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Abstract In this paper we study statistical properties of semi-supervised learning, which
is considered to be an important problem in the field of machine learning. In standard su-
pervised learning only labeled data is observed, and classification and regression problems
are formalized as supervised learning. On the other hand, in semi-supervised learning, unla-
beled data is also obtained in addition to labeled data. Hence, the ability to exploit unlabeled
data is important to improve prediction accuracy in semi-supervised learning. This problem
is regarded as a semiparametric estimation problem with missing data. Under discriminative
probabilistic models, it was considered that unlabeled data is useless to improve the esti-
mation accuracy. Recently, the weighted estimator using unlabeled data achieves a better
prediction accuracy compared to the learning method using only labeled data, especially
when the discriminative probabilistic model is misspecified. That is, improvement under the
semiparametric model with missing data is possible when the semiparametric model is mis-
specified. In this paper, we apply the density-ratio estimator to obtain the weight function
in semi-supervised learning. Our approach is advantageous because the proposed estima-
tor does not require well-specified probabilistic models for the probability of the unlabeled
data. Based on statistical asymptotic theory, we prove that the estimation accuracy of our
method outperforms supervised learning using only labeled data. Some numerical experi-
ments present the usefulness of our methods.
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1 Introduction

In this paper, we analyze statistical properties of semi-supervised learning. In standard su-
pervised learning, only the labeled data (x, y) is observed, and the goal is to estimate the
relation between x and y, i.e., the conditional expectation of y given x, or the conditional
probability of y given x. In semi-supervised learning (Chapelle et al. 2006), the unlabeled
data x ′ is also obtained in addition to the labeled data. In real-world data such as text data, we
can often obtain both labeled and unlabeled data. A typical example is that x and y denote
the text and tag of the article, respectively. Significant effort is required to tag the article;
hence, the labeled data is scarce, while the unlabeled data is abundant. In semi-supervised
learning, the study of methods that exploit unlabeled data is important.

In standard semi-supervised learning, statistical models of the joint probability p(x, y),
i.e., generative models, are often used to incorporate the information present in the un-
labeled data into the estimation. For example, under the statistical model p(x, y;β) hav-
ing the parameter β , the information involved in the unlabeled data is used to esti-
mate the parameter β via the marginal probability p(x;β) = ∫

p(x, y;β)dy. The amount
of information in unlabeled samples was studied by Castelli and Cover (1996), Dil-
lon et al. (2010), Sinha and Belkin (2007). This approach was developed to deal with
various data structures. For example, semi-supervised learning with manifold assump-
tion or cluster assumption has been studied along this line (Belkin and Niyogi 2004;
Lafferty and Wasserman 2007). By making some assumptions regarding generative mod-
els, it was revealed that unlabeled data is useful for improving prediction accuracy.

Statistical models of the conditional probability p(y|x), i.e., discriminative models, are
also used in semi-supervised learning. It appears that the unlabeled data is not very use-
ful to estimate the conditional probability, because the marginal probability does not have
any information on p(y|x) (Lasserre et al. 2006; Seeger 2001; Zhang and Oles 2000). The
maximum likelihood estimator (MLE) obtained using a parametric model of p(y|x) is not
affected by the unlabeled data. However, Sokolovska et al. (2008) proved that even for dis-
criminative models, the unlabeled data is still useful for improving the prediction accuracy
of the learning method using only labeled data.

Semi-supervised learning methods work well under some assumptions regarding the pop-
ulation distribution and statistical models. However, semi-supervised learning has the possi-
bility of degrading the estimation accuracy, especially when a misspecified model is applied;
see Cozman et al. (2003), Grandvalet and Bengio (2005), Nigam et al. (1999). Hence, safe
semi-supervised learning is desired. The learning algorithms proposed by Sokolovska et al.
(2008) and Li and Zhou (2011) have a theoretical guarantee such that the unlabeled data
does not degrade the estimation accuracy.

In this paper, we developed a learning method proposed by Sokolovska et al. (2008).
To incorporate the information present in the unlabeled data into the estimator, Sokolovska
et al. (2008) used the weighted estimator. In the estimation of the weight function, a well-
specified model for the marginal probability p(x) was assumed. This is a strong assump-
tion for semi-supervised learning. To overcome the drawback, we applied the density-
ratio estimator for the estimation of the weight function (Sugiyama and Kawanabe 2012;
Sugiyama et al. 2012). We proved that semi-supervised learning with the density-ratio esti-
mator improves standard supervised learning. Our method is available for not only classifica-
tion problems but also regression problems, while many semi-supervised learning methods
focus on binary classification problems.

This paper is organized as follows. In Sect. 2, we show the problem setup. In Sect. 3,
we introduce the weighted estimator investigated by Sokolovska et al. In Sect. 4, we briefly
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explain the density-ratio estimation. In Sect. 5, we discuss the asymptotic variance of the
considered semi-supervised learning methods. In Sect. 6, we prove that the weighted esti-
mator using labeled and unlabeled data outperforms supervised learning using only labeled
data. In Sect. 7, we discuss our numerical experiments, and we conclude the paper in Sect. 8.

2 Problem setup

Here, we introduce the problem setup. We assume that the probability distribution of training
samples is given as

(xi, yi)
i.i.d.∼ p(y|x)p(x), i = 1, . . . , n, x ′

j

i.i.d.∼ q(x), j = 1, . . . , n′, (1)

where p(y|x) is the conditional probability of y ∈ Y given x ∈ X , and p(x) and q(x) are
marginal probabilities on X . Here, q(x) is regarded as the probability in the testing phase,
i.e., the test data (x, y) is distributed from the joint probability p(y|x)q(x), and the esti-
mation accuracy is evaluated under the test probability. The paired sample (xi, yi) is called
labeled data, and the unpaired sample x ′

j is called unlabeled data. Our goal is to estimate
the conditional probability p(y|x) or the conditional expectation E[y|x] based on the la-
beled and unlabeled data in (1). When Y is a finite set, the problem is called a classification
problem. For Y = R (the set of real numbers), the estimation of E[y|x] is referred to as the
regression problem.

