

kernel update in (25) is equivalent to minimizing the log det
divergence between K̂ and K subject to constraint (21)

[25, Sec. 5.1.1]. In the following section, we formulate

the kernel learning algorithm into a log det minimization

problem with soft constraints.

5 KERNEL LEARNING USING BREGMAN DI-
VERGENCE

Bregman divergences have been studied in the context of

clustering, matrix nearness and metric and kernel learning

[22], [25], [1]. We briefly discuss the log det Bregman

divergence and its properties in Section 5.1. We summarize

the kernel learning problem using Bregman divergence

which was introduced in [25], [22] in Section 5.2.

5.1 The LogDet Bregman Divergence

The Bregman divergence [5] between real, symmetric n×n

matrices X and Y is a scalar function given by

Dϕ(X,Y)=ϕ(X)−ϕ(Y)−tr
(
∇ϕ (Y)

⊤
(X−Y)

)
(26)

where ϕ is a strictly convex function and ∇ denotes

the gradient operator. For ϕ(X) = − log (det(X)), the

resulting divergence is called the log det divergence

Dld (X,Y) = tr
(
XY−1

)
− log det

(
XY−1

)
− n (27)

and is defined when X,Y are positive definite. In [25],

this definition was extended to rank deficient (positive

semidefinite) matrices by restricting the convex function to

the range spaces of the matrices. For positive semidefinite

matrices X and Y, both having rank r ≤ n and singular

value decomposition X = VΛV⊤ and Y = UΘU⊤, the

log det divergence is defined as

Dld (X,Y) =
∑

i,j≤r

(
v⊤
i uj

)2
(
λi

θj
− log

λi

θj
− 1

)
. (28)

Moreover, the log det divergence, like any Bregman diver-

gence, is convex with respect to its first argument X [1].

This property is useful in formulating the kernel learning as

a convex minimization problem in the presence of multiple

constraints.
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(a) (b) (c)

Fig. 3: Five concentric circles. Kernel learning without relaxation
(a) Input data. The square markers indicate the data points used
to generate pairwise constraints. The black line shows the only
mislabeled similarity constraint used. (b) Clustering results when
only the correctly labeled similarity constraints were used. (c)
Clustering results when the mislabeled constraint was also used.

5.2 Kernel Learning with LogDet Divergences

Let M and C denote the sets of m must-link and c cannot-

link pairs respectively, such that m + c = nc. Let dm
and dc be the target squared distance thresholds for must-

link and cannot-link constraints respectively. The problem

of learning a kernel matrix using linear transformations

for multiple constraints, discussed in Section 4.2, can

be equivalently formulated as the following constrained

log det minimization problem

min
K̂

Dld

(
K̂,K

)
(29)

s.t. (ej1 − ej2)
⊤
K̂ (ej1 − ej2) = dm ∀(j1, j2) ∈ M

(ej1 − ej2)
⊤
K̂ (ej1 − ej2) = dc ∀(j1, j2) ∈ C.

The final kernel matrix K̂ is obtained by iteratively updat-

ing the initial kernel matrix K.

In order to permit relaxation of constraints, we rewrite

the learning problem using a soft margin formulation simi-

lar to [22], where each constraint pair (j1, j2) is associated

with a slack variable ξ̂j , j = 1, . . . , nc

min
̂K,

̂ξ
Dld

(
K̂,K

)
+ γDld

(
diag

(
ξ̂
)
, diag (ξ)

)
(30)

s.t. (ej1 − ej2)
⊤
K̂ (ej1 − ej2) ≤ ξ̂j ∀(j1, j2) ∈ M

(ej1 − ej2)
⊤
K̂ (ej1 − ej2) ≥ ξ̂j ∀(j1, j2) ∈ C.

The nc-dimensional vector ξ̂ is the vector of slack variables

and ξ is the vector of target distance thresholds dm and

dc. The regularization parameter γ controls the trade-off

between fidelity to the original kernel and the training

error. Note that by changing the equality constraints to

inequality constraints, the algorithm allows must-link pairs

to be closer and cannot-link pairs to be farther than their

corresponding distance thresholds.

