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ABSTRACT Semi-supervised learning is a machine learning approach that tackles the challenge of having

a large set of unlabeled data and few labeled ones. In this paper we adopt a semi-supervised self-training

method to increase the amount of training data, prevent overfitting and improve the performance of deep

models by proposing a novel selection algorithm that prevents mistake reinforcement which is a common

thing in conventional self-training models. The model leverages, unlabeled data and specifically, after each

training, we first generate pseudo-labels on the unlabeled set to be added to the labeled training samples.

Next, we select the top-k most-confident pseudo-labeled images from each unlabeled class with their

pseudo-labels and update the training data, and retrain the network on the updated training data. The method

improves the accuracy in two-fold; bridging the gap in the appearance of visual objects, and enlarging

the training set to meet the demands of deep models. We demonstrated the effectiveness of the model by

conducting experiments on four state-of-the-art fine-grained datasets, which include Stanford Dogs, Stanford

Cars, 102-Oxford flowers, and CUB-200-2011. We further evaluated the model on some coarse-grain data.

Experimental results clearly show that our proposed framework has better performance than some previous

works on the same data; the model obtained higher classification accuracy than most of the supervised

learning models.

INDEX TERMS Fine-grained classification, pseudo-labels, self-training, semi-supervised learning.

I. INTRODUCTION

An exponential growth of image classification has been wit-

nessed over the few two decades and its semantic organization

has become exceedingly expensive and difficult to manually

categorize. These large datasets are mostly organized in a

hierarchical order, where the deeper one goes in the hierarchy,

the finer the categories and the rare annotated training data

becomes, therefore obtaining training data for fine-grained

images becomes expensive as most of the time expert knowl-

edge is needed [1]. Distinguishing between a dog and a car is

easy because there are plenty of helpful visual cues. In com-

parison, the difference between fine-grained classes can be

very subtle, and only a few key features matter. In feature

The associate editor coordinating the review of this manuscript and

approving it for publication was Fatih Emre Boran .

space, these subcategories are fundamentally distinct from

one another. Another difficult task that we face is labeling

all categories of fine-grained images. A large number of

images in the ever-changing world makes it overly expensive

to gain labeled examples for every category. The fine-grained

classification task emphasizes differentiating between hard-

to-distinguish image classes such as species of birds, dogs,

flowers or even models of automobiles. Most previous works

have focused on tackling the intra-class variations in perspec-

tive, illumination and pose using some localizing techniques

and augmenting the training data with additional ones from

the web with a little focus on the intra-class similarities that

tend to make powerful models not able to generalize well on

fine-grained classification tasks. It was observed that these

fine-grained classification tasks tackle the problem as Large

Scale Visual Classification tasks with much focus on the
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inter-class variations as compared to the intra-class varia-

tions present in the former. Also, fine-grained datasets are

a combination of small, non-uniform, and minute inter-class

differences, that make the classification tasks challenging

even for powerful state-of-the-art learning models. In view

of the issues above, we propose a learning method focusing

on the problem of semi-supervised learning for fine-grained

visual classification where we try to train a model that gen-

eralizes well on target samples, given the condition that

there is a provision of both well-labeled source samples and

labeled together with unlabeled target samples at training

time. We propose to assign pseudo labels to target samples,

and via self-training, train the target-specific model with the

pseudo-labels as if they were true labels.

Conventional Self-training is a semi-supervised learning

method that can learn decision boundaries from samples. It is

a commonly used method in domains, such as Natural Lan-

guage Processing [2]–[4] and object detection and recogni-

tion [5]. Traditionally, it can learn a better decision boundary

for the source and target samples with hand-crafted features

with less consideration on features distribution matching.

Thereby combining Convolutional Neural Network (CNN)

with self-training becomes a powerful method that can learn

a far better decision boundary and find a more advanced

feature space that matches source and target samples distri-

bution. This is somewhat similar to adversarial training based

methods; however, it uses a simpler approach where feature

learning is guided by a cross-entropy loss that enhances the

closeness of the source and target features as well align-

ing the class-wise features. Self-training is carried out by

occurring in turns; a generation of a set of pseudo-labels

corresponding to a large selected metric probability score,

and fine-tuning a network using the training set together

with the generated pseudo-labels based on an assumption

that the test or target samples with the highest prediction

probability are selected to be added to the labeled training

set. Sometimes the visual domain gap between training and

test domains is usually different between classes. This can

result in different degrees of difficulty for the network to learn

transferable features for each class. In addition, there is an

imbalance in the distribution of the various classes, and this

causes prediction confidence problems for various classes,

but this proposed work, focuses on the best way of select-

ing the highest predicted probability confidence pseudo-

labels. In all, we propose a typical CNN-based self-training

method for Fine-grained objects recognition with a focus

on:

