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Abstract

A novel learning framework is proposed for anomalous behaviour detection

in a video surveillance scenario, so that a classifier which distinguishes be-

tween normal and anomalous behaviour patterns can be incrementally trained

with the assistance of a human operator. We consider the behaviour of pedes-

trians in terms of motion trajectories, and parametrise these trajectories using

the control points of approximating cubic spline curves. This paper demon-

strates an incremental semi-supervised one-class learning procedure in which

unlabelled trajectories are combined with occasional examples of normal be-

haviour labelled by a human operator. This procedure is found to be effective

on two different datasets, indicating that a human operator could potentially

train the system to detect anomalous behaviour by providing only occasional

interventions (a small percentage of the total number of observations).

1 Introduction

The problem of identifying abnormal behaviour from surveillance video footage has be-

come a key focus in computer vision research. The task of continually and reliably mon-

itoring large numbers of video streams presents an insurmountable challenge for an indi-

vidual human operator, and stands to gain a great deal from computational automation.

In particular, there is a clear potential role for computer vision in providing first-order

interpretations of video data so that the relative salience of different video streams can

be quantified, and the attention of human operators appropriately prioritised. This work

explores a procedure for utilising minimal input from a human operator in the training of

an abnormal behaviour classifier and illustrates the benefits that this could provide.

In order to automatically identify events worthy of human scrutiny, it is necessary to

represent video data in terms of features which allow us to reliably distinguish unusual

behaviour from ordinary occurrences. One such feature consists in the motion trajecto-

ries that result from tracking the movements of pedestrians and vehicles over time: indeed,

motion trajectories have provided the basis for a large body of work on automated surveil-

lance. One of the earliest approaches to behaviour classification, proposed by Johnson and

Hogg [8], identified unusual behaviour by comparing new trajectories with a set of clus-

ters representing typical sequences of typical local motion vectors in a given scene. A

similar approach has recently been adopted by Hu et al. in [7], where typical trajectories

are modelled with a more complex hierarchical clustering strategy. In a different vein, re-

cent work by Dee and Hogg [1] has shown that unusual trajectories can also be identified

using a rule-based approach, inspired by cognitive science, which quantifies the extent to

which the movements of a given individual could be regarded as goal-directed.



A limitation of trajectory-based approaches is that they depend on the existence of re-

liable methods for tracking moving objects: while tracking is possible in certain scenarios

it is, in the general sense, an unsolved problem. In this light, one of the most promising

recent approaches to automatic behaviour analysis consists of decomposing video data in

terms of some low level representational primitive, and modelling the sequential topol-

ogy of behaviours in terms of such primitives. The low-level representational currencies

which have been employed range from the global representations of changes in scene

content employed by Xiang and Gong in [14], to the local optic-flow based motion de-

scriptors employed by Robertson and Reid in [11]. Sequences of such low-level primitives

are typically represented using Hidden Markov Models (and variants thereof) or Bayesian

Networks, which provide a powerful probabilistic framework for identifying anomalous

behaviour.

A good overview of automated surveillance approaches can be found in [2]. Despite

the diversity of models employed, all algorithms for identifying anomalous behaviour

ultimately rely on quantifying the extent to which a new example of behaviour can be

explained by a particular model. Thus, outside the unprecedented circumstance of having

a large corpus of examples of anomalous behaviour (or having a rule based model eg. [1]),

the detection of anomalous activity essentially corresponds to an unsupervised one-class

learning problem, where the goal is to construct a definition of normal behaviour from a

large set of examples of ordinary behaviour whose distribution - it is hoped - will yield a

low probability for the abnormal activity which we wish to detect.

In this paper we propose an incremental semi-supervised learning framework for mod-

elling the distribution of normal motion trajectories occurring in a particular scene. In the

proposed framework, the approval of a human operator is requested before incorporat-

ing any behaviour pattern that appears novel with respect to the model. The underlying

motivation for this is that, while it would be infeasible label every instance of normal

behaviour used to build a model, it would still be desirable to have some control over

the creation of such models. In particular it would be important to be able to prevent

examples of anomalous behaviour being inadvertently incorporated through gradual rep-

etition. Given that current automated surveillance approaches are intended to assist, rather

than replace, human operators, it would be desirable to make use of the opportunity for

occasional human feedback when training such systems.