The optimization problem in (30) is solved using the

method of Bregman projections [5]. A Bregman projection

(not necessarily orthogonal) is performed to update the

current matrix, such that the updated matrix satisfies that

constraint. In each iteration, it is possible that the current

update violates a previously satisfied constraint. Since the

problem in (30) is convex [25], the algorithm converges to

the global minimum after repeatedly updating the kernel

matrix for each constraint in the set M∪ C.

Fig. 4: Block diagram describing the semi-supervised kernel mean
shift clustering algorithm. The bold boxes indicate the user input
to the algorithm.

For the log det divergence, the Bregman projection that

minimizes the objective function in (30) for a given con-

straint (j1, j2) ∈ M∪ C, can be written as derived in [25]

K̂t+1 = K̂t + βt K̂t (ej1 − ej2) (ej1 − ej2)
⊤
K̂t. (31)

For the tth iteration the parameter βt is computed in

closed form as explained in the supplementary material.

The algorithm converges when βt approaches zero for all

(j1, j2) ∈ M ∪ C with the final learned kernel matrix

K̂ = Φ̂
⊤
Φ̂.

Using K̂, the kernel function that defines the inner

product in the corresponding transformed kernel space can

be written as

K̂ (x,y) = K (x,y) + k⊤
x

(
K+

(
K̂−K

)
K+
)
ky (32)

where K(·) is the scalar initial kernel function (8), and

the vectors kx = [K(x,x1), . . . ,K(x,xn)]
⊤

and ky =

[K(y,x1), . . . ,K(y,xn)]
⊤

[22]. The points x,y ∈ X
could be out of sample points, i.e., points that are not in the

sample set {x1, . . . ,xn} used to learn K̂. Note that (18)

also generalizes the inner product in the projected kernel

space to out of sample points.

6 SEMI-SUPERVISED KERNEL MEAN-SHIFT

CLUSTERING ALGORITHM

We present the complete algorithm for semi-supervised

kernel mean shift clustering (SKMS) in this section. Fig. 4

shows a block diagram for the overall algorithm. We explain

each of the modules using two examples: Olympic circles, a

synthetic data set and a 1000 sample subset of USPS digits,

a real data set with images of handwritten digits. In Section

6.1, we propose a method to select the scale parameter σ for

the initial Gaussian kernel function using the sets M, C and

target distances dm, dc. We show the speed-up achieved by

performing the low-rank kernel matrix updates (as opposed

to updating the full kernel matrix) in Section 6.2. For

mean shift clustering, we present a strategy to automatically

select the bandwidth parameter using the pairwise must-

link constraints in Section 6.3. Finally, in Section 6.4, we

discuss the selection of the trade-off parameter γ.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY XXXX 8

Fig. 5: Selecting the scale parameter σ̂ that minimizes Dld(ξ, ξσ)
using grid search. Selected σ values: Olympic circles, σ̂ = 0.75;
USPS digits, σ̂ = 7.

6.1 Initial Parameter Selection

Given two input sample points xi,xj ∈ R
d, the Gaussian

kernel function is given by

Kσ (xi,xj) = exp

(
−
‖xi − xj‖

2

2σ2

)
∈ [0, 1] (33)

where σ is the scale parameter. From (33) and (11) it is

evident that pairwise distances between sample points in

the feature space induced by Kσ(·) lies in the interval

[0, 2]. This provides us with an effective way of setting

up the target distances dm = min(d1, 0.05) and dc =
max(d99, 1.95), where d1 and d99 are the 1st and 99th

percentile of distances between all pairs of points in the

kernel space. We select the scale parameter σ such that, in

the initial kernel space, distances between must-link points

are small while those between cannot-link points are large.

This results in good regularization and faster convergence

of the learning algorithm.