Improving deep neural networks for fine-grained classifi-

cation by combining self-training and Convolutional Neural

Network for fine-grained objects classification.We formulate

a loss minimization scheme, solving it by using an end-to-end

approach. Both domain-invariant features and a classifier are

expected to be learned. Therefore, aiming at how to learn the

discriminatory features by building a target specific network

and feed it with artificially labeled samples. Self-training

with a standard network architecture as a base-network,

we leverage a classifier to artificially label unlabeled sam-

ples and retrain the classifier. However, this method does

not assume that the labeled samples are drawn from differ-

ent domains. We employ a k-fold cross-validation method

to solve the class imbalance problem. In self-training for

fine-grained classification, the implementation has no added

overhead in training or prediction time and provides per-

formance improvements both in fine-grained classification

tasks and coarse-grain tasks that involve transfer learning

with small amounts of training data. We obtained a great deal

of performance on four of the most widely-used fine-grained

recognition datasets, improving over some previous-best pub-

lished methods.

II. RELATED WORK

Studies on classifying images are very important in the

field of computer vision. Over the years, many image clas-

sifications have been done, most of them being done by

the use of deep neural networks. Deep neural networks

have over the years achieved tremendous performances on

different datasets [6]–[9]. Generally, deep learning models

are built to learn hierarchical feature representation directly

from categorical data, where they have been very success-

ful. However, in the face of sub-categorical classification,

deep learning algorithms have struggled and obtained poor

performance [10], due to less availability of well-annotated

data, occlusion, high intra-class variance and a vast set of

similarities present in these sets. In this work, we investigate

a semi-supervised self-training technique for fine-grained

recognition. The concept of fine-grained here can be seen as

objects with similar properties or attributes. By associating

attributes to subcategories, it becomes easier to estimate these

attributes by conducting a classification task on fine-grained

image samples. CNNs, since their inception from the early

days of the 1990s, have been very consistent and competi-

tive with other machine learning techniques for classifying

images. Tasks such as character recognition, image classifica-

tion and object recognition in videos have been successfully

implemented with high detection and classification accu-

racies. Notably of these tasks where the best results have

been achieved are MNIST [6], CIFAR [11] and the almighty

ImageNet classification challenge [8], which has become the

standard for evaluating for what is the current state-of-the-

art in image classification and recognition. Several large and

deep CNN algorithms [7]–[9], [12]–[14] have been proposed

which have achieved different accuracies and losses that are

considerably better than using conventional machine learning

techniques.

A. FINE-GRAINED VISUAL CLASSIFICATION

This task has been well studied particularly since the incep-

tion of Deep Neural Networks (DNNs) [1], [15]–[22]. How-

ever, its applicability, in reality, is hindered by the limited

amount of available well-annotated data. Some works such

as [18] have used large available datasets and adapted them

to a small set, whereas in some settings large scale noisy data
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were used in training the models [23]. Such approach makes

it difficult for models to easily generalize well to real-world

tasks, given that these training images may have been derived

from field guides. And because of the significant varia-

tions in the appearance of objects, between the real-world

images and the training sets, model generalization is

hampered.

B. SEMI-SUPERVISED SELF-TRAINING

The availability of large unlabeled data and less labeled ones

is a common challenge in the application of computer vision

models. A better way to solve this challenging task is by

using a semi-supervised learning approach that will make

use of both labeled and unlabeled data. Supervised learning

relies on labeled samples to train a good classifier. However,

the time-consuming nature, along with expert guidance of

data labeling makes it difficult to acquire enough labeled

data. These tend to hinder the applicability of supervised

learning models in real-world scenarios [24]. A way to deal

with this is using a semi-supervised learning paradigm that

uses unlabeled data [25]–[28]. This methodology necessarily

does not need all samples to be labeled. It uses an amount

of unlabeled data, together with the labeled data, to build

better models that require less human effort and yields high

performance [26]. Self-training is a semi-supervised learning

scheme that iteratively, enlarges the labeled training sample

set [29]. Initially, a model is trained with a set of labeled data

samples, followed by prediction on the unlabeled data and

then a selection of the unlabeled data with high confidence

to be incrementally appended to the labeled training data

with their predicted labels. It is a technique that leverages

a supervised model to generate pseudo-labels for unlabeled

data samples and add the samples that are selected with the

highest confidence to the training data together with their

generated pseudo-labels, thereby enlarging the training data

size. This procedure is repeated until the model converges.