Using the semi-supervised learning procedure proposed in Section 2.1, we show that

only a very small cost in terms of human classification effort is required to filter the data

needed to create a useful model of normal behaviour. This method could be regarded

as providing a low cost “safety net” to prevent the possible inclusion of anomalies when

training a behaviour classification algorithm. A key component of the proposed frame-

work is a novel incremental one-class learning algorithm, described in Section 2.2 (orig-

inally proposed in [13]) which provides a means to gradually build a model of normal

behaviour as new examples are added. This algorithm is trained on motion trajectories

which are parametrised by the control points of cubic spline curves (see Section 2.3).

While the proposed trajectory modelling/learning approach is in itself, novel, it is worth

noting that the semi-supervised learning framework we demonstrate in this paper could be

applied as a wrapper to any existing anomaly detection algorithm capable of incremental

unsupervised learning.



2 Method

2.1 Semi-supervised Learning Framework Given a sequence of motion trajectories

obtained from a pedestrian detection/tracking algorithm, we propose a method for incre-

mentally building a model of motion patterns corresponding to normal behaviour, utilising

occasional input from a human operator. At any stage of training, the model can be used

to make predictions about whether or a not a new example is normal. In the proposed

framework, illustrated in Figure 1, the approval of an human operator is requested before

incorporating new motion patterns which are anomalous according to the existing model.

Conversely, when a new example is classified as normal, it is automatically incorporated

into the model.

Human Operator

ANOMALOUS?

NORMAL

UPDATE

CLASSIFIER

Incremental One-Class Learning AlgorithmSpatio-temporal Trajectories from Video Data Cubic Spline Control Points

Figure 1: Self-training framework for (normal) motion trajectory modelling: Trajectories produced

by a tracking algorithm are represented with vectors of cubic spline control points (see Section 2.3) and then

assessed by a classifier. New examples classified as normal are automatically used to train the classifier (see

Section 2.2), while anomalous examples are passed to a human operator for approval.

The proposed learning procedure provides a way of using both labelled and unlabelled

examples to train a one-class classifier. This corresponds to a type of semi-supervised

learning known as self training, which has previously been used with success in a va-

riety of domains eg. [12]. Self training allows unlabelled data to be incorporated into

supervised learning problems (such as one-class learning) by labelling it with the (high

confidence) predictions of the classifier being trained. Here we are using the self training

framework as a means of parsimoniously requesting labels from a human operator for the

(predominantly normal) data used to build an anomalous trajectory classifier, by focusing

only on the relatively unusual examples.

2.2 Incremental One-Class Learning Algorithm A key component of the proposed

learning framework is an incremental one-class learning algorithm which can be trained

on a sequence of examples and, at any stage during training, estimate the likelihood that

a new example is normal. This is achieved by incrementally building a Gaussian mixture

model to describe the underlying distribution of the data (ie. data labelled as normal by the

operator/classifier), so that new examples with a sufficiently low likelihood with respect

to the model can be flagged as potentially anomalous.

At the early stages of training we model the underlying data distribution by placing

a Gaussian kernel function on each item of training data. This approach, known as ker-

nel density estimation, has been shown to be an effective way of modelling unknown



distributions for anomaly detection problems in a variety of domains [9]. At this stage,

each Gaussian component has an identical covariance matrix Σ(σ) = Id ·σ2. In the ab-

sence of any information about the data, we initially set σ to an arbitrarily small value of

0.001 and, as more observations become available, we start to use a value determined by

maximising the following leave-one-out likelihood function for the dataset1. (We use the

median of the log likelihood values, rather than the sum as originally proposed by Duin

[3], to prevent unnecessarily large values of sigma being estimated when the distribution

of initial training data is unusually sparse.)