Recall that ξ is the nc-dimensional vector of target

squared distances between the constraint pairs

ξj =

{
dm ∀(j1, j2) ∈ M

dc ∀(j1, j2) ∈ C.
(34)

Let ξσ be the vector of distances computed for the nc

constraint pairs using the kernel matrix Kσ . The scale

parameter that minimizes the log det divergence between

the vectors ξ and ξσ is

σ̂ = argmin
σ∈S

Dld (diag (ξ) , diag (ξσ)) (35)

and the corresponding kernel matrix is Kσ̂ . The kernel

learning is insensitive to small variations in σ̂, thus it is

sufficient to do a search over a discrete set S . The elements

of the set S are roughly the centers of equal probability

bins over the range of all pairwise distances between the

input sample points xi, i = 1, . . . , n. For Olympic circles,

we used S = {0.025, 0.05, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 5}
and for USPS digits, S = {1, 2, . . . , 10, 15, 20, 25}. A

similar set can be automatically generated by mapping a

uniform probability grid (over 0−1) via the inverse cdf

of the pairwise distances. Fig. 5 shows the plot of the

objective function in (35) against different values of σ for

the Olympic circles data set and the USPS digits data set.

6.2 Low Rank Kernel Learning

When the initial kernel matrix has rank r ≤ n, the n × n

matrix updates (31) can be modified to achieve a significant

computational speed-up [25] (see supplementary material

for the low-rank kernel learning algorithm). We learn a

kernel matrix for clustering the two example data sets:

Olympic circles (5 classes, n = 1500) and USPS digits (10

classes, n = 1000). The must-link constraints are generated

using 15 labeled points from each class: 525 for Olympic

circles and 1050 for USPS digits, while an equal number

of cannot-link constraints is used.

The n × n initial kernel matrix Kσ̂ is computed as

described in the previous section. Using singular value de-

composition (SVD), we compute an n×n low-rank kernel

matrix K such that rankK = r ≤ n and
‖K‖F

‖Kσ̂‖F
≥ 0.99.

For Olympic circles, this results in a rank 58 approximation

of the 1500 × 1500 matrix K leading to a computational

speed-up from 323.3 secs. to 0.92 secs. In case of USPS

digits, the 1000 × 1000 matrix K has rank 499 and the

run time reduces from 151.1 secs. to 68.2 secs. We

also observed that in all our experiments in Section 7,

the clustering performance did not deteriorate significantly

when the low-rank approximation of the kernel matrix was

used.

6.3 Setting the Mean Shift Parameters

For kernel mean shift clustering, we define the bandwidth

for each point as the distance to its kth nearest neighbor.

In general, clustering is an interactive process where the

bandwidth parameter for mean shift is provided by the user,

or is estimated based on the desired number of clusters.

In this section we propose an automatic recommendation

method for the bandwidth parameter k by using only the

must-link constraint pairs.

We build upon the intuition that in the transformed kernel

space, the neighborhood of a must-link pair comprises

of points similar to the constraint points. Given the jth

constraint pair (j1, j2) ∈ M, we compute the pairwise

distances in the transformed kernel space between the

first constraint point Φ̂ej1 and all other feature points as

di = (ej1 − ei)
⊤K̂(ej1 − ei), i = 1, . . . , n, i 6= j1. These

points are then sorted in the increasing order of di. The

bandwidth parameter kj for the jth constraint corresponds

to the index of j2 in this sorted list. Therefore, the point

Φ̂ej2 is the kthj neighbor of Φ̂ej1 . Finally, the value of k

is selected as the median over the set {kj , j = 1, . . . ,m}.

For a correct choice of k, we expect the performance of

mean shift to be insensitive to small changes in the value

of k. In Fig. 6, we plot the number of clusters recovered

by kernel mean shift as the bandwidth parameter is varied.

