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Abstract

We present a novel cost function for semi-

supervised learning of neural networks that en-

courages compact clustering of the latent space to

facilitate separation. The key idea is to dynami-

cally create a graph over embeddings of labeled

and unlabeled samples of a training batch to cap-

ture underlying structure in feature space, and use

label propagation to estimate its high and low den-

sity regions. We then devise a cost function based

on Markov chains on the graph that regularizes the

latent space to form a single compact cluster per

class, while avoiding to disturb existing clusters

during optimization. We evaluate our approach

on three benchmarks and compare to state-of-the

art with promising results. Our approach com-

bines the benefits of graph-based regularization

with efficient, inductive inference, does not re-

quire modifications to a network architecture, and

can thus be easily applied to existing networks to

enable an effective use of unlabeled data.

1. Introduction

Semi-supervised learning (SSL) addresses the problem of

learning a model by effectively leveraging both labeled and

unlabeled data (Chapelle et al., 2006). SSL is effective when

it results in a model that generalizes better than a model

learned from labeled data only. More formally, let X be a

sample space with data points and Y the set of labels (e.g.,

referring to different classes). Let DL ⊆ X × Y be a set of

labeled data points, and let DU ⊆ X be a set of unlabeled

data. In this work we focus on classification tasks, where

for each (x, y) ∈ DL, y is the ground truth label for sample

x. Our objective is to learn a predictive model f(x; θ) =
p(y|x, θ), parametrized by θ, which approximates the true
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Figure 1. Overview of our method. We dynamically construct a

graph in the latent space of a network at each training iteration,

propagate labels to capture the manifold’s structure, and regularize

it to form a single, compact cluster per class to facilitate separation.

conditional distribution q(y|x) generating the target labels.

SSL methods learn this by utilizing both DL and DU , often

assuming that |DU | ≫ |DL|. Thus leveraging the ample

unlabeled data allows capturing more faithfully the structure

of data.

Various approaches to SSL have been proposed (see Sec-

tion 2 for an overview). Underlying most of them is the

notion of consistency (Zhou et al., 2004): samples that are

close in feature space should be close in output space (local

consistency) and samples forming an underlying structure

should also map to similar labels (global consistency). This

is the essence of the smoothness and cluster assumptions in

SSL (Chapelle et al., 2006) that underpin our work. They

respectively state that the label function should be smooth in

high density areas of feature space, and points that belong to

the same cluster should be of the same class. Hence decision

boundaries should lie in low density areas.

We present a simple and effective SSL method for regu-

larizing inductive neural networks (Fig. 1). The main idea

is to dynamically create a graph in the network’s latent

space over samples in each training batch (containing both

labeled and unlabeled data) to model the data manifold as

it evolves during training. We then regularize the mani-

fold’s structure globally towards a more favorable state for

class separation. We argue that the optimal feature space

for classification should cluster all examples of a class to a
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single, compact component, proposing a further constraint

for SSL to those previously discussed: all samples that map

to the same class should belong to a single cluster. To learn

such a latent space, we first use label propagation (LP) (Zhu

& Ghahramani, 2002) as a proxy mechanism to estimate

the arrangement of high/low density regions in latent space.

This is in contrast to using LP as a transductive inference

mechanism as done previously. We then propose a novel

cost function, formulated via Markov chains on the graph,

which not only brings together parts of the manifold with

similar estimated LP posterior to form compact clusters, but

also defines an optimization process that avoids disturbing

existing high density areas, which are manifestations of

information important for SSL.

We evaluate our approach on three visual recognition bench-

marks: MNIST, SVHN and CIFAR10. Despite its simplicity,

our method compares favorably to current state-of-the-art

SSL approaches when labeled data is limited. Moreover,

our regularization offers consistent improvements over stan-

dard supervision even when the whole labeled set is used.

Our technique is computationally efficient and does not re-

quire additional network components. Thus it can be easily

applied to existing models to leverage unlabeled data or

regularize fully supervised systems.

2. Related Work

The great potential and practical implications of utilizing

unlabeled data has resulted in a large body of research on

SSL. The techniques can be broadly categorized as follows.

2.1. Graph-Based Methods

These methods operate over an input graph with adjacency

matrix A, where element Aij is the similarity between sam-

ples xi,xj ∈ DL ∪ DU . Similarity can be based on Eu-

clidean distance (Zhu & Ghahramani, 2002) or other, some-

times task-specific metrics (Weston et al., 2012). Transduc-

tive inference for the graph’s unlabeled nodes is done based

on the smoothness assumption, that nearby samples should

have similar class posteriors. Label propagation (LP) (Zhu

& Ghahramani, 2002) iteratively propagates the class poste-

rior of each node to neighbors, faster through high density

regions, until a global equilibrium is reached. Zhu et al.

(2003) showed that for binary classification one arrives at

the same solution by minimizing the energy:

E(f) =
1

2

∑

i,j

Aij(f(xi)− f(xj))
2 = f⊤∆f . (1)

Here, f is the vector with responses from predictor f(x) =
p(y = 0|x) applied to all samples, ∆ is the graph Laplacian.