σest = argmax
σ

[

Median{x1,...xN}

(

log

(

1

(2πσ)
d
2

·
1

N −1
· ∑
∀x 6=xn

e
−

||xn−x||2

2σ2

))]

(1)

As the size of the training set increases, the computational cost of evaluating new data

w.r.t. the model (which scales linearly with the number of training examples N) reaches a

maximum feasible limit (N = Nmax). At this point, whenever a new component (ie. a new

datapoint µnew = xnew with covariance matrix Σnew = Id ·σ2
Nmax

and weight wnew = 1
N+1

)

is added, a pair of components (which may include the new one) are merged. We choose

the pair of components Gi = {µi,Σi,wi} and G j = {µ j,Σ j,w j} to merge (see [13] for

details) by minimising the following information-theoretic cost function, as proposed by

Goldberger and Roweis in [4].

cost(Gi,G j) = wiKL(Gi||Gmerge(i, j))+w jKL(G j||Gmerge(i, j)) (2)

This cost function is a weighted combination of the Kullback-Leibler divergences

between each member of a hypothetical pair of Gaussian components and their merged

counterpart. The KL divergence represents the expected information loss per sample

when replacing one distribution with another, and can be easily calculated for a pair of

Gaussians:

KL(Gp||Gq) =
1

2

(

log
|Σq|

|Σp|
+Tr(Σ−1

q Σp)+(µp −µq)Σ
−1
q (µp −µq)

T −d

)

(3)

The proposed mechanism allows us to incrementally build a Gaussian mixture model

to represent the class of normal data, while placing minimal constraints on the complexity

of the model. To detect anomalies, we use a method proposed by Roberts et al. in [10]

in which the Gumbel distribution is used to place novelty thresholds on a Gaussian mix-

ture model. The key insight is that when drawing samples from a Gaussian distribution,

the expected distance of the most extreme sample changes according to the number of

observations made. This results in a cumulative probability function (Equation 4) for the

distance of the most extreme value out of N samples drawn from a multivariate Gaussian

G (where DM(z) is the Mahalanobis distance of a vector z from G, and N is the number

of observations used to estimate G). This function can therefore be used to determine if a

new example is anomalous (see next paragraph).

1Every time a new observation is added, we re-estimate σ by searching over a range of values. We phase

in the estimated value of σ according to the number of unique distances between data points observed so far:

σN = 0.001(1− N(N−1)
Nmax(Nmax−1) )+σest .(

N(N−1)
Nmax(Nmax−1) ) where Nmax is the maximum number of kernels that will be

added to the model, and N ≤ Nmax is the number of kernels currently added.
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The extent to which a new example can be explained by the model can hence be quan-

tified by determining its Mahalanobis distance w.r.t. the closest component in the model,

and then evaluating Equation 4. However, in order to classify new examples as normal or

anomalous, an arbitrary threshold must be set. Preliminary experiments have led us to set

a threshold at P = 0.8. Although the threshold is arbitrarily chosen, the advantage of this

method is that it allows a single threshold value to effect more/less conservative classifi-

cation boundaries for components representing fewer/more observations. To prevent the

possible inclusion of anomalies in the semi-supervised framework, a more conservative

threshold could be set for self-training on unlabelled data.

2.3 Trajectory Representation The proposed learning algorithm requires each obser-

vation to be encoded with a vector of fixed length – this poses a problem as each motion

trajectory consists of coordinate sequences of arbitrary length/time. We therefore need a

representation capable of encoding both the shape and spatiotemporal profile of a trajec-

tory in a consistent parametric form: this is achieved by approximating each spatiotem-

poral trajectory with a uniform cubic B-spline curve parametrised by time and defined by

a set of 7 control points (d = 3, p = 7).

S(t) = {X(t),Y (t)} = {
p−1

∑
i=0

CX
i Bi,d+1(t),

p−1

∑
i=0

CY
i Bi,d+1(t)} (5)

Every control point Ci = {CX
i ,CY

i } corresponds to a B-spline basis function Bi,d+1(t)
which is defined by a knot vector2 ~τ and the following recursive formulae:

Bi,1(t) =

{

1 if τi ≤ t < τi+1

0 otherwise
Bi,m(t) = t−τi

τi+m−1−τi
Bi,m−1 + τi+m−t

τi+m−τi+1
Bi+1,m−1 (6)

An approximation for the coordinates ~X = {x1, . . .xN} and~Y = {y1, . . .yN} of a pedes-

trian at times ~T = {t1, . . . tN}) can be expressed in terms of unknown control points ~CX , ~CY

and an N × p matrix Φ where Φn,i = Bi,d+1(tn), so that ~X ≈ Φ ~CX and ~Y ≈ Φ ~CY . Thus

the control points which minimise the sum of squared errors between the original trajec-

tory and its approximation can be found using the Moore-Penrose pseudoinverse operator