For learning the kernel, we used 5 points from each class to

generate must-link constraints: 50 for the Olympic circles

and 100 for USPS digits. An equal number of cannot-link

constraints is used. Fig. 6a shows the plot for Olympic

circles (5 classes), where the median based value (k = 6)

underestimates the bandwidth parameter. A good choice is



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JANUARY XXXX 9

(a) (b)

Fig. 6: Selecting the mean shift bandwidth parameter k, given five labeled points per class. (a) Olympic circles. Number of recovered
clusters is sensitive at the median based estimate k = 6, but not at k = 15 (see text). (b) USPS digits. Number of recovered clusters
is not sensitive at the median based estimate k = 4. The asterisk indicates the median based estimate, while the square marker shows
a good estimate of k.

k = 15, which lies in the range (10−23) where the clustering

output is insensitive to changes in k.

As seen in Fig. 6b, in case of USPS digits (10 classes),

the number of clusters recovered by mean shift is insensitive

to the median based estimate (k=4). For all other data sets

we used in our experiments, the median based estimates

produced good clustering output. Therefore, with the excep-

tion of Olympic circles, we used the bandwidth parameter

obtained using the median based approach. However, for

completeness, the choice of k should be verified, and

corrected if necessary, by analyzing the sensitivity of the

clustering output to small perturbations in k.

For computational efficiency, we run the mean shift

algorithm in a lower dimensional subspace spanned by the

singular vectors corresponding to at most the 25 largest

singular values of K̂. For all the experiments in Section 7,

a 25-dimensional representation of the kernel matrix was

large enough to represent the data in the kernel space.

6.4 Selecting the Trade-off Parameter

The trade-off parameter γ is used to weight the objective

function for the kernel learning. We select γ by performing

a two-fold cross-validation over different values of γ and

the clustering performance is evaluated using the scalar

measure Adjusted Rand (AR) index [20]. The kernel matrix

is learned using half of the data with 15 points used to

generate the pairwise constraints, 525 must-link constraints

for the Olympic circles and 1050 for the USPS digits.

An equal number of cannot-link constraint pairs is also

generated.

Fig. 7: Selecting the trade-off parameter γ. The AR index vs log γ
for 50 cross-validation runs. The asterisks mark the selected value
of γ = 100.

Input:
X - n× d data matrix
M, C - similarity and dissimilarity constraint sets
S - set of possible σ values
γ - the trade-off parameter
Procedure:

• Initialize slack variables
ξ̂j = ξj = dm for (j1, j2) ∈ M

ξ̂j = ξj = dc for (j1, j2) ∈ C
• Select σ̂ ∈ S by minimizing (35) and compute initial

Gaussian kernel matrix Kσ̂

• Compute n × n low-rank kernel matrix K such that

rankK = r ≤ n and
‖K‖F
‖Kσ̂‖F

≥ 0.99

• Learn K̂ using log det divergences (See suppl. material)
• Using K̂ and M, estimate bandwidth parameter k
• Compute bandwidths hi as the k-th smallest distance

from the point using K̂ and (11), dφ̂ = rank K̂
• Repeat for all data points i = 1, . . . , n

– Initialize ᾱi = αy = ei

– Update ᾱi using K̂ in (12) until convergence to
local mode

– Group data points xi and xj together if

ᾱiK̂ᾱi + ᾱjK̂ᾱj − 2ᾱiK̂ᾱj = 0
• Return cluster labels

Fig. 8: Semi-supervised kernel mean shift algorithm (SKMS).

Each cross-validation step involves learning the kernel

matrix with the specified γ and clustering the testing subset

using the kernel mean shift algorithm and the transformed

kernel function (32). Fig. 7 shows the average AR index

plotted against log γ for the two data sets. In both the

examples an optimum value of γ = 100 was obtained.

In general, this value may not be optimum for other

applications. However, in all our experiments in Section

7, we use γ = 100, since we obtained similar curves with

small variations in the AR index in the vicinity of γ = 100.

Fig. 8 shows a step-by-step summary of the semi-

supervised kernel mean shift (SKMS) algorithm.