The solution being a harmonic function implies that the

resulting posteriors for unlabeled nodes are the average of

their neighbors (Zhu, 2005), showing that LP agrees with

the smoothness assumption. Zhou et al. (2004) proposed

a similar propagation rule and argued that predictions by

propagation agree with the notion of global consistency.

Many variations followed, such as the diffusion and graph

convolutional networks (Atwood & Towsley, 2016; Kipf

& Welling, 2017). These approaches are transductive and

require a pre-constructed graph as a given, while their per-

formance largely relies on the suitability of this given graph

for the task. In contrast, we use LP not for transductive

inference but as a sub-routine to estimate the structure of

the clusters in a network’s latent space. We then regularize

the network’s feature extractor, which learns an appropriate

graph consistent with the smoothness property of LP, while

preserving the network’s efficient inductive classifier.

Equation (1) has also been used to define the graph Lapla-

cian regularizer, which has been used for SSL of inductive

models (Belkin et al., 2006; Weston et al., 2012). However,

these methods still require a pre-constructed graph. A recent

method inspiring our work avoids this requirement and seeks

associations between labeled and unlabeled data (Haeusser

et al., 2017). This is modeled as a two-step random walk

in feature space that starts and ends at labeled samples of

the same class, via one intermediate unlabeled point. The

method was not formulated via graphs but is related, as

it models pairwise relations. But its formulation does not

capture the global structure of the data, unlike ours, and can

collapse to the trivial solution of associating an unlabeled

point to its closest cluster in Euclidean space (Haeusser

et al., 2017). Hence, a second regularizer is required to keep

all samples relatively close.

2.2. Self-Supervision and Entropy Minimization

One of the earliest ideas for leveraging unlabeled data is self-

supervision or self-learning. It is a wrapper framework in

which a classifier trained with supervision periodically clas-

sifies the unlabeled data, and confidently classified samples

are added to the training set. The idea dates back to Scudder

(1965) and saw multiple extensions. The method is heavily

dependent on classifier’s performance. It gained popularity

recently for training neural networks (Lee, 2013), enabled

by their overall good performance. Relevant is co-training

(Blum & Mitchell, 1998), which uses confident predictions

of two classifiers trained on distinct views of the data.

Closely related is regularization via conditional entropy

minimization (Grandvalet & Bengio, 2005). Model parame-

ters θ are learned by minimizing entropy in the prediction

H(y|x, θ) = E [− log p(y|x, θ)] for each unlabeled sample

x, additionally to the supervised loss. It can be seen as

an efficient information-theoretic form of self-supervision,

encouraging the model to make confident predictions. This

pushes samples away from decision boundaries and vice-
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versa, favoring low-density separation. It may however in-

duce confirmation bias, hurting optimization if clusters are

not yet well formed. Such is the case of a neural network’s

embedding in early training stages, where gradient descent

can push samples away from the decision boundary towards

the random side where they started (Fig. 2). Because of this,

the regularizer’s effect is commonly controlled with ad-hoc

ramp-up schedules of a weight meta-parameter (Springen-

berg, 2015; Chongxuan et al., 2017; Dai et al., 2017; Miyato

et al., 2017). Similar is the case of self-supervision. In con-

trast, our regularizer does not use the suboptimal classifier

being trained. It only reasons about the latent manifold’s

geometry. As a result, gradients it applies are indifferent

to the decision boundary’s position and do not generally

oppose gradients of the classification loss. Finally, since

our cost depends on the confidence of labels propagated on

the graph, its effect adapts throughout training, according to

whether clusters are well formed or not.

2.3. Perturbation-Based Approaches

Regularizing the input-output mapping to be consistent

when noise is applied to the input can improve general-

ization (Bishop, 1995). This goal of “consistency under

perturbation” has been shown applicable for SSL (Bachman

et al., 2014). In its generic form, a function f minimizes

a regularizer of the form R(f) = Eξ [d(f(x; ξ), f(x))] for

each sample x, assuming ξ is a noise process such that

Eξ [f(x; ξ)] = f(x). f can be the classification output or

hidden activations of a neural network, d is a distance metric

such as the L2 norm. This cost encourages local consistency

of the classifier’s output around each unlabeled sample,

pushing decision boundaries away from high density areas.

The approach has given promising results, with ξ taking

various forms such as different dropout masks (Bachman

et al., 2014), Gaussian noise applied to network activations

(Rasmus et al., 2015), sampling input augmentations, pre-

dictions from models at different stages of training (Laine &

Aila, 2017; Tarvainen & Valpola, 2017) or adversarial per-

turbation (Miyato et al., 2017). Like self-supervision, these

methods can induce confirmation bias. Orthogonally to en-

couraging local smoothness around each individual sample,

our method regularizes geometry of the manifold globally

by treating all samples and their connections jointly.

