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MicroRNAs play critical role in the development and progression of various diseases. Predicting potential
miRNA-disease associations from vast amount of biological data is an important problem in the biomedical
research. Considering the limitations in previous methods, we developed Regularized Least Squares for
MiRNA-Disease Association (RLSMDA) to uncover the relationship between diseases and miRNAs.
RLSMDA can work for diseases without known relatedmiRNAs. Furthermore, it is a semi-supervised (does
not need negative samples) and global method (prioritize associations for all the diseases simultaneously).
Based on leave-one-out cross validation, reliable AUC have demonstrated the reliable performance of
RLSMDA. We also applied RLSMDA to Hepatocellular cancer and Lung cancer and implemented global
prediction for all the diseases simultaneously. As a result, 80% (Hepatocellular cancer) and 84% (Lung
cancer) of top 50 predicted miRNAs and 75% of top 20 potential associations based on global prediction
have been confirmed by biological experiments. We also applied RLSMDA to diseases without known
related miRNAs in golden standard dataset. As a result, in the top 3 potential related miRNA list predicted
by RLSMDA for 32 diseases, 34 disease-miRNA associations were successfully confirmed by experiments. It
is anticipated that RLSMDA would be a useful bioinformatics resource for biomedical researches.

M
icroRNAs (miRNAs) are a class of small endogenous single-stranded non-coding RNAs (,22 nt),
which normally post-transcriptionally suppress gene expression and protein production by base pairing
to the 39 untranslated regions (UTRs) of their target messenger RNAs (mRNAs)1–4. In some cases,

miRNAs may also function as positive regulators5,6. It has been demonstrated that many miRNAs are highly
conserved7. Especially, some of them are even lineage specific. After the discovery of the first two well-known
miRNAs (Caenorhabditis elegans (C. elegans) lin-4 and let-7 by conventional forward genetic screens8–10),
thousands of miRNAs (for example, more than 1400 miRNAs in human according to miRBase11) have been
discovered in eukaryotic organisms ranging fromnematodes to humans in the past few years12. It is estimated that
1–4% genes in the human genome are miRNAs13. MiRNAs recognize their target primarily through sequence
complementarity between the seed region of the miRNA and the binding sites on its target mRNAs14. It has been
conjectured that a single miRNA can regulate as many as 200 mRNAs13 and about one thirds of human gene can
be targeted by miRNAs12,15. Therefore, one miRNA can regulate many target genes and one target gene can be
targeted by multiple miRNAs15. These miRNA-mRNA interactions construct an important post-transcriptional
regulatory network which plays critical roles in various biological processes16–19. It has been observed that
miRNA-mediated regulations are evolutionarily conserved19–21 and hence typically rare sequence variants that
disrupt miRNA regulations are often related to human diseases19,22–24.

Accumulating evidences indicates that miRNA is one of the most important components of the cell, playing
critical roles in many significant biological processes, including the development25, proliferation26, differenti-
ation27, and apoptosis28 of the cell, signal transduction16, viral infection27 and so on. Therefore, the dysregulation
of themiRNAs are related to plenty of the diseases, playing important roles in the development, progression13,29,30,
prognosis, diagnosis, and treatment response evaluation of human disease31–38.

Especially in the last few years, many studies have demonstrated that numerous miRNAs are associated with
initiation and development of various cancers and cancer-related processes39–42. Abnormality of miRNAs leads to
the dysfunction of downstream target genes, which can lead to the development of cancer in turn42. MiRNAs have
been important part of the field of humanmolecular oncology40. Another well-known example is thatmir-375 can
regulate insulin secretion43,44. Therefore, identifying disease-relatedmiRNAs is one of themost important goals of
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biomedical research, which can benefit the understanding of disease
pathogenesis at the molecular level, molecular tools design for dis-
ease diagnosis, treatment and prevention31–34,36,45,46. Searching for
disease-miRNA associations form experimental methods is expens-
ive and time-consuming45,46. Encouragingly, plenty of biological data
about miRNAs has been generated. Therefore, there is strong incent-
ive to develop powerful computational methods for predicting
potential disease-related miRNAs on a large scale47. Computational
methods are an essential complementary means for disease-related
miRNAs prioritization, which can benefit the understanding of
miRNAs function, decrease the number of biological experiments,
and select most promising miRNAs for further experimental
validation45,47.
To provide a comprehensive resource of experimentally verified

miRNA-disease associations, Lu, et al.30 and Jiang, et al.48 successively
constructed two publicly available and manually curated databases,
i.e. Human MicroRNA Disease Database (HMDD) and
miR2Disease. Focusing on cancer-related miRNAs, Yang, et al.49

developed a manually curated database of Differentially Expressed
MiRNAs in human Cancer (dbDEMC). The establishment of these
disease-related miRNAs databases laid a solid data fundament for
predictive research. Lu, et al.30 integrated and analyzed these disease-
miRNA associations to obtain some important patterns between
human diseases and miRNAs, which not only benefited the under-
standing of human diseases at miRNA level, but also laid the solid
theoretical fundament for the identification of novel disease-related
miRNAs. The most important conclusion in this paper is that
miRNAs related to phenotypically similar diseases tend to be func-
tionally related, which have been treated as the basic assumption of
many current disease-miRNAs associations predication methods30.
Some bioinformatics methods have been developed for predicting