7 EXPERIMENTS

We show the performance of semi-supervised kernel mean

shift (SKMS) algorithm on two synthetic examples and four

real-world examples. We also compare our method with

two state-of-the-art methods: the semi-supervised kernel k-

means (SSKK) [24] and the constrained spectral clustering

(E2CP) [29]. In the past, the superior performance of
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(a) (b) (c)

Fig. 9: Olympic circles. (a) Input data. (b) AR index as the number of pairwise constraints is varied. (c) AR index as the fraction of
mislabeled constraints is varied.

E2CP over other recent methods has been demonstrated.

Please see [29] for more details. In addition to this, we

also compare SKMS with the kernelized k-means (Kkm)

and kernelized spectral clustering (KSC) algorithms. The

learned kernel matrix is used to compute distances in

SKMS and Kkm, while KSC uses it as the affinity matrix.

By providing the same learned kernel matrix to the three

algorithms, we compare the clustering performance of mean

shift with that of k-means and spectral clustering. Note that,

unlike Kkm and KSC, the methods SSKK and E2CP do not

use the learned kernel matrix and supervision is supplied

with alternative methods. With the exception of SKMS, all

the methods require the user to provide the correct number

of clusters.

Comparison metric. The clustering performance of dif-

ferent algorithms is compared using the Adjusted Rand

(AR) index [20]. It is an adaptation of the rand index that

penalizes random cluster assignments, while measuring the

agreement between the clustering output and the ground

truth labels. The AR index is a scalar and takes values

between zero and one, with perfect clustering yielding a

value of one.

Experimental setup. To generate pairwise constraints,

we randomly select b labeled points from each class. All

possible must-link constraints are generated for each class

such that m=
(
b
2

)
and a subset of all cannot-link constraint

pairs is selected at random such that c=m= nc

2 . For each

experimental setting, we average the clustering results over

50 independent runs, each with randomly selected pairwise

constraints.

The initial kernel matrix is computed using a Gaussian

kernel (33) for all the methods. We hand-picked the scale

parameter σ for SSKK and E2CP from a wide range

of values such that their final clustering performance on

each data set was maximized. For Kkm, KSC and SKMS,

the values of σ and the target distances dm and dc are

estimated as described in Section 6.1. Finally, the mean

shift bandwidth parameter k, is estimated as described in

Section 6.3.

For each experiment, we specify the scale parameter σ

we used for SSKK and E2CP. For Kkm, KSC and SKMS, σ

is chosen using (35) and the most frequent value is reported.

We also list the range of k, the bandwidth parameter for

SKMS for each application. For the log det divergence

based kernel learning, we set the maximum number of

iterations to 100000 and the trade-off parameter γ to 100.

7.1 Synthetic Examples

Olympic Circles. As shown in Fig. 9a, the data consists of

noisy points along five intersecting circles each comprising

300 points. For SSKK and E2CP algorithms, the value of

the initial kernel parameter σ was 0.5. For Kkm, KSC and

SKMS the most frequently selected σ was 0.75 and the

range of the bandwidth parameter k was 15− 35.

We performed two sets of experiments. In the first

experiment, the performance of all the algorithms is

compared by varying the total number of pairwise con-

straints. The number of labeled points per class vary as

{5, 7, 10, 12, 15, 17, 20, 25} and are used to generate must-

link and cannot-link constraints that vary between 100
and 3000. Fig. 9b demonstrates SKMS performs better

than E2CP and KSC while its performance is similar to

SSKK and Kkm. For 100 constraints, SKMS recovered

5− 8 clusters, making a mistake 22% of the times. For

all other settings together, it recovered an incorrect number

of clusters (4−6) only 6.3% of the times.

In the second experiment, we introduced labeling errors

by randomly swapping the labels of a fraction of the

pairwise constraints. We use 20 labeled sample points per

class to generate 1900 pairwise constraints and vary the

fraction of mislabeled constraints between 0 and 0.6 in

steps of 0.1. Fig. 9c shows the clustering performance

of all the methods. The performance of SKMS degrades

only slightly even when half the constraint points are

labeled wrongly, but it starts deteriorating when 60% of

the constraint pairs are mislabeled.