2.4. Generative Models

Generative models have also been used within SSL frame-

works. In particular, probabilistic models such as Gaus-

sian mixtures (McLachlan, 2004) are representative exam-

ples. These approaches model how samples x are gener-

ated, estimating p(x|y) or the joint distribution p(x, y) =
p(x|y)p(y). In this framework, SSL can be modeled as a

missing data (y) problem. This is however a substantially

more general problem than estimating p(y|x) with a dis-

criminative model. One might argue that estimating the

joint distribution is not the best objective for SSL, as it re-

quires models of unnecessarily large representational power

and complexity. Examples of popular neural models are

auto-encoders (AE) (Ranzato & Szummer, 2008; Rasmus

et al., 2015) and variational auto-encoders (VAE) (Kingma

et al., 2014; Maaløe et al., 2016). Unfortunately, spend-

ing the encoder’s capacity on preserving variation of the

input that is potentially unrelated to label y, as well as the

requirement for a similarly powerful decoder, make these

approaches difficult to scale to large and complex databases.

Generative adversarial networks (GAN) (Goodfellow et al.,

2014) have been recently applied to SSL with promising

results. Conditional GANs were used to generate synthetic

samples (x, y), which can serve as additional training data

(Chongxuan et al., 2017). Salimans et al. (2016) encouraged

the discriminator to identify the class of real samples, aside

from distinguishing real from fake inputs. Similarly, in

CatGAN (Springenberg, 2015) the discriminator minimizes

the conditional entropy of p(y|x) for real but maximizes

it for fake samples. The reason why the classification ob-

jective gains from the real-versus-fake discrimination was

analyzed in Dai et al. (2017). Interestingly, rather than di-

rectly benefiting from modeling the generative process, it

was shown that bad examples from the generator that lie in

low-density areas of the data manifold guide the classifier

to better position its decision boundary, thus connecting

the improvements with the cluster assumption. Promising

results were achieved, yet the requirement for a generator

and the challenges of adversarial optimization leave space

for future work. Note that these methods are orthogonal to

ours, which regularizes the latent manifold’s structure.

3. Method

Our work builds on the cluster assumption, whereby sam-

ples forming a structure are likely of the same class

(Chapelle et al., 2006), by enforcing a further constraint:

All samples of a class should belong to the same structure.

In this work we take the labeling function f(x; θ) to be

a multi-layer neural network. This model can be decom-

posed into a feature extractor z(x; θz) ∈ Z parametrized

by θz , and a classifier g(z(x; θz); θg) with parameters θg.

The former typically consists of all hidden layers of the

network, while the latter is the final linear classifier. We

argue that classification is improved whenever data from

each class form compact, well separated clusters in feature

space Z . We use a graph embedding to capture the structure

of data in this latent space and propagate labels to unlabeled

samples through high density areas (Section 3.1). We then

introduce a regularizer (Section 3.2) that 1) encourages com-

pact clustering according to propagated labels and 2) avoids

disturbing existing clusters during optimization (Fig. 1).
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3.1. Estimating Structure of Data via Dynamic Graph

Construction and Label Propagation

We train f with stochastic gradient descent (SGD), sampling

at each SGD iteration a labeled batch (XL,yL) ∼ DL

of size NL and an unlabeled batch XU ∼ DU of size

NU . Let YL ∈ R
NL×C be one-hot representation of yL

with C classes. The feature extractor of the network pro-

duces the embeddings ZL = z(XL; θz) for labeled and

ZU = z(XU ; θz) for unlabeled data. We propose to dy-

namically create a graph at every SGD iteration over the

embedding Z =
[

ZL

ZU

]

of batch X =
[

XL

XU

]

, and use label

propagation (LP) (Zhu & Ghahramani, 2002) to implicitly

capture the structure of each class. Unlike Euclidean met-

rics, graph-based metrics naturally respect the underlying

data distribution, following paths along high density areas.

We first generate a fully connected graph in feature space

from both labeled and unlabeled samples. The graph is

characterized by the adjacency matrix A ∈ RN×N , where

N = NL +NU . Each element Aij is the weight of an edge

between samples i and j representing their similarity, and is

parametrized as

Aij = exp(ρ(zi, zj)) , ∀zi, zj ∈ ZL ∪ ZU , (2)

where ρ : Z2 → R is a similarity score such as the dot

product or negative Euclidean distance. In this paper we use

the former. The Markovian random walk along the nodes

of this graph is defined by its transition matrix H, obtained

by row-wise normalization1 of A. Each element Hij is the

probability of a transition from node i to node j:

Hij = Aij

/

∑

k

Aik . (3)

Without loss of generality, elements of A and H that corre-

spond to labeled samples L and unlabeled samples U are

arranged so that

H =

[

HLL HUL

HLU HUU

]

. (4)

LP uses H to model the process of a node i propagating

its class posterior φi = pLP(y|xi,A) ∈ RC to the other

nodes. One such propagation step is formally given by

Φ(t+1) = HΦ(t), where Φ(t) ∈ RN×C . As a result, class

confidence propagates from labeled to unlabeled samples.

While propagation to nearby points initially dominates due

to the exponential in Eq. (2), multiple iterations of the al-

gorithm allow soft labels Φ(t) to propagate and eventually

traverse the whole graph in the stationary state. Unlike

diffusion (Kondor & Lafferty, 2002), LP interprets labeled

samples as constant sources of labels, and clamps their

1We note that other LP variants such as Zhou et al. (2004) that
uses symmetrically normalized Laplacian could also be used.

confidence to their true value YL, thus Φ(t) =
[

YL

Φ
(t)
U

]

, ∀t.