novel disease-miRNA associations mostly based on aforementioned
assumption in literature30. Jiang, et al.45 extended logically previous
disease genes prioritization methods and developed a computational
model based on hypergeometric distribution to prioritize the entire
microRNAome for disease of interest. This method integrated the
miRNA functional interactions network, disease similarity network,
and known phenome-microRNAome network constructed based on
miR2Disease. However, this method only adopts local similarity
measure and strongly relies on the predicted miRNA-target interac-
tions, which have a high rate of false-positive and high false-negative
results. Other limitations lie in the construction ofmiRNA functional
similarity network (two miRNAs may be functionally related when
target genes are located in the same functional modules or pathways,
rather than significantly share common target genes) and the use of
disease phenotypical similarity network (Only used the information
whether or not two phenotype are similar, rather than similarity
scores). As a result, the prediction accuracy of this method is not
high. Based on the assumption that most of miRNAs associated with
given disease regulates genes associated with this disease, or func-
tionally related genes with these known disease genes, Jiang, et al.50

proposed a computational method based on genomic data fusion in
the framework of naı̈ve Bayes. Recently, Shi et al.51 developed a
computational framework to identify miRNA-disease associations
by focusing on the functional link between miRNA targets and
disease genes in protein-protein interaction networks. These two
methods strongly relied on known disease-genes association and
miRNA-target interactions. However, the molecular bases for as many
as 60% of human disease are unknown. The problem ofmiRNA-target
interactions has also limited the application of this method.
Jiang, et al.46 and Xu, et al.40 extracted different feature vectors and

developed the support vector machine classifier to distinguish pos-
itive disease miRNAs from negative ones, respectively. As we all
known, selecting negative disease-related miRNAs is currently dif-
ficult or even impossible. Hence, these methods selected unlabeled
disease-miRNAs interactions as negative samples, which would lar-

gely influence the predictive accuracy. Based on the assumption that
global network similarity measures are better suited to capture the
associations between diseases and miRNAs than traditional local
network similarity, Chen, et al.47 first adopted global network sim-
ilarity and developed the method of Random Walk with Restart for
MiRNA–Disease Association (RWRMDA). Also, Xuan et al.52

developed the new prediction method of HDMP based on weighted
k most similar neighbors by calculating the functional similarity
between miRNAs from the information content of disease terms
and phenotype similarity between diseases and assigning higher
weight to members of miRNA family or cluster. RWRMDA and
HDMP obtained excellent predictive accuracy based on cross valid-
ation and case studies. However, they does not work for disease
without any known associated miRNA. Furthermore, the selection
of parameter k is critical to the performance ofHDMP andwe should
have different values of this parameter when different diseases are
investigated. Recently, Chen and Zhang53 adopt the method of
Network-Consistency-Based Inference (Net-CBI) to infer potential
disease-miRNA associations based on the idea of network consist-
ency and the integration of miRNA functional similarity network,
disease similarity network and known miRNA disease associations.
Although Net-CBI can work for diseases not linked with any known
miRNAs, the performance is significantly worse than RWRMDA
based on the validation of cross validation.
Taken together, the limitations of previous methods are summar-

ized as follows. Firstly, some methods strongly relies incomplete and
inaccuracy datasets such as miRNA-target interactions, disease-
related genes; secondly, some methods need negative disease-
miRNA associations; thirdly, although methods such as
RWRMDA have obtained reliable predictive accuracy, they can’t
predict novel miRNAs for diseases which do not have any known
associated miRNAs; finally, methods such as Net-CBI can work for
disease without known related miRNAs, but unsatisfactory perfor-
mances have been obtained. To solve these problems, we developed
the method of Regularized Least Squares for MiRNA-Disease
Association (RLSMDA) by integrating known disease-miRNA asso-
ciations, disease-disease similarity dataset, and miRNA-miRNA
functional similarity network to uncover potential disease-miRNA
associations. RLSMDA can predict novel miRNAs for diseases which
do not have any known related miRNAs. More importantly, it is
developed in the framework of semi-supervised classifier, so it does
not need negative miRNA-disease associations. Furthermore, differ-
ent from RWRMDA, RLSMDA is a global approach which can
reconstruct the missing associations for all the diseases simulta-
neously. Cross validations, Case studies about several important dis-
eases, global prediction for all the diseases simultaneously, and
independent prediction for diseases without any known related
miRNAs have fully demonstrated the superior performance of
RLSMDA to previous methods.