Concentric Circles. The data consists of ten concentric

circles each comprising 100 noisy points (Fig. 10a). For

Kkm, KSC and SKMS the most frequently selected σ was

1 and the range of the bandwidth parameter for SKMS was

25− 45. Both algorithms, SSKK and E2CP have the value

of σ = 0.2. In the first experiment, we vary the number of

labeled points per class between 5 and 25 as in the previous

example to generate pairwise constraints between 200 and

6000. For 200 constraints, SKMS incorrectly recovered

nine clusters 50% of the times, while for all the other

settings it correctly detected 10 clusters every time.

In the second experiment, we use 25 labeled points

to generate 6000 pairwise constraints and mislabeled a
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Fig. 10: Ten concentric circles. (a) Input data. (b) AR index as the number of pairwise constraints is varied. (c) AR index as the
fraction of mislabeled constraints is varied.

fraction of randomly selected constraints. This mislabeled

fraction was varied between 0 to 0.6 in steps of 0.1 and the

performance of all the algorithms in the two experiments

is shown in Fig. 10b-c.

7.2 Real-World Applications

In this section, we demonstrate the performance of our

method on two real applications having a small number of

classes; USPS digits: 10 classes and MIT scene: 8 classes;

and two real applications with a large number of classes;

PIE faces: 68 classes and Caltech-101 subset: 50 classes.

We also show the performance of SKMS while clustering

out of sample points using (32) on the USPS digits and

the MIT scene data sets. Since the sample size per class

is much smaller for PIE faces and Caltech-101 subset,

results for generalization are not shown. We observe that

the superiority of SKMS over other competing algorithms

is clearer when the number of clusters is large.

USPS Digits. The USPS digits data set is

a collection of 16 × 16 grayscale images of

natural handwritten digits and is available from

http://cs.nyu.edu/ roweis/data.html.

Each class contains 1100 images of one of the ten digits.

Fig. 11 shows sample images from each class. Each image

is then represented with a 256-dimensional vector where

the columns of the image are concatenated. We vary the

number of labeled points per class between 5 and 25 as in

the previous example to generate pairwise constraints from

200 to 6000. The maximum number of labeled points per

class used comprises only 2.27% of the total data.

Fig. 11: Sample images from the USPS digits data set.

Since the whole data set has 11000 points, we select

100 points from each class at random to generate a 1000
sample subset. The labeled points are selected at random

from this subset for learning the 1000×1000 kernel matrix.

The value of σ used was 5 for SSKK and 2 for E2CP. For

Kkm, KSC and SKMS the most frequently selected σ was

7 and the range of the bandwidth parameter k was 4− 14.

In the first experiment we compare the performance of all

the algorithms on this subset of 1000 points. Fig. 12a shows

the clustering performance of all the methods. Once the

number of constraints were increased beyond 500, SKMS

outperformed the other algorithms. For 200 constraints, the

SKMS discovered 9−11 clusters, making a mistake 18%
of the times, while it recovered exactly 10 clusters in all

the other cases.

In the second experiment, we evaluated the performance

of SKMS for the entire data set using 25 labeled points per

class. The AR index averaged over 50 runs was 0.7529±
0.0510. Note that from Fig. 12a it can be observed that

there is only a marginal decrease in clustering accuracy. The

pairwise distance matrix (PDM) after performing mean shift

clustering is shown in Fig. 12b. For illustration purpose,

the data is ordered such that the images belonging to the

same class appear together. The block diagonal structure

indicates good generalization of SKMS for out of sample

points with little confusion between classes. Neither SSKK

nor E2CP could be generalized to out of sample points

because these methods need to learn a new kernel or affinity

matrix (11000× 11000).

MIT Scene. The data set is available from MIT

http://people.csail.mit.edu/torralba/code

/spatialenvelope/ and contains 2688 labeled

images. Each image is 256 × 256 pixels in size and

belongs to one of the eight outdoor scene categories, four

natural and four man-made. Fig. 13 shows one example

image from each of the eight categories. Using the code

provided with the data, we extracted the GIST descriptors

[32] which were then used to test all the algorithms. We

vary the number of labeled points per class like in the

previous example, but only between 5 and 20 to generate

the pairwise constraints from 160 to 3040. The maximum

number of labeled points used comprises only 7.44% of

the total data.