Hence class confidence gradually accumulates in the graph.

By propagating more easily through high density areas, the

process converges at an equilibrium where the decision

boundary settles in a low-density area, satisfying the cluster

assumption. Conveniently, class posteriors for the unlabeled

data at equilibrium can be computed in closed form (Zhu &

Ghahramani, 2002), without iterations, as

ΦU = (I−HUU )
−1HULYL . (5)

Hereafter, let Φ =
[

YL

ΦU

]

∈ RN×C denote the class posteri-

ors estimated by LP at convergence, i.e. the concatenation of

the true, hard (clamped) posteriors for XL and the estimated

posteriors for XU . Equation (5) has been previously used

for transductive inference in applications where the graph

is given a priori (see Section 2.1), hence results directly

rely on suitability of the graph and LP for predictions. In

contrast, we build the graph in feature space Z that will be

learned appropriately. We here point out that equation (5) is

differentiable. This enables learning Z that simultaneously

complies with properties of LP while serving the optimiza-

tion objectives. We also emphasize that instead of relying

on it for inference, in our framework LP merely provides

a mechanism for capturing the arrangement of clusters in

latent space to regularize them towards a desired stationary

point. This improved embedding will benefit generalization

of the actual classifier g, which is trained with standard

cross entropy on labeled samples XL, retaining its efficient

inductive nature.

3.2. Encouraging Compact Clusters in Feature Space

Our desiderata for an optimal SSL regularizer are as follows:

1) it encourages formation of a single and compact cluster

per class in latent space, so that linear separation is straight-

forward; 2) it must be compatible with the supervised loss

to allow easy optimization and high performance.

We first observe that in the desired optimal state, where

a single, compact cluster per class has been formed, the

transition probabilities between any two samples of the same

class should be the same, and zero for inter-class transitions.

Motivated by this, we define a soft version of this optimal

transition matrix T as:

Tij =

C
∑

c=1

φic

φjc

mc

, mc =

N
∑

i=1

φic . (6)

Here φic is the LP posterior for node i to belong to class c

and mc the expected mass assigned to class c. We encourage

z to form compact clusters by minimizing cross entropy

between the ideal T and the current transition matrix H:

L1−step =
1

N2

N
∑

i=1

N
∑

j=1

−Tij logHij . (7)
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Algorithm 1 Training for SSL with CCLP

Input: feature extractor z(·; θz), classifier g(·; θg),
data DL, DU , batch sizes NL, NU , N=NL+NU

Markov chain steps S, weighting w, learning rate α

Output: Learnt network parameters θz and θg
repeat

(XL,yL)
NL∼ DL, XU

NU∼ DU , X=
[

XL

XU

]

# Samples

YL ← one hot(yL) # Labels

Z← z(X; θz) # Forward pass

Lsup ← −
1

NL

∑NL

i=1

∑C
c=1 yic log[g(zi; θg)]c

A← exp(ZZT) # Graph

H← row normalized A # Transition matrix

ΦU ← (I−HUU )
−1HULYL # LP

Φ← [YL;ΦU ]
T← according to Eq. (6)

M← ΦΦT # Labels agreement

LCCLP ← 0
for s = 1 to S do

H(s) ← (H ◦M)s−1H

LCCLP ← LCCLP−
1

SN2

∑N
i=1

∑N
j=1 Tij logH

(s)
ij

end for

Ltotal ← Lsup + wLCCLP

θz ← θz − α∂Ltotal

∂θz
, θg ← θg − α

∂Lsup

∂θg
# Updates

until stopping criterion is true

This objective has properties that are desirable in SSL. It

considers unlabeled samples, models high and low density

regions via the use of LP, and facilitates separation by at-

tracting together in one compact cluster samples of the same

soft or hard labels while repulsing different ones. It does

not apply strong forces to unconfident samples, to avoid

problematic optimization when embedding is still subopti-

mal, e.g. in early training. By being unaware of g and its

decision boundary, gradients of Eq. (7) only depend on the

manifold’s geometry, thus they do not oppose those from

the supervised loss, unlike methods suffering from confir-

mation bias (Section 2). We argue that one more property is

important for good optimization, which is not yet covered.

During optimization, forces applied by a cost should not

disturb existing clusters, as they contain information that

enables SSL via the cluster assumption. To model such

behavior we design a cost that attracts points of the same

class along the structure of the graph. For this we extend

the regularizer of Eq. (7) to the case of Markov chains with

multiple transitions between samples, which should remain

within a single class. The probability of a Markov process

with transition matrix H starting at node i and landing at

node j after s number of steps is given by (Hs)ij .

We are interested in modeling transitions within the same

class and increase their probability, while minimizing the

probability of transiting to other clusters. Our solution is

to utilize the class posteriors estimated by LP, to define a

confidence metric that nodes belong to the same class. For

this, we use the dot product of the nodes’ LP class posteriors

M = ΦΦT. The convenient property of this choice is that

the elements of M are bounded in the range [0, 1], taking

the maximum and minimum values if and only if the labels

(hard/soft for XL/XU respectively) fully agree or disagree

respectively. This allows us to use it as an estimate of the

probability that two nodes belong to the same class.