Results
Leave-one-out cross validation.Here, we implemented LOOCV on
known experimentally verified miRNA-disease associations to
evaluate the predictive performance of RLSMDA. To our
knowledge, RWRMDA47, HDMP52, and the global network
algorithm developed by Shi et al.51 are the-state-of-art approaches
in the computational research about disease-related miRNA
prediction. However, the global network algorithm developed by
Shi et al.51 focused on the functional connectivity between miRNA
targets and disease genes in PPI network. Therefore, this method
integrated the information of disease gene associations, miRNA-
target interactions, and protein interactions, which were totally
different from the dataset used in RLSMDA. Furthermore, this
method did not use the information of known disease-miRNA
associations and cross validation by splitting known samples into
test samples and training samples implemented in this paper
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cannot be implemented for this method. Therefore, the performance
of this method and RLSMDA could not be compared in a fair and
reasonable way. Based on the above consideration, we will compare
the performance of RLSMDA with RWRMDA and HDMP.
For simplicity, we choose gM5 1, gD5 1 for trade-off parameters

in the cost functions according to previous literatures54 and weight
parameter w 5 0.9 in the final classifier considering the fact that
miRNA functional similarity has played a critical role in disease-
related miRNA prediction, as what have shown in the method of
RWRMDA. Both trade-off parameters in the cost function and
weight parameter in the final classifier can be better selected by
further cross validation.
LOOCV can be implemented in the following two ways: (1) For

the ith disease, each known miRNA associated with disease i was left
out in turn as testmiRNA. Entity F(i,j) in row i column j of thematrix
F reflect the probability that miRNA j is related to the disease i. How
well this test miRNA was ranked relative to the candidate miRNAs
was evaluated based on the ith line of the matrix F (seed miRNAs:
other known disease-miRNA associations; candidate miRNAs: all
the miRNAs which do not have the evidence to show their asso-
ciation with disease i). If the rank of test miRNA exceeds the given
threshold, the model was considered to successfully predict this
miRNA–disease association. We called the LOOCV in this way as
local LOOCV. (2) Unlike LOOCV, we did not give a fixed disease,
where all the diseases were considered simultaneously. Each known
disease-miRNA association was left out in turn as test association
and howwell this test associationwas ranked relative to the candidate
associations was evaluated based on matrix F (seed associations:
other known disease-miRNA associations; candidate associations:
all the disease-miRNA pairs which do not have the evidence to con-
firm the association). If the rank of test association exceeds the given

threshold, themodel was considered to successfully predict this asso-
ciation. We called the LOOCV in this way as global LOOCV. The
difference between local and global LOOCV is whether we consid-
ered all the diseases simultaneously. From the aforementioned fact
that RWRMDA cannot uncover the missing associations for all the
diseases simultaneously, we cannot implement global LOOCV for
RWRMDA. For the HDMP, global LOOCV can be implemented. As
a global predictive approach, RLSMDA can be checked in both local
and global LOOCV.
Receiver-operating characteristics (ROC) curve was drawn and

Area under the curve (AUC) was calculated to evaluate the perform-
ance of predictive methods. ROC curve plots true positive rate (sens-
itivity) versus false positive rate (1-specificity) at different thresholds.
Sensitivity refers to the percentage of the test samples whose ranking
is higher than a given threshold. Specificity refers to the percentage of
samples that are below the threshold. AUC 5 1 indicates perfect
performance and AUC 5 0.5 indicates random performance.
According to literature47, the AUC of RWRMDA is 0.8617, which

has significantly improved the performance of previous computa-
tional method based on the hypergeometric distribution45. However,
for diseases which only have 1 known miRNA, LOOCV can’t be
implemented. To be fair, we think left-out known association
obtained the random rank in that case, i.e. for N candidate
miRNAs, we regard the rank of left-out known miRNA as (N11)/
2. Recalculated AUC for RWRMDAwas 0.8473. For global LOOCV,
HDMP obtained an AUC of 0.9431. For RLSMDA, AUC in local and
global LOOCV is 0.8450 and 0.9511, respectively (see Figure 1). We
can reach the conclusion that the performance of RLSMDA is com-
parable to RWRMDA and slightly better than HDMP. However,
RWRMDA and HDMP cannot predict the potential miRNAs for
diseases which do not have known related miRNAs, which is the

Figure 1 | Method comparison: (left) Comparison betweenRLSMDA andRWRMDAproposed by Chen, et al.47 in terms of ROC curve andAUCbased
on local leave-one-out cross validation on 1394 known experimentally verified miRNA–disease associations. RLSMDA obtained comparable

performance in the local LOOCV as RWRMDA, while RWRMDA cannot predict disease-related miRNAs for diseases without known related miRNAs

and all the diseases simultaneously. RLSMDA can successfully solve these two critical shortcomings of RWRMDA. (right) Comparison betweenRLSMDA

andHDMP in the term of global LOOCV. RLSMDA andHDMPobtained the AUCof 0.9511 and 0.9431, respectively. Although only slight improvement

has been obtained here, RLSMDA can predict the potential miRNAs for diseases which do not have known related miRNAs, which has solved the most

critical limitation of HDMP. The performance of RLSMDA could be further improved by introducing the information of miRNA family and cluster as

what has been done in the method of HDMP.
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major defect of their methods. Furthermore, RWRMDA is a local
approach which cannot uncover the missing associations for all the
diseases simultaneously, i.e. we cannot compare the scores between
one miRNA and two different diseases. Although there is no signifi-
cant improvement in the way of AUC, RLSMDA can successfully
solve aforementioned these two problems. Furthermore, HDMP
introduce additional information of miRNA family and cluster,
which benefit the performance of their method. It is much likely that
the performance of RLSMDAwould be further improved after intro-
ducing the information of miRNA family and cluster into its model.
Excellent performance demonstrates RLSMDA can recover known
experimentally verified miRNA–disease associations and hence has
the potential to predict potential associations.