In common learning problems including semi-supervised learning, marginal distributions
of training and test samples are the same, i.e., p(x) = q(x) is assumed. Below we introduce
a covariate shift adaptation in which p(x) = q(x) is not guaranteed. Learning methods used
in the covariate shift adaptation are applied to our problem. Hence, in the problem setup in
(1), the marginal distributions p(x) and q(x) are separately represented.

In the context of covariate shift adaptation (Shimodaira 2000), the assumption that
p(x) �= q(x) is generally employed. As shown in Sect. 3, the weighted estimator with the
weight function q(x)/p(x) is used to correct the estimation bias induced by the covariate
shift; see Sugiyama et al. (2007, 2012), Sugiyama and Kawanabe (2012), for details. Hence,
the estimation of the weight function q(x)/p(x) is important to achieve good prediction
accuracy in the test phase.

On the other hand, in semi-supervised learning (Chapelle et al. 2006), the equality
p(x) = q(x) is assumed, and often n′ is often significantly greater than n. This setup is
also quite practical. For example, in text data mining, the labeled data is scarce, while the
unlabeled data is abundant. In this paper, we assume that the equality

p(x) = q(x) (2)

holds. Even under the assumption that p(x) = q(x), it is important to consider problem
(1) in which the marginal distributions p(x) and q(x) can be different. The reason will be
clarified in Sect. 3.

We define the following semiparametric model,

M = {
p(y|x;α)r(x) : α ∈ A ⊂ R

d , r ∈ P
}
, (3)

for the estimation of the conditional probability p(y|x), where P is the set of all probability
densities of the covariate x. The parameter of interest is α, and r(x) ∈ P is regarded as
the nuisance parameter. The model M does not necessarily include the true test probability
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p(y|x)q(x), i.e., the parameter α may not exist such that p(y|x) = p(y|x;α) holds. This is a
significant condition when we consider the improvement of the inference in semi-supervised
learning.

Our target is to estimate the parameter α∗ that satisfies

max
α∈A

E
[
logp(y|x;α)

] = E
[
logp

(
y|x;α∗)], (4)

where E[·] denotes the expectation with respect to the distribution of test samples,
p(y|x)q(x). If the model M includes the true probability, we have p(y|x;α∗) = p(y|x)

due to the non-negativity of the Kullback-Leibler divergence (Cover and Thomas 2006).
However, in the misspecified setup, the equality p(y|x;α∗) = p(y|x) is not guaranteed.

3 Weighted estimator in semi-supervised learning

In this section, we introduce weighted estimators. First, we consider the MLE for the esti-
mation of p(y|x) under the model p(y|x;α).

For the statistical model of the conditional probability p(y|x;α), let u(x, y;α) ∈ R
d be

the score function

u(x, y;α) = ∇ logp(y|x;α),

where ∇ denotes the gradient with respect to the model parameter α. It is well known that
the score function satisfies the equality

∫
u(x, y;α)p(y|x;α)q(x)dxdy = 0

for any α ∈ A. Considering the extremal condition of (4), we see that the parameter α∗ in
(4) is a solution of the following equation:

∫
u(x, y;α)p(y|x)q(x)dxdy = 0, α ∈ A. (5)

When the target probability p(y|x) is realized by the model, i.e., p(y|x) = p(y|x;α∗), the
solution of (5) is given as α = α∗. Otherwise, p(y|x;α∗) is regarded as an approximation of
p(y|x) in the sense of the Kullback-Leibler divergence.

Our purpose is to estimate the parameter α∗ that satisfies Eq. (5) from training samples.
By replacing the expectation with respect to p(y|x)q(x) with the empirical distribution of
labeled training samples, we obtain the following equation with respect to the parameter α,

1

n

n∑

i=1

u(xi, yi;α) = 0, α ∈ A. (6)

Let α̂ be a solution of Eq. (6). Because p(x) = q(x) is assumed, p(y|x; α̂) is expected to
approximate p(y|x,α∗). This is because the law of large numbers yields that for each α,
the empirical mean (6) converges in probability to (5). The estimator α̂ is the MLE with the
statistical model p(y|x;α). Under the regularity condition, the MLE has statistical consis-
tency, i.e., the estimated parameter α̂ converges in probability to α∗ when the sample size n

tends to infinity. See van der Vaart (1998) for details of statistical consistency.
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In addition, the score function u is the optimal choice among Z-estimators (van der
Vaart 1998, Chap. 5), when the true conditional probability density p(y|x) is realized by
the model p(y|x;α). Here the asymptotic variance-covariance matrix of the estimated pa-
rameter is employed to compare the estimation accuracy. Suppose that only labeled samples
are available, then the optimality of the score function u implies that information regarding
the marginal distribution q(x) is not useful to improve the estimation accuracy. Intuitively,
this is because the score function is orthogonal to the tangent space spanned by infinites-
imal shifts of the marginal probability q(x). See Amari and Kawanabe (1997) for details
pertaining to the geometrical interpretation of the semiparametric inference.

We consider the setup of semi-supervised learning in which unlabeled data is available.
When the model M is specified, i.e., p(y|x) = p(y|x;α∗), the estimator (6) obtained using
only the labeled data is efficient. This is obtained from numerous studies about the semipara-
metric inference with missing data; see Nan et al. (2009), Robins et al. (1994) and references
therein.

In contrast, suppose that in semi-supervised learning, the model M is misspecified, i.e.,
p(y|x) is not realized by the model p(y|x;α). In this case, Sokolovska et al. proved that it is
possible to improve the MLE in (6) by using the so-called weighted MLE. This result implies
that unlabeled data is useful in semi-supervised learning, when the model is misspecified.
Before we give an explanation of the study by Sokolovska et al., we briefly introduce the
weighted MLE.

The weighted MLE is defined as a solution of the following equation:

1

n

n∑

i=1

w(xi)u(xi, yi;α) = 0, α ∈ A, (7)

where w(x) is a weight function. Suppose that w(x) = q(x)/p(x) under the problem setup
(1). Then the law of large numbers leads to probabilistic convergence,

1

n

n∑

i=1

w(xi)u(xi, yi;α)
p−→

∫
q(x)

p(x)
u(x, y;α)p(y|x)p(x)dx

=
∫

u(x, y;α)p(y|x)q(x)dx.