Φ† = (ΦT Φ)−1ΦT as follows:

~CX = Φ†~X ~CY = Φ†~Y (7)

To represent each trajectory we find ~CX and ~CY using a normalised time sequence 1
tN

.~T

so that Φn,i = Bi,d+1(
tn
tN

), and construct the following 15 dimensional vector, where the

2For a uniform cubic spline defined on the interval t ∈ [0,1) with 7 control points, ~τ =
{0,0,0,0, 1

4
, 1

2
, 3

4
,1,1,1,1}. See Gueziec et al. [5] for an overview of spline fitting.



final element is the total time taken. Figure 2 shows an example of a trajectory and

its reconstruction from the proposed representation, and illustrates the 7 basis functions

defined by Equation 6. A key assumption of our approach is that differences between

trajectories will be reliably reflected by distances in this representational space.
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Figure 2: Spatiotemporal trajectory approximation using cubic B-spline curves.

3 Experiments

In this section we demonstrate the proposed trajectory learning algorithm on a two dif-

ferent datasets, and show that it is possible - with only a small number of operator in-

terventions - to train a classifier that correctly recognises a large proportion of normal

behaviour without misclassifying any anomalies. In each instance we define a classifi-

cation problem with a small test set of motion trajectories corresponding to normal and

unusual activities. We then use another larger set of normal trajectories to incrementally

train our algorithm, and measure classification performance on the test set at every train-

ing iteration. For each dataset, we use the same settings for the learning algorithm: a total

of Nmax = 100 Gaussian kernels are added to the model before merging commences, and

we set a classification threshold at P = 0.8 (see Section 2).

3.1 CAVIAR “INRIA” Dataset The publicly available CAVIAR dataset3 consists of

video footage and tracking data for a range of behaviours performed by actors in the

entrance lobby of INRIA Labs, and contains around 60 complete tracks. We selected a

subset of 21 tracks to represent normal behaviour, consisting of people walking directly

from one exit point to another. We then selected a further subset of 19 tracks to define

anomalous behaviour, consisting of actors fighting, falling down, and leaving/collecting

packages. Although this data, shown in Figure 3, clearly encapsulates the type of problem

3Available at: ❤tt♣✿✴✴❣r♦✉♣s✳✐♥❢✳❡❞✳❛❝✳✉❦✴✈✐s✐♦♥✴❈❆❱■❆❘✴❈❆❱■❆❘❉❆❚❆✶✴



an anomalous trajectory detection algorithm should be able to solve, it is not sufficient for

testing our algorithm as there are no further examples available for training.

Normal Behaviour

(21 examples)

Anomalous Behaviour

(19 examples)

Figure 3: Test trajectories from the CAVIAR dataset.

We address the absence of additional training data by simulating a large set of ordi-

nary walking behaviour between the entry/exit points featured in the test sets. For each

pair of entry/exit locations, a route is hand-defined by a set of elliptical regions which

represent entry/exit points and way points. This allows us to generate a diverse collection

of possible paths by drawing sets of samples from these regions. Each set of samples

is then interpolated to form a series of subgoals, which are used to generate a realistic

trajectory in conjunction with the model for instantaneous pedestrian dynamics proposed

by Helbing and Molnar in [6]. We define a route model for each of the 11 entry-exit pairs

which appear in the test data and generate 100 simulated tracks for both traversal direc-

tions of each route, resulting in a total of 2200 tracks. Figure 4 shows the elliptical regions

defining one of the 11 routes (in ground plane coordinates) between two exit points and a

random subset of simulated tracks (10 from each route) projected onto the image plane.
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Simulated Tracks (10 shown per route)

Figure 4: Normal behaviour simulation for CAVIAR scenario. Left: ellipses indicate all entry/exit

points, and way points for a given route. Right: example simulated tracks coloured by route.

The proposed algorithm was trained on 10 different random orderings of the simulated



tracks. As each (simulated) training example is added, three things are measured: the pro-

portion of the (real) normal test data correctly recognised as normal (True Positive rate);

the proportion of (real) anomalous test data misclassified as normal (False Positive rate),

and the proportion of the last 20 training examples that would have required human ap-

proval before being incorporated (Intervention rate). The left-hand plot in Figure 5 shows

how these measures (averaged over 10 trials) change as more data is added to the model:

classification performance steadily improves until, at the end of training, an average True

Positive rate of T P = 80% (±5.85%) is achieved, with an average False Positive rate of

FP = 0%. Varying the classification threshold (on the cumulative probability - given by

Equation 4 - of a given instance belonging to its closest mixture component) yields the

ROC curve shown on the right hand side of Figure 5, which shows that a maximum value

of T P = 83% (±4.05%) can be achieved while FP = 0%.