We select 100 points at random from each of the eight

classes to generate the 800× 800 initial kernel matrix. The

pairwise constraints are obtained from the randomly chosen

labeled points from each class. The value of σ used was 1
for SSKK and 0.5 for E2CP. For Kkm, KSC and SKMS

the most frequently selected σ was 1.75 and the range of

the bandwidth parameter k was 4− 14.

Fig. 14a shows the clustering performance of all the

algorithms as the number of constraint points are varied.
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(a) (b)

Fig. 12: USPS digits. (a) AR index as the number of pairwise constraints is varied. (b) The 11000× 11000 pairwise distance matrix
(PDM) after performing mean shift clustering.

(a) (b)

Fig. 14: MIT Scene data set. (a) AR index on the 800 × 800 kernel matrix as the number of pairwise constraints is varied. (b) AR
index on entire data as the number of pairwise constraints is varied.

For 160 constraint pairs, SKMS incorrectly discovered 7−10
clusters about 22% of the time, while it correctly recovered

eight clusters in all other settings.

In the second experiment, the whole data set was clus-

tered using the 800 × 800 learned kernel matrix and

generalizing to the out of sample points (32). Both SSKK

and E2CP were used to learn the full 2688×2688 kernel and

affinity matrix respectively. Fig. 14b shows the performance

of all the algorithms as the number of pairwise constraints

was varied. Note that in [29] for similar experiments, the

superior performance of E2CP was probably because of the

use of spatial Markov kernel instead of the Gaussian kernel.

PIE Faces. From the CMU PIE face data set [35], we

use only the frontal pose and neutral expression of all 68
subjects under 21 different lighting conditions. We coarsely

aligned the images with respect to eye and mouth locations

and resized them to be 128×128. In Fig.15, we show eight

illumination conditions for three different subjects. Due to

Fig. 13: Sample images from each of the eight categories of the
MIT scene data set.

significant illumination variation, interclass variability is

very large and some of the samples from different subjects

appear to be much closer to each other than within classes.

We convert the images from color to gray scale and

normalize the intensities between zero and one. Each image

is then represented with a 16384-dimensional vector where

the columns of the image are concatenated. We vary the

number of labeled points per class as {3, 4, 5, 6, 7} to

generate pairwise constraints between 408 and 2856. The

maximum number of labeled points comprises 30% of the

total data.

We generate the 1428× 1428 initial kernel matrix using

all the data. The value of σ used was 10 for SSKK

and 22 for E2CP. For Kkm, KSC and SKMS the most

frequently selected σ was 25 and the range of the bandwidth

parameter k was 4 − 7. Fig. 16 shows the performance

comparison and it can be observed that SKMS outperforms

all the other algorithms. Note that SKMS approaches near

perfect clustering for more than 5 labeled points per class.

When three labeled points per class were used, the SKMS

Fig. 15: PIE faces data set. Sample images showing eight different
illuminations for three subjects.
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Fig. 16: PIE Faces data set. AR index as the number of pairwise
constraints is varied.

discovered 61−71 clusters, making a mistake about 84% of

the time. For all other settings, SKMS correctly recovered

68 clusters about 62% of the times, while it recovered 67
clusters about 32% of the time and between 69−71 clusters

in the remaining runs. The Kkm and KSC methods perform

poorly inspite of explicitly using the number of clusters and

the same learned kernel matrix as SKMS.

Caltech-101 Objects. The Caltech-101 data set [16] is

a collection of variable sized images across 101 object

categories. This is a particularly hard data set with large

intraclass variability. Fig. 17 shows sample images from

eight different categories.