And it is a method that has been implemented and used in sev-

eral [3]–[5], [29]–[32] studies and applications. The classifier

uses its predictions, which are the pseudo-labels generated for

unlabeled data to teach itself. Typically, the highest-confident

unlabeled points, together with their predicted labels are

the ones selected. In [32], a method was proposed to use

a self-paced learning model that learns to detect objects

from images and adapt those objects to videos by learning

labeled source samples and target data with pseudo-labels in

an easy-to-hard manner. Xuanyi Dong et al. also proposed

few-example object detection [33] scheme. With a limited

number of annotated data they trained models that would

go on to iteratively learn and detect objects in images by

utilizing the self-paced learning technique to solve object

detection problem. Their model was able to learn the dis-

criminative features and reliably select samples from the

large pool of unlabeled samples. The self-paced learning

algorithm proposed by Xuanyi was further improved in [34]

to detect facial landmarks by learning from partially labeled

samples. In that work, the authors improved the self-paced

learning with meta-learning. A detector was trained on a

set of labeled images to generate new training samples

using this detector’s prediction as pseudo-labels of unlabeled

images and retrain the detector on the labeled samples and

partial pseudo-labeled samples. An easy-to-train interaction

mechanism between teacher and students to provide more

reliable pseudo-labeled samples was proposed. The teacher

network judges the quality of pseudo-labels generated from

students network and give a feedback to the students by

selecting a qualified pseudo-labeled samples to retrain the

students network for them to become more robust. Another

study [35] proposed the use of constraints to label a pool

of unlabeled data and then use that newly generated labeled

data to enlarge and update the model to bridge the gap

between source and target domains, by slowly adding them

to the training set from both the target features and instances

in which the model is highly confident. The method was

modified to suit a sentimental classification task in a dif-

ferent research [36]. In that work, the authors proposed a

technique that uses a high precision classifier that is made

up of linguistic rules to influence the selection of training

candidates, which are artificially labeled by the base learner

in an iterative self-training process. The linguistic knowledge

encoded in the classifier is highly precise, that, it does not

just select the high-confidence training samples but also in

the pre-processing stage, corrects the high-confidence errors

made by the base-classifier based on the work proposed

in [35]. We propose a variant self-training that differs from

the conventional self-training method in the way the selection

of examples are appended in a single iteration with the learner

not constrained. Self-training has been very efficient, there-

fore in this study; we adopt a CNN learner as the base-learner

and a novel selection algorithm that prevents mistake rein-

forcement; reinforcing wrong predictions to enlarge set along

the training process, which is a common thing in con-

ventional self-training models or Expectation-Maximization

algorithms.

III. SELF-TRAINING FOR FINE-GRAINED CLASSIFICATION

Fine-grained datasets in computer vision are way smaller

than general-object large visual classification datasets and

possess a great deal of imbalance across classes. More-

over, the samples of a class are not the accurate represen-

tation of the characteristic differences in the visual class

itself. Also, there is over-fitting when deep neural net-

works are trained with a smaller set of data even when

either trained with huge parameters or preliminary layers

frozen. Besides, the training samples are mostly not the

complete representation of the real-world data, with some

classes having abundant samples than others. Challenges

such as these impede the application of fine-grained clas-

sification tasks in reality. Classes with fewer samples may

not be well represented during training, sometimes forcing

the neural network to latch onto sample-specific artifacts

in the image, instead of learning the versatile artistic fea-

tures for the target image. A pleasing strategy is to follow
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FIGURE 1. Illustration of semi-supervised self-training framework algorithm workflow: A deep-CNN
classifier is initially trained on a set of labeled images, generate new pseudo-labeled training samples
from unlabeled images, select most confident pseudo-labeled samples via selection algorithm and
retrain the classifier. The premium pseudo - labeled data along with real - labeled data are used for
the retraining process.

an ‘easy-to-hard’ design via self-paced curriculum learning,

generating pseudo-labels from the most confident predic-

tions with a hope that they are mostly correct, ensuring

that, the model is updated and better adapted to the test

domain, with a further examination of the less-confident pre-

dictions. A new pointillistic method, called Semi-Supervised

Learning for Fine-Grained Classification (SSLGFC) via self-

training, which integrates Semi-Supervised Learning(SSL)

and Fine-Tuning CNNs, is proposed considering the three

characteristics of fine-grained visual classification, i.e., the

high intra-class similarities, the small sample size, and the

existence of unlabeled data. Looking at the workflow of the

proposed system illustrated in Fig. 1, a DNN is first trained

with images fed into it and then a prediction is done on

unlabeled data by themodel after training, generating approx-

imate labels known as pseudo-labels for the unlabeled sam-

ples. A selection algorithm is then run to select the unlabeled

samples that have the highest-confidence probability predic-

tion together with their approximated labels to be added to

the training set, this cycle is iterated over for a number of

times. Compared to other visual classification approaches,

the main merit of SSLGFC is in two aspects: (1) Self-training

is introduced to use a self-paced ‘‘easy-to-hard’’ way to avoid

reinforcing wrong predictions to enlarge the training set dur-

ing the training process. In short, this is to avoid mistake

reinforcement, and (2) an enhanced semi-supervised self-

training classification algorithm that can effectively classify

fine-grained samples by using a small labeled sample size and

utilize its effectiveness for both labeled and unlabeled data.