Parameter effect. In the above cross validation, we want to place
more emphasis on miRNA space classifier (this classifier is based on
the dataset of miRNA functional similarity dataset) in the final
classifier based on the fact that miRNA functional similarity has
played a critical role in disease-related miRNA prediction. How-
ever, we cannot totally rely on the results from miRNA space,
because in that way we cannot predict potential miRNAs for
diseases which do not have any known related miRNAs. Therefore,
we chose weight parameter w 5 0.9 in the final classifier. We also
assigned the different weights for the classifier constructed in the
miRNA space and calculated corresponding AUCs. The result has
been shown in Supplementary Figure 1 and it could be observed that
a higher weight can improve the final performance of RLSMDA.

Case studies. It has been demonstrated that many miRNAs are
associated with various human cancers12,13,38,55–57 and almost half of
miRNAs are located in cancer-associated genomic regions or fragile
sites12,55. Here, case studies about several important diseases were
implemented to evaluate the independent predictive ability of
RLSMDA. Predictive results were confirmed based on the update
of HMDD and the datasets in miR2disease and dbDEMC.
Hepatocellular cancer (Hepatocellular carcinoma, malignant

hepatoma, HCC) is the third leading cause of cancer deaths world-

wide nowadays, with over 500,000 people affected (http://emedicine.
medscape.com/article/197319-overview). As the most common type
of liver cancer, the most affected people of HCC come from Asia and
Africa, where high prevalence of hepatitis B and hepatitis C strongly
leads to the development of chronic liver disease and HCC (http://
emedicine.medscape.com/article/197319-overview). In the gold-
standard data, 34 miRNAs have been related to the development of
HCC. For example, independent experimental observations showed
that the expression of miRNAs let-7e, 125a and 99b were quite lower
in HCC compared to normal liver58. MiRNAs without the known
relevance to HCC were prioritized based on the predictive results of
RLSMDA. Among the top 50 predicted HCC-related miRNAs, 40
miRNAs have been confirmed by aforementioned various databases.
Especially, top 20 potential miRNAs are all confirmed. The top 50
potential HCC related miRNAs and evidences for the associations
with HCC were listed (See Table 1). Unconfirmed potential miRNA
with the highest rank is the miR-34b (ranked 22th). However, the
recent findings in the literature59 showed that the potentially func-
tional SNP rs4938723 in the promoter region of pri-miR-34b/c may
lead to the development of HCC in the investigated Chinese popu-
lation, which established the connection betweenHCC andmiR-34b.
All the datasets used in this paper is generated before the publication
of this paper. Therefore, this successful independent literature valid-
ation gave a further strong support to the reliable performance
demonstration of RLSMDA. We did not further check whether the
associations between other unconfirmed potential miRNAs and
HCC can be verified based on recent experimental literatures.
However, the excellent performance of RLSMDA based on cross
validation and previous case study makes us believe that RLSMDA
can predict more disease-related miRNAs.
In our previous paper about the method of RWRMDA47, 98%

(Breast cancer), 74% (Colon cancer), and 88% (Lung cancer) of
top 50 predicted miRNAs are confirmed by published experiments.
It seems that the predictive accuracy for Breast cancer and Lung
cancer has been much satisfactory. Hence, we implemented the case
study about Colon cancer here to see whether RWRMDA can further

Table 1 | The top 50 potential Hepatocellular cancer (HCC) related miRNAs predicted by RLSMDA and the confirmation for their associa-
tions by various databases are listed here (1st column: top 1–25; 2nd column: top 26–50). Forty of top 50 miRNAs have been confirmed to
be related with HCC

