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Abstract

In traditional machine learning approaches to classification, one uses only a labeled

set to train the classifier. Labeled instances however are often difficult, expensive,

or time consuming to obtain, as they require the efforts of experienced human

annotators. Meanwhile unlabeled data may be relatively easy to collect, but there

has been few ways to use them. Semi-supervised learning addresses this problem

by using large amount of unlabeled data, together with the labeled data, to build

better classifiers. Because semi-supervised learning requires less human effort and

gives higher accuracy, it is of great interest both in theory and in practice.

We present a series of novel semi-supervised learning approaches arising from

a graph representation, where labeled and unlabeled instances are represented as

vertices, and edges encode the similarity between instances. They address the fol-

lowing questions: How to use unlabeled data? (label propagation); What is the

probabilistic interpretation? (Gaussian fields and harmonic functions); What if

we can choose labeled data? (active learning); How to construct good graphs?

(hyperparameter learning); How to work with kernel machines like SVM? (graph

kernels); How to handle complex data like sequences? (kernel conditional ran-

dom fields); How to handle scalability and induction? (harmonic mixtures). An

extensive literature review is included at the end.
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Chapter 1

Introduction

1.1 What is Semi-Supervised Learning?

The field of machine learning has traditionally been divided into three sub-fields:

• unsupervised learning. The learning system observes an unlabeled set of

items, represented by their features {x1, . . . ,xn}. The goal is to organize

the items. Typical unsupervised learning tasks include clustering that groups

items into clusters; outlier detection which determines if a new item x is sig-

nificantly different from items seen so far; dimensionality reduction which

maps x into a low dimensional space, while preserving certain properties of

the dataset.

• supervised learning. The learning system observes a labeled training set

consisting of (feature, label) pairs, denoted by {(x1, y1), . . . , (xn, yn)}. The

goal is to predict the label y for any new input with feature x. A supervised

learning task is called regression when y ∈ R, and classification when y
takes a set of discrete values.

• reinforcement learning. The learning system repeatedly observes the envi-

ronment x, performs an action a, and receives a reward r. The goal is to

choose the actions that maximize the future rewards.

This thesis focuses on classification, which is traditionally a supervised learn-

ing task. To train a classifier one needs the labeled training set {(x1, y1), . . . , (xn, yn)}.
However the labels y are often hard, expensive, and slow to obtain, because it may

require experienced human annotators. For instance,

• Speech recognition. Accurate transcription of speech utterance at phonetic

level is extremely time consuming (as slow as 400×RT, i.e. 400 times longer

1



2 CHAPTER 1. INTRODUCTION

than the utterance duration), and requires linguistic expertise. Transcription

at word level is still time consuming (about 10×RT), especially for conver-

sational or spontaneous speech. This problem is more prominent for foreign

languages or dialects with less speakers, when linguistic experts of that lan-

guage are hard to find.

• Text categorization. Filtering out spam emails, categorizing user messages,

recommending Internet articles – many such tasks need the user to label

text document as ‘interesting’ or not. Having to read and label thousands of

documents is daunting for average users.

• Parsing. To train a good parser one needs sentence / parse tree pairs, known

as treebanks. Treebanks are very time consuming to construct by linguists.

It took the experts several years to create parse trees for only a few thousand

sentences.

• Video surveillance. Manually labeling people in large amount of surveil-

lance camera images can be time consuming.

• Protein structure prediction. It may take months of expensive lab work by

expert crystallographers to identify the 3D structure of a single protein.

On the other hand, unlabeled data x, without labels, is usually available in large

quantity and costs little to collect. Utterances can be recorded from radio broad-

cast; Text documents can be crawled from the Internet; Sentences are everywhere;

Surveillance cameras run 24 hours a day; DNA sequences of proteins are readily

available from gene databases. The problem with traditional classification methods

is: they cannot use unlabeled data to train classifiers.

The question semi-supervised learning addresses is: given a relatively small

labeled dataset {(x, y)} and a large unlabeled dataset {x}, can one devise ways

to learn from both for classification? The name “semi-supervised learning” comes

from the fact that the data used is between supervised and unsupervised learning.

Semi-supervised learning promises higher accuracies with less annotating effort.

It is therefore of great theoretic and practical interest. A broader definition of

semi-supervised learning includes regression and clustering as well, but we will

not pursued that direction here.

1.2 A Short History of Semi-Supervised Learning

There has been a whole spectrum of interesting ideas on how to learn from both

labeled and unlabeled data. We give a highly simplified history of semi-supervised
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learning in this section. Interested readers can skip to Chapter 11 for an extended

literature review. It should be pointed out that semi-supervised learning is a rapidly

evolving field, and the review is necessarily incomplete.