Hence the estimator p(y|x; α̂) based on (7) will provide a good estimation of p(y|x) un-
der the marginal probability q(x). This indicates that p(y|x; α̂) is expected to approximate
p(y|x) over the region on which q(x) takes a large value. The weight function w(x) serves
to adjust the bias of the estimator. Hence, the weighted MLE is useful especially when
p(x) �= q(x) holds. If we cannot directly access probability densities p(x) and q(x), we
need to estimate the weight function w(x) = q(x)/p(x). However, in semi-supervised learn-
ing, the weight function is given as w(x) = q(x)/p(x) = 1, and it is known beforehand.
While it may be thought that there is no need to estimate the weight function, Sokolovska
et al. showed that the estimation of the weight function is useful, even though it is already
known in semi-supervised learning.

Here, we briefly introduce the result obtained by Sokolovska et al. (2008). Let the set X
be finite. Then, P is a finite-dimensional parametric model. Suppose that the sample size of
the unlabeled data is enormous and that the probability function q(x) on X is known with a
high degree of accuracy. The probability p(x) is estimated by the MLE p̂(x) from training
samples {xi}n

i=1 in the labeled data. Then, Sokolovska et al. showed that the weighted MLE
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(7) obtained with the estimated weight function w(x) = q(x)/p̂(x) improves the naive MLE
when the true conditional probability p(y|x) is not realized by the model p(y|x;α).

The phenomenon above is similar to the statistical paradox analyzed by Henmi and
Eguchi (2004), Henmi et al. (2007). In a semiparametric estimation, Henmi and Eguchi
(2004) pointed out that the estimation accuracy of the parameter of interest can be improved
by the estimation of the nuisance parameter, even when the nuisance parameter is known be-
forehand. Hirano et al. (2003) also pointed out that the estimator with the estimated propen-
sity score is more efficient than that using the true propensity score for estimation of average
treatment effects. Here the propensity score corresponds to the weight function w(x) in our
context.

We illustrate the statistical paradox according to Henmi et al. (2007). Let f (x) be a non-
negative function on R

p , and θ be the integral of f (x), i.e., θ = ∫
f (x)dx. Our goal is to

compute θ based on the Monte Carlo method. First, generate x1, . . . , xn from a probability
p(x;α0) with a preliminarily fixed α0. Then, let θ̃ be an importance sampling estimator
θ̃ = 1

n

∑n

i=1 f (xi)/p(xi;α0). The law of large numbers ensures the statistical consistency of
θ̃ . As an alternative estimate of θ , we define θ̂ as θ̂ = 1

n

∑n

i=1 f (xi)/p(xi; α̂), where α̂ is the
MLE of α0 under a specified model p(x;α). Henmi et al. (2007) proved that the asymptotic
variance of θ̂ is smaller than or equal to that of θ̃ . This result appears to be paradoxical, since
the estimation of the known parameter α0 improves the ordinary importance sampling θ̃ .

For the estimation of the weight function w(x) in (7), we apply the density-ratio estimator
instead of estimating the probability densities separately. Recently, estimation methods of
the weight function obtained from training samples have been intensively studied under the
name of density-ratio estimation; see Sugiyama et al. (2012) and Sugiyama and Kawanabe
(2012) for details. We show that the density-ratio estimator provides a practical method for
semi-supervised learning. In the next section, we introduce density-ratio estimation.

4 Density-ratio estimation

Density-ratio estimators are available to estimate the weight function w(x) = q(x)/p(x).
Recently, methods to directly estimate density-ratios have been developed in the machine
learning community (Sugiyama and Kawanabe 2012; Sugiyama et al. 2012). We apply the
density-ratio estimator to estimate the weight function w(x) instead of using the estimator
of each probability density.

We briefly introduce the density-ratio estimator according to Qin (1998). Suppose that
the following training samples are observed:

xi

i.i.d.∼ p(x), i = 1, . . . , n, x ′
j

i.i.d.∼ q(x), j = 1, . . . , n′. (8)

Our goal is to estimate the density-ratio w(x) = q(x)/p(x). Let w(x; θ) be an r-dimensional
parametric model for the density-ratio defined by

w(x; θ) = exp
{
θ1φ1(x) + · · · + θrφr(x)

}
, (9)

where φ1(x) is given as φ1(x) = 1. Though a more general parametric model, say w̄(x; θ) =
exp{φ̄(x; θ)} with a nonlinear function φ̄(x; θ) w.r.t θ , is available for the density-ratio es-
timation, we use (9) for simplicity. In the first-order asymptotic theory, we only need the
quantity in the first-order Taylor expansion of φ̄(x; θ) in the model w̄(x; θ) if the model
w̄(x; θ) is closed under multiplication of positive constants. Thus, assuming the model (9)
does not lose generality. See the paper by Qin (1998) for a more general description.
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For any function η(x; θ) ∈ R
r that may depend on the parameter θ , one has the equality

∫
η(x; θ)w(x)p(x)dx −

∫
η(x; θ)q(x)dx = 0, (10)

since w(x)p(x) = q(x) holds. Hence, the empirical approximation of the above equation is
expected to provide an estimation equation of the density-ratio. The empirical approxima-
tion of the above equality under the parametric model of w(x; θ) is given as

1

n

n∑

i=1

η(xi; θ)w(xi; θ) − 1

n′

n′
∑

j=1

η
(
x ′

j ; θ
) = 0. (11)

Let θ̂ be a solution of (11), then w(x; θ̂) is an estimator of w(x). Since the law of large num-
bers yields the probabilistic convergence of (11) to (10), the existence of a solution of (11) is
guaranteed for the large sample limit under a specified density-ratio model. Note that we do
not need to separately estimate probability densities p(x) and q(x). The estimation Eq. (11)
provides a direct estimator of the density-ratio based on moment matching with the function
η(x; θ).

Qin (1998) proved that the optimal choice of η(x; θ) is given as

η(x; θ) = 1

1 + w(x; θ) · n′/n
∇ logw(x; θ) = 1

1 + w(x; θ) · n′/n
φ(x), (12)

where φ(x) = (φ1(x), . . . , φr(x))T . The optimal function η(x; θ) above is exactly the same
as the score function of the logistic regression model

Pr
(
y = “p” |x; θ) = w(x; θ) · n′/n

1 + w(x; θ) · n′/n
,

implying that the observations (8) are regarded as labeled training samples with label “p”
or “q”, although the assignment of the label is not random in the density-ratio estimation.
Since the estimation equation with the optimal function (12) is represented as a minimization
problem, the existence of a solution is guaranteed under a mild assumption. By using η(x; θ)

above, the asymptotic variance matrix of θ̂ is minimized from among the set of moment
matching estimators, when w(x) is realized by the model w(x; θ). Hence, (12) is regarded
as the counterpart of the score function for parametric probability models.