Name Evidence Name Evidence

hsa-mir-155 HMDD,dbDEMC,miR2Disease hsa-mir-29c HMDD,DbDEMC
hsa-mir-24 HMDD,miR2Disease hsa-mir-146b HMDD
hsa-mir-107 HMDD,dbDEMC,miR2Disease hsa-mir-194 dbDEMC,miR2Disease
hsa-mir-29b HMDD,DbDEMC hsa-let-7d HMDD,miR2Disease
hsa-mir-126 HMDD,dbDEMC,miR2Disease hsa-mir-135b Unconfirmed
hsa-let-7i HMDD,DbDEMC hsa-mir-497 HMDD,DbDEMC
hsa-mir-183 HMDD,miR2Disease hsa-mir-204 Unconfirmed
hsa-mir-214 HMDD,dbDEMC,miR2Disease hsa-let-7b HMDD,miR2Disease
hsa-mir-34c HMDD hsa-mir-25 HMDD,dbDEMC,miR2Disease
hsa-mir-31 HMDD,miR2Disease hsa-mir-32 Unconfirmed
hsa-mir-191 HMDD,DbDEMC hsa-mir-196b Unconfirmed
hsa-mir-181b HMDD,dbDEMC,miR2Disease hsa-mir-378 Unconfirmed
hsa-let-7f HMDD,miR2Disease hsa-mir-142 HMDD,miR2Disease
hsa-mir-103 dbDEMC,miR2Disease hsa-mir-95 Unconfirmed
hsa-let-7g HMDD,miR2Disease hsa-mir-148b HMDD,dbDEMC,miR2Disease
hsa-mir-132 miR2Disease hsa-mir-210 HMDD,DbDEMC
hsa-mir-128b miR2Disease hsa-mir-205 HMDD,miR2Disease
hsa-mir-151 miR2Disease hsa-mir-199b HMDD,miR2Disease
hsa-mir-451 dbDEMC hsa-mir-498 HMDD
hsa-mir-150 HMDD,dbDEMC,miR2Disease hsa-mir-182 HMDD,miR2Disease
hsa-let-7c HMDD,dbDEMC,miR2Disease hsa-mir-421 HMDD
hsa-mir-34b Unconfirmed hsa-mir-93 HMDD,dbDEMC,miR2Disease
hsa-mir-141 HMDD,miR2Disease hsa-mir-340 Unconfirmed
hsa-mir-29a HMDD,DbDEMC hsa-mir-193b Unconfirmed
hsa-mir-658 Unconfirmed hsa-mir-30c HMDD,miR2Disease
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improve the performance of our method in the case study of Colon
cancer. As the third most common cancer in the world, more than
half of the people who die of Colon cancer come from developed
countries (http://en.wikipedia.org/wiki/Colonic_cancer). Usually
colon cancer strikes without symptoms, therefore, it’s important to
get a colon cancer screening test. If the colon cancer is found early,
the doctor can use surgery, radiation, and/or chemotherapy for effec-
tive treatment (http://www.webmd.com/colorectal-cancer/default.
htm). There are thirty-seven known colon cancer related miRNAs
in the golden standard dataset. For example, miR-200b andmiR-141
have been shown to be highly overexpressed in colon carcinoma60.
Candidate miRNAs were prioritized in the term of scores obtained
from the method of RLSMDA. Forty-two out of top fifty predicted
colonic cancer related miRNAs have been confirmed by various
databases and literatures12,61,62. The top 50 potential colonic cancer
related miRNAs and confirmation evidences for the associations
were listed (See Supplementary Table 1). A typical example is miR-
18b, which is ranked 24th in the predictive list. Recent experimental
literature confirm its connection to colonic cancer62. In that paper,
the expression of miR-18b was upregulated in colonic cancer tissues,
compared with the para-cancerous control. Therefore, miR-18b is
expected to participate in the process of colonic cancer and play a
critical role in the carcinogenesis of colon. As mentioned, the dataset
used in this paper for potential miRNAs prediction is generated
before the publication of this paper. Another independent validation
further supports the excellent performance of RLSMDA.
As mentioned, RLSMDA can reconstruct the missing associations

for all the diseases simultaneously. The top 20 potential disease-
miRNA associations predicted by RLSMDA and the confirmation
based on various databases are listed in the Table 2. Fifteen of top 20
potential disease-miRNAs associations have been confirmed. Also,
the top 100 potential disease-miRNA associations were shown in
Supplementary Table 2 and verified based on various databases
and literatures12,61. These 100 potential associations involved various
diseases, including breast cancer, colonic cancer, brain cancer, type 2
diabetes and so on. As a result, 61 out of top 100 potential associa-
tions were confirmed.

Applicability of RLSMDA to diseases without any known related
microRNAs. To demonstrate that RLSMDA is applicable to diseases
without any known associated miRNAs, we implemented case
studies for the diseases discussed in the above section by removing

all the known verified miRNAs which have been shown to be related
to this disease. This operation made sure that prioritizing candidate
miRNAs for the given disease only made use of the information of
other diseases having known related miRNAs and similarity
information. The fact must be pointed out we select the same
candidate miRNA set as normal case study for a given disease, i.e.
abandoned known seed miRNAs were not regarded as candidate
miRNAs.
For theHepatocellular cancer, we removed 34 knownHCC related

miRNAs to prioritize candidate miRNAs based on the predictive
result of RLSMDA. Among the top 50 potential prediction, 36
miRNAs have been confirmed by various databases. The top 50
potential HCC related miRNAs when the information about known
HCC related miRNAs are removed and evidences for the associa-
tions with HCC were listed (See Supplementary Table 3). The afore-
mentioned successful independent literature validation example
about HCC and miR-34b were also ranked in the top 50 predictive
list. For the colon cancer, after removing 37 known seed miRNAs,
RLSMDA was implemented to uncover potential connection
between colon cancer and candidate miRNAs. As a result, 36 out
of top 50 miRNAs are confirmed by various databases and litera-
tures12,61,62. Top 50 potential miRNAs and the evidences were listed
(See Supplementary Table 4). Surprisingly, successful independent
predictive example of miR-18b and colon cancer is ranked 1st by
RLSMDA when known colon cancer related miRNAs are removed.
Except for above simulation experiments, RLSMDA was also

applied to diseases without any known relatedmiRNAs in our golden
standard dataset. In this way, when we prioritize candidate miRNAs
for the given disease, only the disease-miRNA associations of other
diseases and similarity information between these diseases have been
used. The prediction result was verified based on recent experimental
literatures. As a result, in the top 3 potential related miRNA list
predicted by RLSMDA for 32 diseases investigated here, 34 dis-
ease-miRNA associations were successfully confirmed by biological
experiments63–95 (See Table 3).
For example, hsa-mir-21 has been shown to play a critical role in

various cellular processes including maturation, migration, prolif-
eration, and survival. Accumulated evidences has linked mir-21 to
many complex human diseases and its associations with many dis-
eases have been collected in the golden standard dataset, such as
Breast cancer, Brain cancer, Lung cancer, Stomach cancer, and so
on. Here, we predicted mir-21 as the most likely related miRNAs for