Equipped with M, we estimate the joint probability

of transitioning from node i to node j and the two

belonging to the same class as p(i→ j, yi = yj) =
p(i→ j)p(yi = yj |i→ j) ≈ HijMij . Note that M is in-

deed a function of H, as suggested by the conditional it

estimates. Finally, we estimate the probability of a Markov

process to start from node i, perform (s−1) steps within

the same class and then transit to any node j, as the element

H
(s)
ij of the matrix

H(s) = (H ◦M)s−1H = (H ◦M)H(s−1), (8)

where ◦ denotes the Hadamard (elementwise) product.

By regularizing H(s) towards target matrix T as in Eq. (7),

we minimize the probability of a chain transiting between

clusters of different classes after s steps, thus repulsing

them, and encourage uniform probability for chains that

only traverse samples of one class, which attracts them and

promotes compact clustering. Notably, regularizing H(s) of

the latter type of chains towards larger values discourages

disturbing clusters along their path, as this would push H(s)

close to zero. This motivates the final form of our Compact

Clustering via Label Propagation (CCLP) regularizer:

LCCLP =
1

S

S
∑

s=1

1

N2

N
∑

i=1

N
∑

j=1

−Tij logH
(s)
ij . (9)

This cost consists of S terms, each modeling paths of differ-

ent length between samples on the graph. Larger s allows

Markov chains to traverse along more elongated clusters.

Note that this cost subsumes Eq. (7) for s = 1. Equation (9)

is minimized simultaneously with the supervised loss Lsup.

An overview of our method is shown in Algorithm 1.

4. Empirical Analysis on Synthetic Data

We conduct a study on synthetic toy examples to analyze

the behavior of the proposed method. We are interested in

the forces that CCLP applies to samples in the latent space

Z as it attempts to improve their clustering, isolated from

the influence of model z(·; θz). Hence we do not adopt

common visualization methods that map space Z learned

by a network to 2D (Maaten & Hinton, 2008), or plot the

decision boundary of the total model f in input space X .
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Figure 2. Two-circles toy experiment. Main figure shows the initial arrangement of two labeled (red/blue) and multiple unlabeled points,

label propagation, and iterations using CCLP along with supervision until convergence. Also depicted are gradients by the supervised loss

on labeled samples (yellow arrows) and by CCLP (black arrows). The dashed box shows failure case of conditional entropy regularizer.

To isolate the effect of CCLP, we consider an artificial setup

in which assumed embeddings of samples Z are initially

positioned in a structured arrangement in a 2D space, which

represents Z , and are allowed to move freely. We place the

embeddings in commonly used toy layouts: two-moons and

two-circles. For the role of g(Z; θg), we use a linear clas-

sifier, for which we compute the supervised loss Lsup. We

then perform label propagation on this artificial latent space

Z and compute LCCLP. Finally, we compute the gradients

of the two costs with respect to θg and the coordinates of

the embeddings Z, and update them iteratively.

In this setting, both costs try to move the labeled samples in

space Z , but only CCLP affects unlabeled data. If Z were

computed by a real neural net z(·; θz), which is a smooth

function, embeddings of unlabeled samples would also be

affected by Lsup, via updates to θz . Our settings instead

isolate the effect of CCLP on the unlabeled data.

4.1. Two Circles

We study the dynamics of CCLP (S = 10) on two-circles

(Fig. 2), when a single labeled example is given per class.

We first observe that the isolated effect of CCLP indeed

encourages formation of a single, compact cluster per class.

In more challenging scenarios, results are naturally subject

to the effect of the model, optimizer and data.

We also observe that the direction of gradients applied by

CCLP to each sample depends on the manifold’s geometry,

not on the decision boundary, about which CCLP is agnostic.

Since gradients from the supervised loss are perpendicular

to the decision boundary of the linear classifier, the effect of

CCLP generally does not oppose supervision. By contrast,

we show the effect of confirmation bias by studying condi-

tional entropy regularization (CER) (Grandvalet & Bengio,

2005). CER gradients are perpendicular to the decision

boundary and can thus oppose the effect of supervision.2

4.2. Two Moons

We use two moons to investigate the effect of the maximum

steps S of Markov chains used in LCCLP (Fig. 3). When

multiple steps are used, here S = 10, gradients of CCLP

follow existing high density areas in their attempt to cluster

samples better. This leads the labeled samples to also move

along the existing clusters on their way to the correct side

of the decision boundary. Conversely, when a single step

is used (S = 1), gradients by CCLP try to preserve only

local neighborhoods, which allows the clusters to disinte-

grate. This breakdown of the global structure implies loss

of information, which in turn may lead to misclassification.

5. Evaluation on Common Benchmarks

Benchmarks: We consider three benchmarks widely used

in studies on SSL: MNIST, SVHN and CIFAR-10. Follow-

ing common practice we whiten the datasets. We use no data

augmentation to isolate the effect of the SSL method. Fol-

lowing previous work, to study the effectiveness of CCLP

when labeled data is scarce, as DL we use 100, 1000 and

4000 samples from the training set of each benchmark re-

spectively, while the whole training set without its labels

constitutes DU . We also study effectiveness of our method

2If combined with an appropriate model z or a different opti-
mizer, CER could solve this example. Here we focus on the effect
under gradient descent and independently of the model z.
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Figure 3. Two-moons toy experiment. Comparison between CCLP applied with S=1 (top row) and with S=10 (bottom row). Exploring

the direction of the gradients from CCLP (black arrows) shows that optimizing over a longer chain of steps leads to a behavior that tries to

preserve existing clusters when attempting to create more compact clusters.