5 Semi-supervised learning with density-ratio estimation

We study the asymptotics of the weighted MLE (7) using the estimated density-ratio. The
estimation equation is given as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

n

n∑

i=1

w(xi; θ)u(xi, yi;α) = 0,

1

n

n∑

i=1

η(xi; θ)w(xi; θ) − 1

n′

n′
∑

j=1

η
(
x ′

j ; θ
) = 0.

(13)

Here the statistical models (3) and (9) are employed. The first equation is used for the esti-
mation of the parameter α of the model p(y|x;α), and the second equation is used for the



196 Mach Learn (2013) 91:189–209

estimation of the density-ratio w(x; θ). The estimator defined by (13) is referred to as the
density-ratio-estimation-based semi-supervised learning, or DRESS for short.

In Sokolovska et al. (2008), the marginal probability density p(x) is estimated by using
a well-specified parametric model. Clearly, preparing the well-specified parametric model
is not practical when X is not a finite set. On the other hand, it is easy to prepare a specified
model of the density-ratio w(x), whenever p(x) = q(x) holds in (1). The model (9) is an
example. Indeed, w(x;0) = 1 holds. Hence, the assumption that the true weight function is
realized by the model w(x; θ) is not an obstacle in semi-supervised learning.

We show the asymptotic expansion of the estimation equation (13). Recall that p(x) =
q(x) is assumed. Let α̂ and θ̂ be solutions of (13). In addition, define α∗ to be a solution of

∫
u(x, y;α)p(y|x)q(x)dxdy = 0

and θ∗ be the parameter such that w(x; θ∗) = 1, i.e., θ∗ = 0. We prepare some notations: u =
u(x, y;α∗), η = η(x; θ∗), ui = u(xi, yi;α∗), ηi = η(xi; θ∗), η′

j = η(x ′
j ; θ∗), δα = α̂ − α∗

and δθ = θ̂ − θ∗. The Jacobian matrix of the score function u with respect to the parameter
α is denoted as ∇u, i.e., the d by d matrix whose element is given as (∇u(x, y;α))ik =

∂2

∂αi∂αk
logp(y|x;α). The variance matrix and the covariance matrix under the probability

p(y|x)p(x) are denoted as V [·] and Cov[·, ·], respectively.
In the estimation of density ratios, functions η(x; θ) and Aη(x; θ) with any invertible

matrix A produce the same estimator. This is clear from the second expression of (13).
Thus, without loss of generality we assume that η at θ = θ∗ is represented as

η
(
x; θ∗) = φ(x) + φ̃(x),

where φ̃(x) is an arbitrary function orthogonal to φ(x), i.e., E[φφ̃
T ] is equal to the zero ma-

trix. If η(x; θ∗) does not have any component that is represented as a linear transformation
of φ(x), the estimator would be degenerated. Under the regularity condition, the estimated
parameters α̂ and θ̂ converge to α∗ and θ∗, respectively. The asymptotic expansion of (13)
around (α, θ) = (α∗, θ∗) leads to

E[∇u]δα + E
[
uφT

]
δθ = − 1

n

n∑

i=1

ui + op

(
n−1/2

)
,

E
[
φφT

]
δθ = 1

n′

n′
∑

j=1

η′
j − 1

n

n∑

i=1

ηi + op

(
n−1/2

)
.

Hence, we have

E[∇u]δα = 1

n

n∑

i=1

{
E

[
uφT

]
E

[
φφT

]−1
ηi − ui

}

− 1

n′

n′
∑

j=1

E
[
uφT

]
E

[
φφT

]−1
η′

j + op

(
n−1/2

)
.

Therefore, we obtain the asymptotic variance of the estimator α̂ defined from (13) as fol-
lows:
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n · E[∇u]V [δα]E[∇u]T

= V [u] +
(

1 + n

n′

)

E
[
uφT

]
E

[
φφT

]−1
V [η]E[

φφT
]−1

E
[
φuT

]

− E
[
uφT

]
E

[
φφT

]−1
Cov[η,u] − Cov[u,η]E[

φφT
]−1

E
[
φuT

] + o(1).

On the other hand, the variance of the naive MLE, α̃, defined as a solution of (6) is given as

n · E[∇u]V [δα̃]E[∇u]T = V [u] + o(1),

where δα̃ = α̃ − α∗.
In the sequel, we study the difference between the variance of α̂ and that of α̃.

6 Maximum improvement by semi-supervised learning

Given the model for the density-ratio w(x; θ), we compare the asymptotic variance-
covariance matrices of the estimators α̃ and α̂. First, let us define

ū(x) =
∫

u
(
x, y;α∗)p(y|x)dy,

i.e., ū(x) is the projection of the score function u(x, y;α∗) onto the subspace consisting of
all functions depending only on x, where the inner product is defined by the expectation
under the joint probability p(y|x)p(x). Note that the equality E[ū] = 0 holds, since p(x) =
q(x) holds. Let the matrix B be

B = E
[
ūφT

]
E

[
φφT

]−1
.

Then, a simple calculation yields that the difference of the variance matrix between α̃ and α̂

is equal to

Diff[u] := n · E[∇u]V [δα̃]E[∇u]T − n · E[∇u]V [δα]E[∇u]T

= n′

n + n′ E
[
ūūT

] −
(

1 + n

n′

)

V

[

Bη − n′

n + n′ ū
]

+ o(1). (14)

In the second equality, we suppose that n′/n converges to a positive constant. When Diff[u]
is positive definite, the estimator α̂ using the labeled and unlabeled data improves the esti-
mator α̃ using only the labeled data. It is straightforward to see that the improvement is not
attained if ū = 0 holds. In general, the score function u(x, y;α) = ∇ logp(y|x;α) satisfies
ū = 0 if the model is specified. However, when the model of the conditional probability
p(y|x) is misspecified, there is a possibility that the proposed estimator (13) outperforms
the MLE α̃.