Table 2 | The top 20 potential disease related miRNAs predicted by RLSMDA in the global ranking and the confirmation for their associa-
tions by various databases are listed here. Fifteen of top 20 disease-miRNA associations have been confirmed

Ranking Diseases miRNAs Evidence

1 Colonic Neoplasms hsa-mir-222 dbDEMC
2 Stomach Neoplasms hsa-mir-451 miR2Disease
3 Ovarian Neoplasms hsa-mir-15a
4 Colorectal Neoplasms hsa-mir-19a HMDD,miR2Disease
5 Muscular Disorders, Atrophic hsa-mir-206
6 Colonic Neoplasms hsa-mir-203 dbDEMC,miR2Disease
7 Stomach Neoplasms hsa-mir-19b
8 Breast Neoplasms hsa-let-7e HMDD,dbDEMC
9 Colonic Neoplasms hsa-mir-92b
10 Carcinoma, Hepatocellular hsa-mir-155 HMDD,dbDEMC,miR2Disease
11 Colorectal Neoplasms hsa-mir-125b HMDD
12 Breast Neoplasms hsa-let-7b HMDD,dbDEMC
13 Adenocarcinoma hsa-mir-200b HMDD
14 Colonic Neoplasms hsa-mir-183 dbDEMC,miR2Disease
15 Breast Neoplasms hsa-mir-92a HMDD
16 Ovarian Neoplasms hsa-mir-143 miR2Disease
17 Breast Neoplasms hsa-mir-223 HMDD,dbDEMC
18 Neoplasms hsa-mir-15a HMDD
19 Breast Neoplasms hsa-mir-16 HMDD,dbDEMC
20 Stomach Neoplasms hsa-mir-92a
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Abdominal Aortic Aneurysm (AAA), Thoracic Aortic Aneurysm
(TAA), Sezary Syndrome (SS), and Vascular Diseases. These predic-
tions were all confirmed by biological experiments. Maegdefessel et
al identifiedmir-21 as a keymodulator of proliferation and apoptosis
of vascular wall smooth muscle cells during development of AAA
and provided a new therapeutic pathway that could be targeted to
treat AAA95. Jones et al observed decreased expression of mir-21 in
TAA compared to normal aortic samples and further identified a
significant relationship between its expression level and aortic dia-
meter65. Narducci et al profiled the expression ofmiRNAs in a cohort
of 22 SS patients and identified differential expression of mir-21
between SS and controls75. Cheng and Zhang pointed out mir-21
plays important roles in biological processes, such as vascular
smooth muscle cell proliferation and apoptosis, cardiac cell growth
and death, and cardiac fibroblast functions, and so on. Furthermore,
they showed that mir-21 is proven to be involved in the pathogenesis
of the cardiovascular diseases76. These successful predictive examples
fully demonstrates that RLSMDA has the potential to provide high-
quality disease-miRNA associations for the diseases without any
known related miRNAs, which solved the critical deficiency existing
in the previous methods.

Predicting novel human miRNAs-disease associations. Here, we
further applied RLSMDA to predict potential human disease-
miRNAs associations after confirming the reliable performance of
RLSMDA in the term of cross validation and case studies. All the
known disease-miRNA associations in the gold-standard dataset
were used as positive samples. We publicly released potential
human disease-miRNA association list to facilitate the biological

experimental validation (see Supplementary Table 5). It is anti-
cipated that potential disease-miRNA associations predicted here
could be validated by further biological experiments and useful for
biomedical research.

Discussions
Identifying potential disease-miRNA associations is critical for
understanding the pathogenesis of disease at the miRNA level and
further improving human medicine. In this paper, RLSMDA was
developed to identify disease-related miRNAs by integrating dis-
ease-disease semantic similarity information, miRNA-miRNA func-
tional similarity information, and known human miRNA-disease
associations on a large scale. RLSMDA was motivated in the frame-
work of regularized least squares and the basic assumption that func-
tionally related miRNAs tend to be related to phenotypically similar
diseases. Compared with previous methods, RLSMDA can identify
relatedmiRNAs for diseases without any known associatedmiRNAs.
Furthermore, RLSMDA does not need negative samples selection
and reconstruct the missing associations for all the diseases simulta-
neously. Cross validation and case studies about Hepatocellular
cancer and Lung cancer have fully demonstrated the reliable perfor-
mance of RLSMDA. Furthermore, we implemented simulated case
studies for Hepatocellular cancer and Lung cancer after removing all
the known verified miRNAs which have been shown to be related to
this disease. Plenty of prediction results were confirmed by various
databases and literature. More importantly, when we applied
RLSMDA to diseases without any known related miRNAs in our
golden standard dataset, 34 disease-miRNA associations, ranked in
the top 3 potential related miRNA list predicted by RLSMDA for 32