Table 1. Performance of CCLP compared to contemporary SSL methods on common benchmarks, when limited or all available labelled

data is used as DL for training. Also shown is performance of the corresponding baseline with standard supervision (no SS). Error rate is

shown as (mean ± st.dev.). Only results obtained without augmentation are shown. Methods in the lower part used larger classifiers.

MNIST SVHN CIFAR10

MODEL |DL| = 100 ALL ALL, NO SS 1000 ALL ALL, NO SS 4000 ALL ALL, NO SS

CONV-CATGAN(SPRINGENBERG, 2015) 1.39 ± 0.28 0.48 – – – – 19.58 ± 0.46 9.38 –
LADDER(CNN-Γ)(RASMUS ET AL., 2015) 0.89 ± 0.50 – 0.36 – – – 20.40 ± 0.47 – 9.27
SDGM (MAALØE ET AL., 2016) 1.32 ± 0.07 – – 16.61 ± 0.24 – – – – –
ADGM (MAALØE ET AL., 2016) 0.96 ± 0.02 – – 22.86 – – – – –
IGAN (SALIMANS ET AL., 2016) 0.93 ± 0.07 – – 8.11 ± 1.30 – – 18.63 ± 2.32 – –
ALI (DUMOULIN ET AL., 2017) – – – 7.42 ± 0.65 – – 17.99 ± 1.62 – –
VAT (MIYATO ET AL., 2017) 1.36 0.64 1.11 6.83 – – 14.87 5.81 6.76
TRIPLE GAN (CHONGXUAN ET AL., 2017) 0.91 ± 0.58 – – 5.77 ± 0.17 – – 16.99 ± 0.36 – –
MMCVAE (LI ET AL., 2017) 1.24 ± 0.54 0.31 – 4.95 ± 0.18 3.09 – – – –
BADGAN (DAI ET AL., 2017) 0.80 ± 0.10 – – 4.25 ± 0.03 – – 14.41 ± 0.30 – –
LBA (HAEUSSER ET AL., 2017) 0.89 ± 0.08 0.36 ± 0.03 – – – – – – –
LBA (OUR IMPLEMENTATION) 0.90 ± 0.10 0.36 ± 0.03 0.46 ± 0.03 9.25 ± 0.65 3.61 ± 0.10 4.26 ± 0.10 19.33 ± 0.51 8.46 ± 0.18 9.33 ± 0.14
CCLP (OURS) 0.75 ± 0.14 0.32 ± 0.03 0.46 ± 0.03 5.69 ± 0.28 3.04 ± 0.05 4.26 ± 0.10 18.57 ± 0.41 8.04 ± 0.18 9.33 ± 0.14

Larger Classifiers
Π MODEL (LAINE & AILA, 2017) – – – 5.43 ± 0.25 – – 16.55 ± 0.29 – –
MTEACH.(TARVAINEN & VALPOLA, 2017) – – – 5.21 ± 0.21 2.77 ± 0.09 3.04 ± 0.04 17.74 ± 0.29 7.21 ± 0.24 7.43 ± 0.06
VAT-LARGE (MIYATO ET AL., 2017) – – – 5.77 – – 14.82 – –
VAT-LARGE-ENT (MIYATO ET AL., 2017) – – – 4.28 – – 13.15 – –

when abundant labels are available, using the whole training

set as both DL and DU . We also report performance of our

baseline trained with only standard supervision (no SSL),

to facilitate comparison of improvements from CCLP with

previous and future works, where quality of the baselines

may differ. For every benchmark, we perform 10 training

sessions with random seeds and randomly sampled DL and

report the mean and standard deviation of the error. We

evaluate on the test-dataset of each benchmark, except for

the ablation study where we separated a validation set.

Models: For MNIST we use a CNN similar to Rasmus et al.

(2015); Chongxuan et al. (2017); Haeusser et al. (2017);

Li et al. (2017). For SVHN and CIFAR we use the net-

work used as classifier in Salimans et al. (2016), commonly

adopted in recent works. In all experiments we used the

same meta-parameters for CCLP: In each SGD iteration we

sample a batch (XL,yL)∼DL of size NL = 100, where

we ensure that 10 samples from each class are contained,

and a batch without labels XU ∼ DU of size NU = 100.

We use the dot product as similarity metric (Eq. (2)), S=3
maximum steps of the Markov chains (Eq. (9)). LCCLP

was weighted equally with the supervised loss, with w=1
throughout training. These parameters were found to work

reasonably in early experiments on a pre-selected validation

subset from the MNIST training set and were used without

extensive effort to optimize them for this benchmarking.

Exception are the experiments with |DL|=4000 on CIFAR,

where lower w=0.1 was used, because w=1 was found to

over-regularize these settings.