We derive the optimal moment function η for the estimation of the parameter α∗. The
optimal η can be different from (12). We prepare some notations. Let Πφū be the R

d -valued
function on X , each element of which is the projection of each element of ū onto the sub-
space spanned by {φ1(x), . . . , φr(x)}. Here, the inner product is defined by the expectation
under the marginal probability p(x). In addition, let Π⊥

φ ū be the projection of ū onto the
orthogonal complement of the subspace, i.e., Π⊥

φ ū = ū − Πφū.
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Theorem 1 We assume that the model of the density-ratio is defined as

w(x; θ) = exp
{
φ(x)T θ

}

with the basis functions φ(x) = (φ1(x), . . . , φr(x)) satisfying φ1(x) = 1. Suppose that
E[φφT ] ∈ R

r×r is invertible and that the rank of E[ūφT ]E[φφT ]−1 is equal to the dimen-
sion of the parameter α, i.e., row full rank. We assume that the moment function η(x; θ) at
θ = θ∗ is represented as

η
(
x; θ∗) = φ(x) + φ̃(x) (15)

where φ̃(x) is a function orthogonal to φ(x), i.e., E[φ(x)φ̃(x)T ] = O is equal to the zero
matrix. Then, an optimal φ̃ is given as

φ̃ = n′

n + n′ B
T
(
BBT

)−1
Π⊥

φ ū. (16)

For the optimal choice of η, the maximum improvement is given as

Diff[u] = n′

n + n′ E
[
ūūT

] − n2

n′(n + n′)
E

[
Πφū(Πφū)T

] + o(1)

= n′

n + n′ E
[
Π⊥

φ ū
(
Π⊥

φ ū
)T ] + n′ − n

n′ E
[
Πφū(Πφū)T

] + o(1). (17)

Proof Because φ1(x) = 1, one has E[φ̃] = 0 and E[Π⊥
φ ū] = E[1 · Π⊥

φ ū] = 0. Hence, one

has E[Πφū] = E[ū] − E[Π⊥
φ ū] = 0. Our goad is to find φ̃ that minimizes V [Bη − n′

n+n′ ū]
in (14) in the sense of positive definiteness. The orthogonal decomposition leads to

V

[

Bη − n′

n + n′ ū
]

= V

[

Bφ − n′

n + n′ Πφū

]

+ V

[

Bφ̃ − n′

n + n′ Π
⊥
φ ū

]

,

because of the orthogonality between Bφ − n′
n+n′ Πφū and Bφ̃ − n′

n+n′ Π⊥
φ ū, and the equality

E[Bφ̃ − n′
n+n′ Π⊥

φ ū] = 0. Hence, φ̃ that satisfies

Bφ̃ = n′

n + n′ Π
⊥
φ ū

is an optimal choice. Because the matrix B is row full rank, a solution of the above equation
is given by

φ̃ = n′

n + n′ B
T
(
BBT

)−1
Π⊥

φ ū.

We obtain the maximum improvement of Diff[u] by using the equalities V [Πφū] =
E[Πφū(Πφū)T ] and Bφ = E[ūφT ]E[φφT ]−1φ = Πφū. �

Suppose that the optimal moment function η = φ + φ̃ presented in Theorem 1 is
used with the score function u(x, y;α). Then, the improvement (17) is maximized when
E[Πφū(Πφū)T ] is minimized. Hence, the model w(x; θ) with the lower dimensional pa-
rameter θ is preferred as long as the assumption in Theorem 1 is satisfied. This is intuitively
understandable. Indeed, the statistical perturbation of the density-ratio estimator is mini-
mized when the smallest model is employed.
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Remark 1 Suppose that the basis functions, φ1(x), . . . , φr(x), are closely orthogonal to
ū, i.e., E[ūφT ] is close to the null matrix. Then, the improvement Diff[u] is close to

n′
n+n′ E[ūūT ]. As a result, we have supφ Diff[u] = n′

n+n′ E[ūūT ] in which the supremum is
taken over the basis of the density-ratio model satisfying the assumption in Theorem 1.
However, the basis functions satisfying the exact equality E[ūφT ] = O are useless, where
O is the zero matrix. Because the equality E[ūφT ] = O leads to B = O , the equality (14)
is thus reduced to

Diff[u] = n′

n + n′ E
[
ūūT

] − n + n′

n′ V

[
n′

n + n′ ū
]

+ o(1) = o(1).

This result implies that there is a singularity at the basis function φ such that E[ūφT ] = O .

Example 1 Let u(x, y;α) be the score function of the model y = αT b(x) + Z, Z ∼
N(0, σ 2), where b(x) = (b1(x), . . . , bd(x)) is the vector consisting of basis functions and
σ 2 is a known parameter. Then, one has u(x, y;α) = (y − αT b(x))b(x). Suppose that
the true conditional probability leads to the regression function y = f (x) + Z, where
E[Z|x] = 0 for all x. Then, one has ū(x;α) = (f (x) − αT b(x))b(x) and E[ūūT ] =
E[(f (x) − αT b(x))2b(x)b(x)T ]. Hence, the upper bound of the improvement is governed
by the degree of the model misspecification (f (x)−αT b(x))2. According to Theorem 1, an
optimal moment function η(x; θ) is given as

η
(
x; θ∗) = φ(x) + n′

n + n′ B
T
(
BBT

)−1((
f (x) − α∗T b(x)

)
b(x) − Bφ(x)

)

at θ = θ∗, where B = E[(f − α∗T b)bφT ]E[φφT ]−1.