Table 3 | Confirmed disease-miRNAassociations predicted by RLSMDA for diseases without known relatedmiRNAs in our golden standard
dataset

Ranking Diseases miRNAs PMID

1 Acute Coronary Syndrome hsa-mir-1 21806992
1 Aortic Aneurysm, Abdominal hsa-mir-21 22357537
1 Aortic Aneurysm, Thoracic hsa-mir-21 22010139
1 Arthritis, Psoriatic hsa-mir-146a 20500689
1 Crohn Disease hsa-mir-16 22386737
1 Laryngeal Neoplasms hsa-mir-205 22605671
1 Leukemia, Myelogenous, Chronic, BCR-ABL Positive hsa-mir-181a 22442671
1 Liver Failure hsa-mir-221 21400558
1 Lupus Erythematosus, Systemic hsa-mir-146a 21529448
1 Mesothelioma hsa-mir-18a 21358347
1 Osteosarcoma hsa-mir-15a 22922827
1 Retinoblastoma hsa-mir-181b 21373755
1 Sezary Syndrome hsa-mir-21 21525938
1 Vascular Diseases hsa-mir-21 20560046
2 Amyloidosis hsa-mir-16 21834602
2 Antiphospholipid Syndrome hsa-mir-20a 21794077
2 Aortic Valve Stenosis hsa-mir-21 22882958
2 Atrial Fibrillation hsa-mir-223 22944230
2 Creutzfeldt-Jakob Syndrome hsa-mir-146a 22043907
2 Endometrial Neoplasms hsa-mir-194 21851624
2 Huntington Disease hsa-mir-200c 22906125
2 Lichen Planus, Oral hsa-mir-21 21943223
2 Mesothelioma hsa-mir-20a 21358347
2 Lymphoma, Non-Hodgkin hsa-mir-21 22487708
2 Osteosarcoma hsa-mir-16 22922827
3 Colitis, Ulcerative hsa-mir-143 21557394
3 Cystic Fibrosis hsa-mir-155 21282106
3 Endometrial Neoplasms hsa-mir-155 21176560
3 Fibrosis hsa-mir-29c 21784902
3 Hyperlipidemias hsa-mir-122 22587332
3 Keratoconus hsa-mir-184 21996275
3 Mycosis Fungoides hsa-let-7a 21966986
3 Neoplasms, Squamous Cell hsa-mir-181a 21244495
3 Osteoporosis hsa-mir-133a 22506038
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diseases investigated here, were successfully confirmed by biological
experiments.
These excellent examples fully demonstrated that RLSMDA is

applicable to diseases without any known associated miRNAs.
Considering the fact that RLSMDA can reconstruct the missing
associations for all the diseases simultaneously, we applied it to
implement global prediction for all the diseases simultaneously. As
a result, 15 of top 20 potential disease-miRNAs associations have
been confirmed. Also, out of the top 100 potential disease-miRNA
associations, 61 potential associations were confirmed, involved vari-
ous diseases including breast cancer, colonic cancer, brain cancer,
type 2 diabetes and so on.We publicly released potential miRNA lists
for 137 diseases investigated in this paper to guide biological experi-
ments. It is anticipated that RLSMDA would be a useful resource for
researches about the associations between miRNAs and human
diseases.
The reliable performance of RLSMDA could largely be attrib-

uted to several factors as follows. Firstly, heterogeneous datasets
(known disease-miRNA associations, miRNA functional similar-
ity, and disease semantic similarity) were integrated to capture the
potential associations between disease and miRNA. Especially,
RLSMDA can predict potential related miRNAs for diseases with-
out any known associated miRNAs by introducing the informa-

tion of disease similarity. Secondly, RLSMDA is a semi-supervised
method, which overcomes the difficulties in obtaining negative
disease-miRNA associations samples in the practical problems.
Finally, RLSMDA is a global approach, which can predict the
scores between miRNAs and diseases for all the diseases simulta-
neously. These three critical success factors also constitute the
novelties of RLSMDA. Hence, RLSMDA represents a novel, useful,
and important biomedical resource for miRNA-disease association
identification.
Although there are several important novelties in the method

development of RLSMDA, some limitations also exist. Firstly, how
to decide the parameters values in the RLSMDA is not still solved
well. Especially, we need to integrate predictive result from disease
space and miRNA space by weight parameters. How to directly
obtain a single classifier or reasonably integrate results from different
spaces would be a critical problem for future research. Secondly,
more reliable construction of disease similarity and miRNA similar-
ity would further improve the predictive ability. We plan to integrate
more biological relevant information to definemiRNA similarity and
disease similarity. Thirdly, more available experimentally verified
human disease-miRNA associations would promote the develop-
ment and the performance of computational human disease-
miRNA identification methods.