We randomly sampled a subset of 50 categories, as listed

in Table 1, with each class containing 31 to 40 samples. For

each sample image, we extract GIST descriptors [32] and

use them for evaluation of all the competing clustering al-

gorithms. We vary the number of labeled points per class as

{5, 7, 10, 12, 15} to generate pairwise constraints between

500 and 10500. The maximum number of labeled points

comprises 38% of the total data. We use a larger number

of constraints in order to overcome the large variability in

the data set.

We generate the 1959× 1959 initial kernel matrix using

all the data. The value of σ used is 0.2 for E2CP and 0.3 for

SSKK. For Kkm, KSC and SKMS the most frequently se-

lected σ was 0.5 and the range of the bandwidth parameter

k was 4−11. Fig. 18 shows the comparison of SKMS with

the other competing algorithms. It can be seen that SKMS

outperforms all the other methods. For five labeled points

per class, SKMS detected 50−52 clusters, making mistakes

75% of the times. For all the other settings together, SKMS

recovered the incorrect number (48 − 51) of clusters only

Fig. 17: Sample images from eight of the 50 classes used from
Caltech-101 data set.

Fig. 18: Caltech-101 data set. AR index as the number of pairwise
constraints is varied.

9% of the times.

A tabular summary of all comparisons across different

data sets is provided in the supplementary material.

8 DISCUSSION

We presented the semi-supervised kernel mean shift

(SKMS) clustering algorithm where the inherent structure

of the data points is learned using a few user supplied

pairwise constraints. The data is nonlinearly mapped to a

higher-dimensional kernel space where the constraints are

effectively imposed by applying a linear transformation.

This transformation is learned by minimizing a log det
Bregman divergence between the initial and the learned

kernels. The method also estimates the parameters for the

mean shift algorithm and recovers an unknown number

of clusters automatically. We evaluate the performance of

SKMS on challenging real and synthetic data sets and

compare it with state-of-the-art methods.

We compared the SKMS algorithm with kernelized k-

means (Kkm) and kernelized spectral clustering (KSC)

algorithms, which used the same learned kernel matrix.

The linear transformation applied to the initial kernel

space imposes soft distance (inequality) constraints, and

may result in clusters that have very different densities

in the transformed space. This explains the relatively poor

performance of KSC in most experiments because spectral

clustering methods perform poorly when the clusters have

significantly different densities [30]. The k-means method

is less affected by cluster density, but it is sensitive to

initialization, shape of the clusters and outliers, i.e., sparse

points far from the cluster center.

Unlike the other methods, mean shift clustering does

not need the number of clusters as input and can identify

clusters of different shapes, sizes and density. Since locality

is imposed by the bandwidth parameter, mean shift is

more robust to outliers. As shown in our experiments, this

advantage gets pronounced when the number of clusters in

the data is large.

Clustering, in general, becomes very challenging when

the data has large intra-class variability. For example,

Fig. 19 shows three images from the highway category

of the MIT scene data set that were misclassified. The

misclassification error rate in Caltech-101 data set was

even higher. On large scale data sets with over 10000
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TABLE 1: Object classes used from Caltech-101 data set.

elephant flamingo head emu faces gerenuk stegosaurus accordion ferry cougar face mayfly
chair scissors menorah platypus butterfly tick metronome inline skate bass pyramid

leopards sea horse cougar body stop sign lotus dalmatian gramophone camera trilobite dragonfly
grand piano headphone sunflower ketch wild cat crayfish nautilus buddha yin yang dolphin

minaret anchor car side rooster wheelchair octopus joshua tree ant umbrella crocodile

Fig. 19: Three images from the class highway of the MIT Scene
data set that were misclassified.

categories [14], all methods typically perform poorly, as an

image may qualify for multiple categories. For example,

the images in Fig. 19 were classified in the street category,

which is semantically correct. To deal with a large number

of categories, clustering (classification) algorithms should

incorporate the ability to use higher level semantic features

that connect an image to its possible categories.

The code for SKMS is written in MATLAB

and C and is available for download at

http://coewww.rutgers.edu/riul/research

/code/SKMS/index.html
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