It is not practical to apply the optimal function η(x; θ) defined by (16). The optimal mo-
ment function depends on ū, and one needs information on the probability p(y|x) to obtain
the explicit form of ū. The estimation of ū needs a non-parametric estimation since the
model misspecification of M is significant in our setup. Thus, we consider a more practical
estimator for the density ratio. Suppose that φ̃ = 0 holds for the moment function η(x; θ∗).
For example, the optimal moment function (12) satisfies η(x; θ∗) = n

n+n′ φ(x) at θ = θ∗, i.e.,

φ̃ = 0. For the density-ratio model w(x; θ) = exp{φ(x)T θ} with φ1(x) = 1 and the moment
function satisfying η(x; θ∗) = φ(x), a brief calculation yields that

Diff[u] = n′ − n

n′ E
[
Πφū(Πφū)T

] + o(1). (18)

Hence, an improvement is realized when n < n′ holds. We note that the larger model w(x; θ)

attains a better improvement in (18). In fact, Πφū approaches ū when the density-ratio
model w(x; θ) = exp{θT φ(x)} becomes large. Hence, the non-parametric estimation of the
density-ratio may be a good choice for realizing a large improvement in the estimation of
the parameter α∗. This is totally different from the case in which the optimal φ̃ presented
in Theorem 1 is used in the density-ratio estimation. The relation between Diff[u] using the
optimal φ̃ and Diff[u] with φ̃ = 0 is illustrated in Fig. 1. With the limit of the dimension of
θ , both variance matrices monotonically converge to n′−n

n′ E[ūūT ].
In semi-supervised learning, the size of unlabeled data is often large. When the size of

unlabeled samples tends to infinity, the asymptotic variance of each estimator is simplified
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Fig. 1 The improvement Diff[u] is depicted as the function of the dimension of the density-ratio model.
Because the improvement is represented by a matrix, the vertical axis of the figure shows the partial ordering
defined from positive semi-definiteness. When the dimension of θ tends to infinity and n′ > n holds, the two

curves converge to the common positive definite matrix n′−n
n′ E[ūūT ]

as follows:

MLE:
1

n
J−1E

[
uuT

](
J−1

)T + o(1/n),

DRESS with optimal φ̃:
1

n
J−1

(
E

[
uuT

] − E
[
ūūT

])(
J−1

)T + o(1/n),

DRESS with φ̃ = 0:
1

n
J−1

(
E

[
uuT

] − E
[
Πφū(Πφū)T

])(
J−1

)T + o(1/n),

where J = E[∇u]. In the semi-supervised algorithm proposed by Sokolovska et al. (2008),
the size of unlabeled data is assumed to be infinite. A simple calculation yields that its esti-
mation accuracy is asymptotically the same as DRESS with optimal φ̃ above. Hence, when
a density-ratio model is applied instead of a specified model of the marginal distribution,
the information loss of DRESS with φ̃ = 0 is quantified by E[Π⊥

φ ū(Π⊥
φ ū)T ], which is ob-

tained as the difference between E[uuT ] − E[ūūT ] and E[uuT ] − E[Πφū(Πφū)T ]. The
information loss becomes smaller when higher dimensional density-ratio models are used.
This tendency is the same as the estimation of the integration by the Monte Carlo method
studied by Henmi et al. (2007).

7 Numerical experiments

Here we show numerical experiments in which supervised learning and semi-supervised
learning algorithms are compared. Both regression and classification problems are pre-
sented.

7.1 Regression problems

We consider the following regression problem with d-dimensional covariate variables.

Labeled data:

yi = 1T xi + ε
‖xi‖2

d
+ zi, zi ∼ N

(
0, σ 2

)
, i = 1, . . . , n,

xi ∼ Nd(0, Id), 1T = (1, . . . ,1) ∈ R
d .

(19)
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Unlabeled data: x ′
j ∼ Nd(0, Id), j = 1, . . . , n′.

Regression model: y = αT x + z, α ∈ R
d , z ∼ N(0, s2).

Score function for α parameter: u(x, y;α) = (y − αT x)x.

The parameter ε in (19) controls the degree of model misspecification. Let fε be the
target function, i.e., fε(x) = 1T x + ε‖x‖2/d , and define

e(ε) = min
α

Ex

[∣∣fε(x) − αT x
∣
∣2]

,

which implies the squared distance from the true function fε to the linear regression
model. When the model is specified, the mean square error (MSE) of the MLE α̃, i.e.,
EData[Ex[|f0(x) − α̃T x|2]], is asymptotically equal to σ 2d/n. Then, as a normalized mea-
sure of model misspecification, we use the ratio

δ = √
e(ε)/

√
σ 2d

n
=

√
e(ε)n

σ 2d
.

When δ � 1 holds, misspecification of the model can be statistically detected.
In DRESS, we use a parametric model for density-ratio estimation. For any positive

integer k, let x(k) be the d-dimensional vector (xk
1 , . . . , x

k
d )

T . The density-ratio model is
defined as

w(x; θ) = exp
{
θ0 + θT

1 x + θT
2 x(2) + · · · + θT

Lx(L)
}

having Ld + 1 dimensional parameter (θ0, θ
T
1 , . . . , θT

L). We apply the estimator (12) pre-
sented by Qin (1998). Because the estimator (12) satisfies φ̃ = 0 at θ = θ∗, the improvement
is asymptotically given by (18). Under the setup of d = 2, n = 500, n′ = 5000 and σ = 0.2,
we compute the MSEs for the MLE α̃ and DRESS α̂. The difference in the test error

n · (E[(
α̃T x − fε(x)

)2] − E
[(

α̂T x − fε(x)
)2])

,

is evaluated for each ε and each dimension of the density ratio, Ld+1, where the expectation
is evaluated for the test samples. The MSE is calculated by taking the average over 500
iterations.

Results are shown in Fig. 2. When the model is specified, i.e., δ = 0 (ε = 0), MLE
presents better performance than DRESS. However, for a practical setup such as δ > 1,
we see that DRESS outperforms MLE. The dependency on the dimension of the density-
ratio model is not clearly detected in this experiment. Overall, a larger density-ratio model
presents a somewhat unstable result. In fact, in DRESS with large density-ratio model (the
right bottom panel in Fig. 2), the MSE can be large, i.e., the improvement is negative, even
when the model misspecification δ is greater than 2.

Next, we compare MLE and DRESS with a nonparametric density-ratio estimator. Here
we use KuLSIF (Kanamori et al. 2012) as the density-ratio estimator. KuLSIF is a non-
parametric estimator of the density-ratio based on the kernel method. The regularization
is efficiently conducted to suppress the degree of freedom of the nonparametric model. In
KuLSIF, the kernel function of the reproducing kernel Hilbert space corresponds to the basis
function φ(x).