Figure 2 | The basic idea of disease semantic similarity calculation.
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Methods
Human miRNA-disease associations. The human miRNA-disease association
dataset used as gold standard dataset in this paper was downloaded from the
supplementary material of literature96 (obtained from HMDD in September, 2009).
We want to confirm our prediction list based on the update of HMDD and the
datasets in other datasets, so we did not use the newest association dataset in HMDD
and the datasets in the other databases. The gold standard in this paper includes 1616
distinct high-quality experimentally verified human miRNA-diseases associations.
After implementing the operations such as merging different miRNA copies which
produce the same mature miRNA and unifying the name of mature miRNAs and
diseases, 1395miRNA–disease associations, including 271miRNAs and 137 diseases,
were used in this paper (see Supplementary table 6). We use nd as the number of
diseases and nm as the number of miRNAs. Matrix A is denoted as the adjacency
matrix of disease-miRNA associations, where the entity A(i,j) in row i column j is 1 if
miRNA j is related to the disease i, otherwise 0.

MiRNA functional similarity. In the literature96, functional similarity score for each
miRNA pair was calculated based on the assumption that miRNAs with similar
functions tend to be related with similar diseases. We downloaded the miRNA
functional similarity scores from http://cmbi.bjmu.edu.cn/misim/ in January 2010
(see Supplementary table 7). Matrix SM is denoted as the miRNA functional
similaritymatrix, where the entity SM(i,j) in row i column j is the functional similarity
between miRNA i and j. MiRNA functional similarity used here has been used to
predict disease-related miRNAs and environmental factor-miRNA combination
interactions and excellent performance have been obtained47,97.

Disease semantic similarity. Here, we calculated the disease similarity in the same
way as literature96. The basic idea of disease semantic similarity calculation is
illustrated in Figure 2. We can obtain the relationship between diseases from MeSH

database (http://www.ncbi.nlm.nih.gov/), which provided a strict system for disease
classification. Disease can be described as a DAG, where the nodes represent disease
itself and its ancestor diseases and the link from a parent node to a child node
represents the relationship between these two nodes. For example, disease A can be
described as a graph DAG(A)5(A,T(A),E(A)), where T(A) is the node set including
node A itself and all ancestor nodes of A and E(A) is the corresponding links set. The
contribution of disease t inDAG(A) to the semantics of diseaseA is defined as follows:

DA(A)~1

DA(t)~maxfD � DA(t
0) t0j [ children of tg if t=A

�

: ð1Þ

where D is the semantic contribution factor. The contribution of disease A to its own
semantic value is one, while the contributions of other ancestor diseases to the
semantic value of disease A decrease with the distance between this disease and
disease A. Therefore, we can define the semantic value of disease A based on the
contribution of ancestor diseases and disease A itself, i.e.

DV(A)~
X

t[T(A)

DA(t): ð2Þ

Based on the assumption that disease pairs sharing larger part of their DAGs aremore
similar, we defined the semantic similarity between two diseases A and B as follows:

SD(A,B)~

P

t[T(A)\T(B)

(DA(t)zDB(t))

DV(A)zDV(B)
: ð3Þ

Matrix SD is denoted as the disease semantic similarity matrix, where the entity
SD(i,j) in row i column j is the disease semantic similarity between disease i and j (see
Supplementary table 8).

Figure 3 | The flowchart of RLSMDA includes three steps: solving optimization problem; obtaining the optimal classifier in the disease and miRNA
space, respectively; combining classifiers in the disease and miRNA space to obtain final predictive result.
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Regularized Least Squares for MiRNA-Disease Association (RLSMDA). Based on
the underlying assumption that miRNAs associated with more similar diseases are
more similar, and vice versa, here we developed the method of Regularized Least
Squares for MiRNA-Disease Association (RLSMDA) to uncover the potential
miRNAs associated with various diseases (See Figure 3). RLSMDA is designed to
construct a continuous classification function which can reflect the probability that
each miRNA is related to a given disease. We hope the function can meet the
following two criterions: (1) it complies with the known disease-related miRNAs
information; (2) it is smooth over the miRNA space and disease space, i.e. for a given
disease (miRNA), similarmiRNAs (diseases) would obtain similar scores, whichmeet
the basic assumption of our methods. Considering the difficulties of obtaining
negative sample, a semi-supervised classifier is constructed under the framework of
Regularized Least Squares (RLS), which is obtained by defining a cost function and
minimizing this cost function. Cost functions can be developed in miRNA space and
disease space, respectively. Taking miRNA space and as an example, optimal
classification function can be obtained by solving the following optimization
problem:

min
FM

½ AT
{FM

�

�

�

�

2

F
zgM � FM � SM � FT

M

�

�

�

�

2

F
� ð4Þ

where Nk kF is the Frobenius norm and gM is the trade-off parameter. The solution of
this optimization problem is:

F�
M~SM � (SMzgM � IM) � A

T ð5Þ

where IM is the identity matrix with the same size as matrix SM.
In the similar way, we can obtain the optimal classification function in the disease

space as follows:

F�
D~SD � (SDzgD � ID) � A ð6Þ

where ID is the identity matrix with the same size as matrix SD.
Finally, the optimal classifier in two different spaces will be combined to give the

final solution based on a simple weighted average operation, i.e.

F�
~w � F�T

M z(1{w) � F�
D ð7Þ

where the entity F(i,j) in row i column j reflect the probability that miRNA j is related
to the disease i.
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