To our best of knowledge, this work is the first to study this

classification approach in the fine-grained scenario.

A. PRELIMINARIES

Given the labels for few images in the same task for both

source and target, the most direct way to improve classifica-

tion and generalization is supervised fine-tuning models on

both domains. Following a setting with n classes, the desired

classification objective is defined as a standard softmax loss

on the labeled source data as inputs xs, ys and the target

data xt , yt .

Lc (χ, y : θc)W = −
∑

k

1[y = k] logPk . (1)

In Eq. 1, the goal is to produce a classifier θc that can cor-

rectly classify target samples at the time of testing. However,

based on the assumption that, access to a limited amount

of labeled target data, potentially from only a subset of the

categories-of-interest, the transfer of representations using

Fine-Tuning becomes inefficient. Therefore, we propose to

use a semi-supervised model with softmax output by formu-

lating the problem as minimizing the loss function:

minLst (W )W = −

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn(W , Is))

−

T
∑

s=1

N
∑

n=1

YT
t,n log (Pn(W , It )). (2)

where Is denotes the image in source domain indexed by s

= 1, 2, . . . ,S. Ys,n the true labels for the nth image (n =

1, 2, . . . ,N ) for Is, and W contains the network weights.

Pn(w, Is) is the softmax output containing the class proba-

bilities. Such similar definitions goes for It ,Yt,n and pn(w, It )
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at evaluation time.

minLst

(

W , Ŷ

)

W ,Ŷ
= −

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn (W , Is))

−

T
∑

s=1

N
∑

n=1

ŶT
t,n log (Pn(W , It )). (3)

The problem can further be formulated to minimize the loss

function in Eq. 3. Given a situation where some of the tar-

get labels are unavailable, the model considers the labels

to be hidden and learns from an approximate target labels

Ŷ for Ĉ representing the number of classes. We refer to

Ŷ as pseudo-labels which shall be used to train the model

again iteratively and such training strategy is known as Self-

training.

B. SELF-TRAINING FOR CLASSIFICATION WITH

SELF-PACED LEARNING

A paradigm of self-training that jointly learns a model and

optimizes pseudo-labels on a set of unlabeled data is difficult

as there is a possibility to incorrectly generate pseudo-labels

which approximates the true ground labels. In order to avoid

reinforcing wrong predictions into the training set, an ‘easy-

to-hard’ self-training approach would be used. An ‘easy-to-

hard’ self-training approach generates pseudo-labels from the

most confident and correct predictions, updates the model

and better generalize on classifying unlabeled target data. The

approach then later explores the less confident pseudo-labels

that are remaining, and including this in the scheme, we mod-

ify Eq. 3 to:

minLst

(

W , Ŷ

)

W ,Ŷ

= −

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn (W , Is))

−

T
∑

s=1

N
∑

n=1

[∫ 2

1

ŶT
t,n log (Pn (W , It))+ k

∣

∣

∣
ŶT
t,n

∣

∣

∣

1

]

. (4)

In the modified formulated loss in Eq. 4, Y is assigned 0

when the pseudo-label Ŷ is ignored during the model training

phase. L1 regularizer is added to the loss function to serve

as a negation to prevent the case of ignoring a large num-

ber of pseudo-labels. The factor k > 0 ensures that more

pseudo-labels are selected for training the model. Meaning

a larger k ensures that a large number of pseudo-labels are

selected. Minimizing the Loss in Eq. 4 uses the two coordi-

nating steps below:

a) InitializeW and minimize the loss in Eq. 4 with respect

to Ŷt,n.

b) Set Ŷt,n and optimize the objective function in Eq. 4 with

respect to W .

Executing step a) followed by step b) is considered to

be a single iteration. As mentioned early on, we propose

a semi-supervised method, a self-training algorithm where

step a) and step b) are executed in succession and repeated

for multiple rounds. Meaning, in step a), a portion of the

most confident pseudo-labels are selected while step b) does

the training of the network model when the pseudo-labels

have been selected in step a). The algorithm flow in the

self-training for fine-grained classification framework is

depicted in Fig. 1. Step b) results in network learning with

an optimizer. But step a), given the optimization over discrete

variables, needs a nonlinear function. So step a) can be refor-

mulated to Eq. 5, given k > 0.

min
Ŷ
−

T
∑

t=1

N
∑

n=1

[

∑

Ŷ
(c)
t,y log (pn(c|w, It ))+ k|Ŷt,n|1

]

.

s.t. k > 0 (5)

Because Ŷt,n is either needed to be a discrete one-hot vector

or a vector with a null magnitude, the pseudo-label framework

is optimized by way of using the solver in Eq. 6.