In addition, estimators proposed by Sokolovska et al. (2008) were also examined. Here
the learning method is referred to as marginal-probability-based semi-supervised learning
(MSSL). In MSSL, the weight function w(x) = q(x)/p(x) is estimated by q(x)/p̂(x),
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Fig. 2 Differences of MSE are plotted as a function of δ, where δ is the normalized measure of model
misspecification. The vertical axis, “Improvement”, denotes the difference of the MSEs between MLE and
DRESS. A positive improvement denotes that DRESS outperforms MLE

where q(x) is the true probability density of unlabeled data, i.e., Nd(0, Id), and p̂(x) is
the MLE of the marginal distribution p(x) of labeled data. We apply two statistical models
to estimate p(x): one is Nd(μ, Id) with the parameter μ, and the other is Nd(μ,Σ) with
parameters μ and Σ .

Under the setup of d = 10, n = 50, n′ = 20,1000 and σ = 0.1,0.5, we compute the
square root of the MSEs by using the average over 100 iterations. In Fig. 3, results for
MLE, DRESS, and MSSL are plotted as a function of δ = (model error)/(statistical error).
In the figures, MSSL-1 (resp. MSSL-2) denotes MSSL with the model Nd(μ, Id) (resp.
Nd(μ,Σ)).

When δ is around 1, it is statistically difficult to detect the model misspecification from
the training data of size n = 50. For the specified model, i.e., ε = 0, the MLE exhibits a
better performance than DRESS and MSSL. However, under a practical setup such as when
δ > 1, we see that DRESS with KuLSIF and MSSL-1 outperform MLE. MSSL-2 is ob-
served to be always worse than the others. As shown in the asymptotic analysis, the sample
size of the unlabeled data affects the estimation accuracy of DRESS. The numerical results
show that DRESS with a large n′ attains a smaller error compared with DRESS with small
n′, especially when δ > 1. The same tendency is observed in MSSL-1. As shown in the last
paragraph in Sect. 6, the estimation accuracies of DRESS and MSSL are asymptotically the
same when the size of the unlabeled data n′ is sufficiently large and when the dimension of
the density-ratio model is high. In experiments with n′ = 1000, the MSEs of DRESS and
MSSL-1 are almost the same. This result is consistent with the theoretical analysis. Note that
MSSL-1 uses information about the true marginal distribution, although DRESS does not.
Hence, DRESS with a nonparametric density-ratio estimator is much more practical than
MSSL-1. We also apply MSSL with the weight estimator q̂(x)/p̂(x) in which the denom-
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Fig. 3 Square roots of MSEs of MLE, DRESS, MSSL with the model Nd(μ, Id ) (MSSL-1) and MSSL
with the model Nd(μ,Σ) (MSSL-2) are depicted as a function of δ, where δ is a normalized measure of the
model misspecification. Dimension of covariates is set to d = 10. Size of labeled data is n = 50, and size of
unlabeled data is n′ = 20 or n′ = 1000. The parameter σ is standard deviation of noise involved in dependent
variable y, and upper (resp. lower) panels show results for σ = 0.1 (resp. σ = 0.5)

inator and the numerator are both estimated from training data using the model Nd(μ,Σ).
Its performance was almost always worse than that of MSSL-2.

In the numerical experiment, even DRESS with n = 50 and n′ = 20 slightly outperforms
MLE. This is not supported by the asymptotic analysis, and we need an in-depth theoretical
study to understand the statistical features of semi-supervised learning.

7.2 Classification problems

As the first classification task, we use the spam data set in “kernlab” of R package (Karat-
zoglou et al. 2004). The data set includes 4601 samples. The dimension of the covariate is
57, i.e., x = (x1, . . . , x57)

T , and the elements represent statistical features of each document.
The output y is assigned to “spam” or “nonspam”.
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For the binary classification problem, we use the logistic model,

P
(
y = ‘spam’ |x;α) = 1

1 + exp{−α0 − ∑D

d=1 αdxd}
,

where D is the dimension of the covariate used in the logistic model. In numerical experi-
ments, D varies from 10 to 57, and the first D variables (x1, . . . , xD) are incorporated into
the logistic model. Hence, the dimension of the model parameter α varies from 11 to 58. We
test MSSL, DRESS with KuLSIF (Kanamori et al. 2012), and MLE. In MSSL, the weight
function is estimated using Gaussian mixture models for both the denominator and numer-
ator. The size of the labeled training samples is set to n = 200,500,800, and the size of the
unlabeled training samples is set to n′ = 200,2000. The remaining samples are served as
the test data.

Table 1 shows the prediction errors (%) with the standard deviation. In all cases, the
performance of MSSL is worse than that of the others. We also show the p-value of the
one-tailed paired t -test for prediction errors of DRESS and MLE. Small p-values denote
the superiority of DRESS. We note that the p-value is small when the dimension D is not
high. In other words, the numerical results agree with the asymptotic theory in Sect. 6.
For relatively high-dimensional models, the prediction error of MLE is smaller than that
of DRESS; see the row for D = 57 in Table 1. The size of unlabeled data, n′, also affects
the results. In fact, the p-values become small for large n′. This result is supported by the
asymptotic analysis presented in Sect. 6.

In DRESS, we apply the density-ratio estimator to estimate the parameters of logistic
models. For several setups, histograms of estimated weights on labeled samples, w(xi; θ̂),
i = 1, . . . , n, are depicted in Fig. 4. Because the true density-ratio is equal to the constant
ratio, estimated weights are expected to concentrate around one. When the dimension D

of the covariate is low (e.g., D = 10), the estimation accuracy of the density-ratio is high.
However, for high dimensional data, values of w(xi; θ̂) are widely spread. This is a reason-
able result because in high-dimensional space, the data structure becomes sparse, and the
density-ratio estimation becomes difficult. Because KuLSIF is a kernel-based nonparamet-
ric estimator, we need to elaborate the choice of the regularization parameter and the kernel
width to obtain stable density-ratio estimates, especially for high dimensional data.

As the second classification problem, we apply semi-supervised learning algorithms to
UCI data sets. See Rätsch et al. (2001) and Rätsch et al. (2000) for details of data sets.
The original UCI data sets consist of training samples and test samples. In numerical ex-
periments, training and test samples are all merged, and labeled and unlabeled samples for
training are randomly chosen from merged samples. Labeled test samples are also randomly
chosen from the rest. Let n be the size of labeled training samples, and the size of unlabeled
training samples is set to n′ = 
0.5n� or n′ = 4n. The size of the labeled test samples is
set to the same size of the labeled training samples. Table 2 shows properties of each data
set, where “rep.” in the table denotes the number of replications for learning to evaluate the
average performance.