The intervention rate drops very rapidly, with 75.5±1.9 interventions requested dur-

ing the first 100 training iterations, but only 63.3±23.9 interventions during the remaining

2100 iterations - corresponding to an intervention rate of 3% (±1.1%). For this dataset,

it is clear that only a small proportion of the training data needs to be labelled to achieve

a high level of classification performance.
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Figure 5: Classification performance on the CAVIAR dataset. See text for description (note that

the False Positive rate in the left hand plot rarely exceeds zero.)

3.2 Carpark Dataset While the simulated normal tracks used in Section 3.1 allowed

us to correctly classify real examples of normal and unusual behaviour, it is important to

ascertain that similar behaviour would result when training on real tracking data instead

of simulations. To establish this we train/test the algorithm on an additional (real) dataset,

shown in Figure 6, which consists of 262 trajectories documenting ordinary behaviour

taking place in a car park scenario, and a further set of 6 deliberately circuitous trajectories

corresponding to the behaviour of actors4. While this is still relatively small set of data,

it affords us the possibility of examining the classification performance/intervention rates

attained during the early stages of training with the proposed algorithm. We split the data

so that 235 (ie. 90%) of the normal examples are used for training our algorithm and 27

are retained for testing, along with the 6 anomalous examples.

The algorithm is trained for 10 different training/testing permutations of the available

normal data and, as for the previous dataset, performance measures are taken at each

4This dataset, kindly donated by Hannah Dee, was originally used for behaviour classification in [1].



Normal Behaviour

(262 examples)

Anomalous Behaviour

(6 examples)

Figure 6: Trajectories from the carpark dataset.

training iteration. Figure 7 illustrates the changes in performance observed: classification

performance steadily improves, reaching T P = 72.2% (±10.3%) after 235 training iter-

ations (it is interesting to note that for the CAVIAR dataset T P = 24.7% at this point),

with FP = 0%. The ROC curve obtained at the end of training indicates a maximum

of T P = 75.6%(±10.7%) can be achieved while FP = 0%. The intervention rate drops

steadily, albeit more slowly than for the CAVIAR dataset, with 65.5±3 interventions oc-

curring during the first 100 training iterations, and 46.6± 12 during the remaining 135.

A total of 112.1± 11.7 interventions occur during 235 training iterations, compared to

93.7±5.2 during this period for the CAVIAR dataset.

While it would be unwise to extrapolate these observations any further, they cer-

tainly do not rule out the possibility that the same low intervention rate observed for

the CAVIAR dataset might - given a larger set of training examples - be achieved in rea-

sonable time. At the very least, this data has provided an indication that the proposed

trajectory representation/learning approach can be effectively applied to real data as well

as simulations. It is additionally worth noting that the same learning/classification param-

eters have resulted in good classification performance for two different datasets, indicating

the efficacy of the underlying learning algorithm.
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Figure 7: Classification performance on the carpark dataset. See text for description (note that

only 235 training examples are available as opposed to the 2200 used in Figure 5.)



4 Conclusion

We have demonstrated a novel human-assisted learning/classification framework for iden-

tifying anomalous behaviour on the basis of motion trajectories. Using a novel incremen-

tal one class learning algorithm to model the distribution of typical motion trajectories,

we have demonstrated a mechanism that potentially allows a human operator to train an

anomaly detection classifier by providing very occasional interventions. A key criticism

that could be made is that the proposed method provides no principled safeguards against

anomalies being incorporated into the learning algorithm. However, if regarded as an al-

ternative to an entirely unsupervised learning algorithm, it is clear that our method could

at worst perform equivalently to such algorithms. In this vein, it is interesting to note

that the proposed learning framework could potentially be used as a wrapper for existing

unsupervised behaviour modelling algorithms. Future work seeks to further elucidate the

benefits of the proposed system through extensive testing on larger real-world datasets.
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