Ŷ
(c∗)
t,y =











1, if c = argmax pn (c|w, It),

pn (c|w, It) > exp(−k).

0, otherwise.

(6)

Compared with conventional self-training methods that

are able to learn domain-invariant classifiers, CNN based

self-training methods can learn both domain-invariant classi-

fiers and domain-invariant features. Intuitively, CNN based

self-training can better learn and alleviate the intra-class

variations challenge that faces deep learning models in clas-

sifying fine-grained images. Therefore, the softmax loss in

Eq. 6 tries to reduce the domain variations in feature space.

It can alsomake themodels learn features andweights with no

prior observation of unlabeled samples to solve the missing

value (pseudo-label) problem that befalls both traditional

self-training and Expectation-Maximization (EM) methods.

FromEq. 6, it can be seen that the generation of pseudo-labels

in Eq. 5 hinges on the output (pn(c|w, It )). Assignment of

pseudo-labels is done using the output. Because, self-training

generates pseudo-labels that corresponds to large confidence,

a challenge that prevails most often is, models tend to be

biased toward classes with large-sized samples that are,

initially transferred well and do away with less-sized classes

during the training process. Thus self-training algorithms

do not perform well in multi-class classification problems.

To gain mastery over this issue, k|Ŷt,n| is introduced in

Eq. 5, to determine the proportion of pseudo-labels Ŷt,n
that would be selected from each class and to assign a

pseudo-label to a sample and one-hot encode, the output

probability (pn(c|w, It )) in the solver Eq. 6 doesn’t have to

be less than exp(−k) otherwise it is assigned a zero-vector

and ignored. It may be noted that, the proposed configura-

tion of the semi-supervised self-training algorithm is sim-

ilar to [31], [32] and many other related works. However,

the suggested framework presents a generalized model for

self-training, with much focus on the generation and selection

of pseudo-labels with self-paced learning using a curriculum

learning method. The generation of pseudo-labels is coupled

with curriculum learning under a single unified learning
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Algorithm 1 Algorithm for Determining k In

input : Deep Learning Network P (w), unlabeled

Images It , selected pseudo-labels p

output: k

for t ← 1 to T do

PIt = P(w, It );

MPIt = max(PIt , axis = 0);

M =
[

M , from− matrix − to− vector(MPIt )
]

end

M = sort(M , order = descending) L = length(M )× p

k = − log (M [L]) ;

return(k)

framework. More significantly, in terms of the specific

application of classifying fine-grained images, the above

self-training structure throws more light on a relatively new

direction for classificationmodels. The proposedmodel high-

lights on a different way of classifying unlabeled images from

a small amount of well-labeled images in the fine-grained

domain with an extension to coarse-grained domain

samples.

C. FIXING AND FINDING
(

k
)

IN SELF TRAINING

ALGORITHM

k is a crucial determinant that decides the number of

pseudo-labels to be added to the training set after each itera-

tion phase. It filters out the pseudo-labels with their probabil-

ities less than k . We set k by taking the maximum probability

on each sample, sort these probabilities across all samples and

all classes in a descending order. k is then set, so that exp(−k)

would equal the ranked probability round at (p ∗ T ∗ N ),

where p is a portion number between [0, 1]. Optimizing the

pseudo-labels in this case produces p × 100% confident

pseudo-labels for training. Algorithm 1 gives the concise

determination of k in the proposed framework. It is designed

to allowmore pseudo-labels to be added to the training set for

each additional round. To be specific, p starts from 10% of

the most confident predictions, and at each additional round,

the top 5% is included in the next iteration of the pseudo-label

generation process. The maximum limit of p is set to 50%.

From the algorithm, M is the maximum probability output

on each sample, sort such probabilities across samples and

classes.

IV. EXPERIMENTS

In this section, a comprehensive evaluation of the pro-

posed method by performing experiments on benchmark

datasets, are provided. We explore each unit of SSLGFC

on four publicly available fine-grained visual classifica-

tion (FGVC) datasets. We conduct additional experiments on

some selected coarse-grained classification datasets (Natural

Images [37], caltech-101 [38] and food101 [39]) to demon-

strate the effectiveness of the semi-supervised self-training

method in a limited labeled data setting.

TABLE 1. A summary information of four state-of-the-art fine-grained
datasets.

A. DATASETS AND EXPERIMENTAL SETUP

1) DATASETS

We experimented the method on four state-of-the-art FGVC,

which are CUB-200-2011 [40], Stanford Dogs [41], Stan-

ford cars [42], and 102 oxford flower [43]. The complex-

ity of these datasets is high due to the uncountable simi-

larities existing among classes, occlusion, high intra-class

variations, imbalance set, just to mention a few. A sum-

mary of the specifics on these datasets have been provided

in Table 1.

2) STANFORD DOGS

A set of images containing breeds of dogs across the globe.