We also employ the method of Haeusser et al. (2017) (LBA)

on SVHN and CIFAR-10, as in the original work a different

network was used, while results on SVHN where reported
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only with data augmentation. We note that for correctness,

in preliminary experiments we ensured that with data aug-

mentation our implementation of LBA produced similar

results to what reported in Haeusser et al. (2017).

Results: Performance of our method in comparison to re-

cent SSL approaches that use similar experimental settings

are reported in Table 1. We do not report results obtained

with data augmentation. Note that iGAN (Salimans et al.,

2016), VAT (Miyato et al., 2017) and BadGAN (Dai et al.,

2017) used a deep MLP instead of a CNN on MNIST, so

those results may not be entirely comparable. Our method

achieves very promising results in all benchmarks, that im-

prove or are comparable to the state-of-the-art. CCLP con-

sistently improves performance over standard supervision

even when all labels in the training set are used for supervi-

sion, indicating that CCLP could be used as a latent space

regularizer in fully supervised systems. In the latter settings,

CCLP offers greater improvement over the corresponding

baselines than the most recent perturbation-based method,

mean teacher (Tarvainen & Valpola, 2017). We finally em-

phasize that our method consists of the computation of a

single cost function and does not require additional network

components, such as the generators required for VAEs and

GANs, or the density estimator PixelCNN++ used in Dai

et al. (2017). Furthermore, we emphasize that many of these

works make use of multiple complementary regularization

costs. The compact clustering that our method encourages

is orthogonal to previous approaches and could thus boost

their performance further.

Figure 4. Validation error when CCLP is applied with varying num-

ber of steps S. Left/right vertical axis correspond to training with

limited/all labeled samples respectively. Compact clustering with

S=1 improves over standard supervision (w/o SSL). Optimizing

with 3-6 steps offers a further 5-25% reduction of the error.

Ablation study: We further study the effect of CCLP’s two

key aspects: Regularizing the latent space towards com-

pact clustering and, secondly, optimizing while respecting

existing clusters by using multi-step Markov chains. For

this, we separate a validation set of 10000 images from the

training set of each benchmark. DL and DU are formed out

of the remaining training data. We evaluate performance

on the validation set when CCLP uses different number of

maximum steps S (Eq. (9)). Each setting is repeated 10

times and we report the average error in Fig. 4. When S=1,

CCLP encourages compact clustering without attempting to

preserve existing clusters. This already offers large benefits

over standard supervision. Optimizing over longer Markov

chains offers further improvements, with values 3≤S≤6
further reducing the error by 5-25% in most settings. Cap-

turing too long paths between samples (S>10) reduces the

benefits.

6. Computational Considerations

Time complexity of CCLP is O(N3+SN2), overwhelmed

by O(N3) of matrix inversion since N ≫ S in our set-

tings. In practice, CCLP is inexpensive compared to a

net’s forward and backward passes. In our CIFAR settings

and TensorFlow GPU implementation (Abadi et al., 2016),

CCLP increases less than 10% the time for an SGD iteration,

even for large N=1000. In comparison, GANs and VAEs

require an expensive decoder, while perturbation-based ap-

proaches perform multiple passes over each sample.

As batch size N defines how well the graph approximates

the true data manifold, larger N is desirable but requires

more memory, while low N may decrease performance.

Batch sizes in the order of 200 used in this and previous

works (Laine & Aila, 2017) are practical in various applica-

tions, with hardware advances promising further improve-

ments. Finally, in distributed systems that divide thousands

of samples between compute nodes, CCLP could scale by

creating a different graph per node.

7. Conclusion

We have presented a novel regularization technique for SSL,

based on the idea of forming compact clusters in the latent

space of a neural network while preserving existing clus-

ters during optimization. This is enabled by dynamically

constructing a graph in latent space at each SGD iteration

and propagating labels to estimate the manifold’s structure,

which we then regularize. We showed that our approach

is effective in leveraging unlabeled samples via empirical

evaluation on three widely used image classification bench-

marks. We also showed our regularizer offers consistent

improvements over standard supervision even when labels

are abundant.

Our method is computationally efficient and easy to apply

to existing architectures as it does not require additional

network components. It is also orthogonal to approaches

that do not capture the structure of data, such as perturbation

based approaches and self-supervision, with which it can

be readily combined. Analyzing further the properties of a

compactly clustered latent space, as well as applying our

approach to larger benchmarks and the task of semantic

segmentation is interesting future work.



Semi-Supervised Learning via Compact Latent Space Clustering

Acknowledgements

This research was partly carried out when KK, DC and

RT were interns at Microsoft Research Cambridge. This

project has also received funding from the European Re-

search Council (ERC) under the European Union’s Hori-

zon 2020 research and innovation programme (grant agree-

ment No 757173, project MIRA, ERC-2017-STG). KK

is also supported by the President’s PhD Scholarship of

Imperial College London. DC is supported by CAPES,

Ministry of Education, Brazil (BEX 1500/15-05). LLF

is funded through EPSRC Healthcare Impact Partnerships

grant (EP/P023509/1). IW is supported by the Natural Envi-

ronment Research Council (NERC).

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.

TensorFlow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Conference on Oper-

ating Systems Design and Implementation (OSDI 2016),

volume 16, pp. 265–283, 2016.