Table 3 shows test errors of each learning algorithm. Generally, the estimation accuracy
of MSSL is much lesser than that of the others. This is because the estimation of the weight
function based on marginal probabilities is unstable. To compare DRESS and MLE, we
show p-values of the one-tailed paired t -test for prediction errors of DRESS and MLE.
Small p-values denote the superiority of DRESS. Figure 5 presents the plot of the ratio
(dimx + 1)/n versus the p-values for each dataset. The quantity (dimx + 1)/n is the ratio
of the number of parameters in logistic models and the sample size. When (dimx + 1)/n
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Fig. 4 Estimated weights on labeled data, w(xi ; θ̂), i = 1, . . . , n are plotted as histogram. The size of labeled
data is fixed to n = 500, and the size of the unlabeled data is set to n′ = 100 (top panels) and n′ = 1000
(bottom panels). The dimension D of the covariate varies from 10 (left column) to 57 (right column)

Table 2 Properties of each data
set are shown, where “rep.”
denotes the number of replication
for learning

data set dimx n rep.

banana 2 883 100

breast-cancer 9 46 100

diabetis 8 128 100

flare-solar 9 177 100

german 20 166 100

heart 13 45 100

image 18 385 20

ringnorm 20 1233 100

splice 60 529 20

thyroid 5 35 80

titanic 3 366 100

twonorm 20 1233 100

waveform 21 833 100

is small, the asymptotic analysis in Sect. 6 is considered to be valid, i.e., the sample size is
sufficient for the estimation of dimx + 1 parameters in logistic models. On the other hand,
large (dimx +1)/n implies that higher-order terms in an asymptotic expansion may become
significant. In both panels in Fig. 5, DRESS can be significantly better than MLE only when
the ratio of the horizontal axis is small. For the case of n′ = 4n, there is no dataset for which
MLE is significantly better than DRESS, though MLE outperforms DRESS for 8 out of 13
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Table 3 The p-values of the one-tailed paired t -test for prediction errors of DRESS and MLE. Small
p-values denote the superiority of DRESS

data n′ = 0.5n MLE p-value

MSSL DRESS

banana 47.57±4.90 44.81±4.60 45.95±4.71 0.017

breast-cancer 38.17±10.37 31.09±7.21 30.61±6.86 0.909

diabetis 29.53±5.98 24.50±3.66 24.24±3.57 0.915

flare-solar 38.90±5.65 35.07±4.02 34.54±3.86 0.999

german 37.05±8.16 27.51±3.24 27.08±3.24 0.991

heart 26.31±7.88 24.24±6.80 24.33±6.64 0.391

image 31.95±8.28 17.16±2.25 17.26±2.42 0.397

ringnorm 24.21±1.35 23.03±1.16 24.04±1.21 0.000

splice 19.89±3.56 18.11±1.77 18.16±1.67 0.410

thyroid 22.96±12.01 16.18±7.96 14.68±6.29 0.996

titanic 26.49±5.38 22.29±2.15 22.34±2.15 0.170

twonorm 2.59±0.43 2.57±0.44 2.55±0.44 0.840

waveform 13.69±1.46 12.65±1.02 12.70±1.03 0.094

data n′ = 4n MLE p-value

MSSL DRESS

banana 47.46±4.35 44.30±3.86 45.95±4.71 0.000

breast-cancer 36.80±7.76 30.98±7.31 30.61±6.86 0.856

diabetis 29.00±5.93 24.48±3.61 24.24±3.57 0.909

flare-solar 40.39±6.40 34.69±3.86 34.54±3.86 0.913

german 33.75±5.92 27.23±3.18 27.08±3.24 0.860

heart 26.09±7.83 24.07±6.73 24.33±6.64 0.127

image 34.87±6.98 17.04±2.24 17.26±2.42 0.199

ringnorm 23.77±1.19 22.98±1.14 24.04±1.21 0.000

splice 32.06±14.05 18.34±1.82 18.16±1.67 0.810

thyroid 15.64±6.95 14.79±6.36 14.68±6.29 0.619

titanic 31.06±13.95 22.36±2.17 22.34±2.15 0.708

twonorm 2.57±0.44 2.56±0.44 2.55±0.44 0.643

waveform 16.00±2.48 12.62±1.00 12.70±1.03 0.010

datasets under the average performance. For some datasets with large (dimx + 1)/n, the
discussion based on an asymptotic expansion may not be adequate.

8 Conclusion

In this paper, we investigated semi-supervised learning algorithms using density-ratio esti-
mators. We proved that unlabeled data is useful when the statistical model of the conditional
probability p(y|x) is misspecified. This result agrees with the result given by Sokolovska
et al. (2008), in which the weight function is estimated using the estimator of the marginal
probability under a specified model. The estimator proposed in this paper is useful in prac-
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Fig. 5 Plots of p-values versus ratios (dimx + 1)/n are depicted. Left (resp. Right) panel shows the results
for n′ = 0.5n (resp. n′ = 4n)

tice, since our method does not require any well-specified model for the marginal probabil-
ity. Numerical experiments present the effectiveness of our method.

The theory and numerical experiments both show that when the size of unlabeled sam-
ples is too small, the performance of the proposed method can be worse than that of su-
pervised learning with the MLE. In the asymptotic theory, semi-supervised learning outper-
forms supervised learning when the size of unlabeled data is greater than that of labeled
data. However, numerical results in Sect. 7.2 do not necessarily meet the theoretical anal-
ysis, though the larger size of unlabeled data improves the prediction performance. From
a practical viewpoint, it would be useful to have a “data-driven” way of deciding whether
semi-supervised learning should be used or not. A possible method is to develop a resam-
pling method such as cross validation or bootstrap to compare the prediction performance of
supervised and semi-supervised learning. As a theoretical approach, a higher-order asymp-
totic analysis may provide useful insights.

We are also currently investigating semi-supervised learning from the perspective of the
semiparametric inference with missing data. The development of a positive application of
the statistical paradox in the semiparametric inference is an interesting area for future study
in the area of semi-supervised learning.
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