It is a subset of the Imagenet [44] annotations that are

prepared for the task of fine-grained visual classification.

The annotations have class-labels as well as bounding-boxes.

However, for the sake of semi-supervised classification pur-

poses the bounding boxes are dropped. The test set consist-

ing of 8580 samples was used as the unlabeled data in this

experiment.

3) STANFORD CARS

The Cars dataset contains 16,185 images of 196 classes

of cars. The data is split into 8,144 training images and

8,041 testing images, where each class at the level of

the model, make, year, etc. has been split approximately

50-50 percentage-wise. Following the supervised training

procedure, the training set with its annotation was used to

train the base-learner. It was split into a ratio of 70% for

training and 30% for validation. The test set was used for the

semi-supervised learning phase where the annotations were

dropped thereby using the test as unlabeled data.

4) CUB-200-2011

A challenging set of 200 bird species put together for

fine-grained classification purpose. It contains 11,788 images

of birds species with 5,994 training samples and 5,794 images

in the test set. The experiment had two phases, with the first

being the supervised learning phase where the base-learner is

trained with the training set, including their true labels, and

the second phase being the semi-supervised learning stage.

In the second phase, the test set without its annotation was

used to train the classifier.

5) FLOWER-102

A set of 102 category dataset, consisting of 102 flower

categories which are chosen to be flowers frequently
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FIGURE 2. Prediction on Stanford Dogs using Top-10% ST approach: In the figure, the true class and the predicted class together with their probabilities
have been given. We observed that most of the images were predicted correctly with just three out of 25 wrongly predicted. And the prediction
probabilities as depicted in figure, are high.

occuring in the United Kingdom. Each class consists of

between 40 and 258 images. It is a challenging set, due to

both small inter-class and large intra-class variances and the

images have large scale, pose and light variations. It consists

of 8,189 samples that have been divided into a training set,

validation set and a test set. The number of samples for the

training set is 1,020, and the validation set just as the training

set contains 1,020. The test set has 6,149 samples. And in this

experiment setup, the test set is used as the unlabeled data for

the self-training part.

Further experiments were run on coarse-grain datasets,

to evaluate the method. The summary of which has been

divulged in Table 2. Due to hardware limitations, only

21,000 samples of the food101 dataset were experimented

on, with 93 categories having 208 and the remaining 8 being

made of 207 samples. Also, the coarse-grained datasets had
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TABLE 2. A summary information of some selected coarse-grain datasets.

TABLE 3. Self-training(ST) approach performance on Stanford Dogs.
Comparisons of accuracies on the Stanford dogs dataset by the various
self training approaches and our proposed method. Baseline (fine-tuning)
indicates that, the pre-trained model was fine-tuned with only labeled
samples. The ratio number in the brackets represents the portion of the
most confident pseudo-labels that we use. Compared to supervised
algorithm which use 100% labels, ST obtained higher accuracy and
improved significantly when a portion of the generated pseudo-labeled
samples was used.

no test-set which would go on to be used as unlabeled set to

suit the scenario, so we divided the entire set into approx-

imately two equal ratios with one part used for supervised

training and the remaining for the semi-supervised setting.

B. IMPLEMENTATION DETAILS

In the experiments, the pre-trained Inception_ResNetV2 [45]

was chosen as the baseline model of the proposed

protocol. Inception_ResNetV2 is a variation of Incep-

tion_V3 [46] model which borrows some ideas from

Microsoft’s ResNet [47]. It is able to significantly improve

recognition performance of objects at a relatively low com-

putational cost. Fine-tuning of pre-trained networks using

Imagenet has been evaluated by various previous studies

and it has been shown to be among the best techniques for

deep CNNs to gain improved performance when applied to

small scale data. And in this scenario, where the problem

is a fine-grained classification task with limited amount of

data, fine-tuning technique is implemented at the fully super-

vised learning phase to initialize the model weights and also

reduce the variance. Data augmentation of random rotation,

vertical flips, and zooming techniques were performed to

regularize our model during training. We trained the model

using an Adam optimizer [48] with β1 = 0.9β2 = 0.999,

50 number of epochs, a mini-batch of 32, and an initial

learning rate of 1e-3 that decays upon countering a plateau

in the learning process. A single NVIDIA GTX1080Ti GPU

was used to run the experiments. We retrain our SSLFGC

model with hyper-parameters for top k using 5%, 10% and

20% pseudo-labeled samples of the unlabeled data, in all

our experiments for simplicity. According to Eq. 4, the fac-

tor k ensures more higher-confident pseudo-labeled samples

are selected for the retraining process. It is a critical and

TABLE 4. Self-training(ST) approach accuracy on Fine-grained datasets:
The ratio of the most confident pseudo-labels that we used are put in
brackets. Compared to the supervised algorithms which use 100% labels,
the conventional way of self training by using 100% of the
pseudo-labeled samples and the model weight, the accuracy was
bettered in cases where the top k pseudo-labeled samples was used.