Atwood, J. and Towsley, D. Diffusion-convolutional neural

networks. In Advances in Neural Information Processing

Systems, pp. 1993–2001, 2016.

Bachman, P., Alsharif, O., and Precup, D. Learning with

pseudo-ensembles. In Advances in Neural Information

Processing Systems, pp. 3365–3373, 2014.

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regular-

ization: A geometric framework for learning from labeled

and unlabeled examples. Journal of Machine Learning

Research, 7(Nov):2399–2434, 2006.

Bishop, C. M. Training with noise is equivalent to Tikhonov

regularization. Neural Computation, 7(1):108–116, 1995.

Blum, A. and Mitchell, T. Combining labeled and unlabeled

data with co-training. In Proceedings of the Eleventh

Annual Conference on Computational Learning Theory,

pp. 92–100, 1998.

Chapelle, O., Scholkopf, B., and Zien, A. Semi-supervised

Learning. MIT Press, Cambridge, Mass., USA, 2006.

Chongxuan, L., Xu, T., Zhu, J., and Zhang, B. Triple gener-

ative adversarial nets. In Advances in Neural Information

Processing Systems, pp. 4091–4101, 2017.

Dai, Z., Yang, Z., Yang, F., Cohen, W. W., and Salakhutdi-

nov, R. R. Good semi-supervised learning that requires a

bad GAN. In Advances in Neural Information Processing

Systems, pp. 6513–6523, 2017.

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky,

M., Mastropietro, O., and Courville, A. Adversarially

learned inference. In International Conference on Learn-

ing Representations, 2017.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio,

Y. Generative adversarial nets. In Advances in Neural

Information Processing Systems, pp. 2672–2680, 2014.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by

entropy minimization. In Advances in Neural Information

Processing Systems, pp. 529–536, 2005.

Haeusser, P., Mordvintsev, A., and Cremers, D. Learning by

association – a versatile semi-supervised training method

for neural networks. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling,

M. Semi-supervised learning with deep generative mod-

els. In Advances in Neural Information Processing Sys-

tems, pp. 3581–3589, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-

tion with graph convolutional networks. International

Conference on Learning Representations, 2017.

Kondor, R. I. and Lafferty, J. Diffusion kernels on graphs

and other discrete input spaces. In Proceedings of the

19th International Conference on Machine Learning, vol-

ume 2, pp. 315–322, 2002.

Laine, S. and Aila, T. Temporal ensembling for semi-

supervised learning. International Conference on Learn-

ing Representations, 2017.

Lee, D.-H. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks.

In Workshop on Challenges in Representation Learning,

ICML, volume 3, pp. 2, 2013.

Li, C., Zhu, J., and Zhang, B. Max-margin deep generative

models for (semi-) supervised learning. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2017.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther,

O. Auxiliary deep generative models. In Proceedings

of the 33rd International Conference on International

Conference on Machine Learning, pp. 1445–1454, 2016.

Maaten, L. v. d. and Hinton, G. Visualizing data using t-

SNE. Journal of Machine Learning Research, 9(Nov):

2579–2605, 2008.

McLachlan, G. Discriminant Analysis and Statistical Pat-

tern Recognition, volume 544. John Wiley & Sons, 2004.



Semi-Supervised Learning via Compact Latent Space Clustering

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Vir-

tual adversarial training: a regularization method for su-

pervised and semi-supervised learning. arXiv preprint

arXiv:1704.03976, 2017.

Ranzato, M. and Szummer, M. Semi-supervised learning of

compact document representations with deep networks.

In Proceedings of the 25th International Conference on

Machine Learning, pp. 792–799, 2008.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and

Raiko, T. Semi-supervised learning with ladder networks.

In Advances in Neural Information Processing Systems,

pp. 3546–3554, 2015.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-

ford, A., and Chen, X. Improved techniques for training

GANs. In Advances in Neural Information Processing

Systems, pp. 2234–2242, 2016.

Scudder, H. Probability of error of some adaptive pattern-

recognition machines. IEEE Transactions on Information

Theory, 11(3):363–371, 1965.

Springenberg, J. T. Unsupervised and semi-supervised

learning with categorical generative adversarial networks.

arXiv preprint arXiv:1511.06390, 2015.

Tarvainen, A. and Valpola, H. Mean teachers are better role

models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In Advances in

Neural Information Processing Systems, pp. 1195–1204,

2017.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep

learning via semi-supervised embedding. In Neural Net-

works: Tricks of the Trade, pp. 639–655. Springer, 2012.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and

Schölkopf, B. Learning with local and global consis-

tency. In Advances in Neural Information Processing

Systems, pp. 321–328, 2004.

Zhu, X. Semi-supervised Learning with Graphs. PhD the-

sis, Carnegie Mellon University, Language Technologies

Institute, School of Computer Science, 2005.

Zhu, X. and Ghahramani, Z. Learning from labeled and

unlabeled data with label propagation. Technical Report,

Carnegie Mellon University, 2002.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-

supervised learning using Gaussian fields and harmonic

functions. In Proceedings of the 20th International Con-

ference on Machine Learning, pp. 912–919, 2003.