TABLE 5. Comparison with related works on Stanford Dogs: Comparisons
of accuracies with related works and our proposed method. Baseline
(fine-tuning) indicates that, the pre-trained model was fine-tuned with
only labeled samples. The ratio number in the brackets represents the
portion k = 5%, 10 and 20% respectively of the most confident
pseudo-labels that were used. Compared to the supervised algorithms
which use 100% labels, ST obtained higher accuracy and improved
significantly when a portion of the generated pseudo-labeled samples
was used. We observed The top 20% did not obtained a high accuracy
and was just a percent more than FCAN.

a crucial factor so by setting k to 5%, 10% and 20% means

the k-maximum probabilities across all samples and classes

that has been regularized with the L1 regularizer are used in

the Tth iteration. In the implementation of our experiments,

suppose that the number of selected images for the cth class

is p then k = − log(M [L]) as detailed in Algorithm 1.

C. ACCURACY CONTRIBUTION AND COMPARISON

Our Self-training method was deployed using three different

approaches. 1. Using all the generated pseudo-labels for the

unlabeled set; 2. Setting a threshold (K ) to use the top-

5%, top-10% and top-20% confident pseudo-labels; 3. And

using the weight of the trained model. However, as described

above, the second approach was investigated deeply, although

accuracies are reported on each aprroach. We experimented

on the fine-grained dataset and demonstrated that each

approach uniquely improves the classification accuracy

as shown in Table 4. There was a significant improved

performance by the SSLFGC model on all the datasets.

A further fully-supervised experiment was conducted using

a fine-tuning approach and the performance was compared

with the proposedmodel. It can be seen from Table 5, Table 6,

Table 7, Table 8, and Table 9 that, the SSLFGC method per-

formed better with regards to obtaining a higher accuracy than

the supervised learning approach of using and fine-tuning the

Imagenet pre-trained model.
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FIGURE 3. SSLFGC Prediction on CUB-200-2011 using Top-10%: The model struggled to obtain the same similar performance it had achieved on the other
datasets. Yet the model predicted the images with very high confidence although 6 samples were wrongly classified.

D. COMPARISON WITH RELATED WORKS

1) FINE-GRAINED RESULTS

A comparison of our semi-supervised method with some

related works on fine-grained classification tasks. We exper-

imented on Stanford-dogs and demonstrated how each

approach of the model impacts the classification accuracy

which is provided in Table 3. It can be seen that, in the

first approach where all the generated pseudo-labels for

the unlabeled set were used in the self-training process,

although it obtained a performance higher than the supervised

learning approach, the model could not achieve the accuracy

that was achieved by the other two self-training approaches.

Both the top-k and the weight usage approaches significantly

obtained higher accuracies on all the datasets. For instance,

on the CUB-200-2011 dataset, almost all the approaches had

a setback to obtain a higher accuracy but such was not the

case for the top-5%. A decent accuracy was obtained and

it goes to confirm the point that, given the most-confident

generated pseudo-labels, the model will achieve a signif-

icantly improved accuracy. A visualization of predictions
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FIGURE 4. Prediction on natural images using Top-10% approach: The model achieved a perfect performance of being able to classify samples drawn
from the natural dataset. Given that there were so many discriminative features existing among the samples, the classifier had a 100% prediction
accuracy.

on the validation set proved the capability of the top-10%

approach as provided in Fig. 2. In Fig. 2, the top − 10%

approach had three predictions out of twenty-five wrongly

classified, and not only did the model predict the cor-

rect dog in most cases but did that with very high con-

fidence. However, we realized the high accuracy obtained

by the model on the Stanford dogs, Stanford cars, and

102 Oxford-flowers was not the case when the model was

experimented on the CUB-200-2011 birds dataset as pro-

vided in Table 7. The model managed to obtain a decent

performance accuracy when compared with the other datasets

although the model choked. We visualized to investigate the

prediction confidence and further observed that, although

the performance accuracy was not so high as compared
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TABLE 6. Comparison with related works on Stanford Cars: Comparisons
of accuracies on the Stanford cars by some supervised approaches and
our proposed method. In the supervised algorithm which use 100%
labels, the SSLGFC algorithm with top-10% bettered the accuracy with a
slight margin when compared to PC. The top 5% however did not do so
well and we observed that, utilizing just 5% of the most confident
pseudo-labeled samples was not enough to meet the hunger of deep
CNNs.

to the other datasets, most of the predictions were right,

and that was done with high confidence too. The various

results have been provided in Table 5, Table 6, Table 7,

and Table 8 respectively on the various fine-grained datasets.

From the tables, we give the performance comparisons

between SSLFGC and some works on the various datasets.

Pairwise confusion(PC) [49], Fully Convolutional Atten-

tion Localization Networks(FCAN) [20] and Multi-attention

multi-class constraint(MAMC) [50] have been recognized

as powerful supervised classification methods for dealing

with small sample size and fine-grained classification tasks.

However, we found that the semi-supervised learning method

proposed, i.e., SSLFGC performed significantly better than

the supervised algorithms with improved accuracy of 91.67%

for the dogs, 92.30% for cars, 96.72% for flowers and 82.72%

for CUB-200-2011 respectively. When compared, the per-

formance was not so good on the CUB-200-2011 birds’

dataset, and a possible reason is that the several similarities

present, the background, and the small sample size for the

various classes affected the model’s performance. Aside from

that, SSLFGC effectively utilized the information buried in

unlabeled samples and thus achieved a better classification

performance than other models. One intriguing thing is the

consistency at which the top-K approach obtained improved

accuracies than other methods and approaches. It goes on to

say that the proposed selection algorithm which was inte-

grated as part of the self-training process was helpful and even

in a case where the model struggled, it could still manage a

decent result.

2) COARSE-GRAIN RESULTS

We evaluated the method on coarse-grain datasets and com-

pared the results (see Table 9). among the three ways through

which self-training is implemented. The method obtained

high performance in terms of accuracy, largely; however,

the performance in the approach, where the determinant k;

here, the top-5%, top10% and top-20% were used achieved

higher accuracy than the rest of the approaches. There was

not so much a big difference between the accuracy obtained

by the top-5% and the top-10% when compared to the other

TABLE 7. Comparison with related works on CUB-200-2011: The
supervised related works chalked better performance than our SSLFGC
algorithm. Although utilizing the top 5% pseudo-labeled samples for the
semi-supervised learning phase, the top 5% did not achieve the accuracy
it obtain on CUB-200-2011 on the other three datasets. It obtained a
decent accuracy and fall short by a margin of almost 4% when compared
to PC which obtained 86.87%. We observed that when it comes to
classifying birds, it is not only about quantity but rather the discriminative
features can help greatly.

TABLE 8. Comparison with related works on Oxford 102-flowers: 100%
labeled samples was used for the supervised fine-tuning,and even with
that SSLGFC algorithm with top-10% bettered the accuracy with a big
margin when compared to related works.

TABLE 9. Results of the approach on coarse-grain datasets: Performance
of the model using the three different self-training approaches on
coarse-grained. The supervised learning method is seen back to its best
by achieving a high classification accuracy. In the supervised algorithm
which use 100% labels, the SSLGFC algorithm with top-10% bettered the
accuracies obtained by the supervised learning. On the Caltech-101, top
5% obtained the same accuracy just as the top 10%. On the food dataset,
the performance is decent but not great.

results. Although, there were some misclassified samples

in the fine-grained datasets, such was not the case in the

coarse-grained sets as depicted Fig. 4, and we can attribute it

to the fact that the vast variance present in coarse-grained sets

hugely contributed to their 100% correct predictions. Also

the impressive results obtained for the coarse-grained datasets

go to confirm how challenging and difficult fine-grained

classification tasks are.

V. CONCLUSION

The high intra-class similarities, small sample size, and

enrichment of unlabeled samples of fine-grained data

represent significant obstacles for learning approaches to
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Fine-grained visual classifications. To overcome these dif-

ficulties, we proposed a novel semi-supervised self-training

method that uses self-paced learning, called SSLFGC, for

visual classification using fine-grained data. Self-paced

learning is introduced to alleviate reinforcing wrongly gen-

erated pseudo-labels for unlabeled samples to enlarge the

training set. To utilize the information from the unlabeled

data, the self-training technique was applied in SSLFGC.

However, the traditional self-training method is prone to rein-

forcing model mistakes, termed as mistake-reinforcement.

In light of this, a new and efficient sample selection proce-

dure was developed to alleviate the mistake-reinforcement

problem of conventional self-training methods. The results

of experiments have demonstrated the capability of utiliz-

ing unlabeled data. The performances of the SSLFGC are

further compared with some state-of-the-art classification

methods on four separate benchmark fine-grained datasets

and three other selected coarse-grained data, and the SSLFGC

obtained higher performances when compared with other

techniques. Not only did the SSLFGC performed so well, but

could predict classes of samples with very confidence. For

instance, the birds dataset that SSLFGC struggled to obtain

a high accuracy on was classified with high confidence,

which goes to say the proposed selection scheme is highly

efficient and able to mitigate mistake reinforcement. Despite

the encouraging performance of SSLFGC, as our future

work, we are investigating the benefits of neural network

architecture search. We will also come out with an efficient

semi-supervised algorithm that will be able to balance class

sample size to further improve the classification accuracy on

tiny images.
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