Early work in semi-supervised learning assumes there are two classes, and each

class has a Gaussian distribution. This amounts to assuming the complete data

comes from a mixture model . With large amount of unlabeled data, the mixture

components can be identified with the expectation-maximization (EM) algorithm.

One needs only a single labeled example per component to fully determine the

mixture model. This model has been successfully applied to text categorization.

A variant is self-training : A classifier is first trained with the labeled data. It

is then used to classify the unlabeled data. The most confident unlabeled points,

together with their predicted labels, are added to the training set. The classifier is

re-trained and the procedure repeated. Note the classifier uses its own predictions

to teach itself. This is a ‘hard’ version of the mixture model and EM algorithm.

The procedure is also called self-teaching , or bootstrapping1 in some research

communities. One can imagine that a classification mistake can reinforce itself.

Both methods have been used since long time ago. They remain popular be-

cause of their conceptual and algorithmic simplicity.

Co-training reduces the mistake-reinforcing danger of self-training. This recent

method assumes that the features of an item can be split into two subsets. Each sub-

feature set is sufficient to train a good classifier; and the two sets are conditionally

independent given the class. Initially two classifiers are trained with the labeled

data, one on each sub-feature set. Each classifier then iteratively classifies the

unlabeled data, and teaches the other classifier with its predictions.

With the rising popularity of support vector machines (SVMs), transductive

SVMs emerge as an extension to standard SVMs for semi-supervised learning.

Transductive SVMs find a labeling for all the unlabeled data, and a separating

hyperplane, such that maximum margin is achieved on both the labeled data and

the (now labeled) unlabeled data. Intuitively unlabeled data guides the decision

boundary away from dense regions.

Recently graph-based semi-supervised learning methods have attracted great

attention. Graph-based methods start with a graph where the nodes are the labeled

and unlabeled data points, and (weighted) edges reflect the similarity of nodes.

The assumption is that nodes connected by a large-weight edge tend to have the

same label, and labels can propagation throughout the graph. Graph-based meth-

ods enjoy nice properties from spectral graph theory. This thesis mainly discusses

graph-based semi-supervised methods.

We summarize a few representative semi-supervised methods in Table 1.1.

1Not to be confused with the resample procedure with the same name in statistics.
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Method Assumptions

mixture model, EM generative mixture model

transductive SVM low density region between classes

co-training conditionally independent and redundant features splits

graph methods labels smooth on graph

Table 1.1: Some representative semi-supervised learning methods

1.3 Structure of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 starts with the simple label propagation algorithm, which propagates

class labels on a graph. This is the first semi-supervised learning algorithm we will

encounter. It is also the basis for many variations later.

Chapter 3 discusses how one constructs a graph. The emphasis is on the intu-

ition – what graphs make sense for semi-supervised learning? We will give several

examples on various datasets.

Chapter 4 formalizes label propagation in a probabilistic framework with Gaus-

sian random fields. Concepts like graph Laplacian and harmonic function are intro-

duced. We will explore interesting connections to electric networks, random walk,

and spectral clustering. Issues like the balance between classes, and inclusion of

external classifiers are also discussed here.

Chapter 5 assumes that one can choose a data point and ask an oracle for the

label. This is the standard active learning scheme. We show that active learning

and semi-supervised learning can be naturally combined.

Chapter 6 establishes the link to Gaussian processes. The kernel matrices are

shown to be the smoothed inverse graph Laplacian.

Chapter 7 no longer assumes the graph is given and fixed. Instead, we pa-

rameterize the graph weights, and learn the optimal hyperparameters. We will

discuss several methods: evidence maximization, entropy minimization, and mini-

mum spanning tree.

Chapter 8 turns semi-supervised learning problem into kernel learning. We

show a natural family of kernels derived from the graph Laplacian, and find the

best kernel via convex optimization.

Chapter 9 discusses kernel conditional random fields, and its potential applica-

tion in semi-supervised learning, for sequences and other complex structures.

Chapter 10 explores scalability and induction for semi-supervised learning.

Chapter 11 reviews the literatures on semi-supervised learning.



Chapter 2

Label Propagation

In this chapter we introduce our first semi-supervised learning algorithm: Label

Propagation. We formulate the problem as a form of propagation on a graph, where

a node’s label propagates to neighboring nodes according to their proximity. In this

process we fix the labels on the labeled data. Thus labeled data act like sources that

push out labels through unlabeled data.

2.1 Problem Setup

Let {(x1, y1) . . . (xl, yl)} be the labeled data, y ∈ {1 . . . C}, and {xl+1 . . . xl+u}
the unlabeled data, usually l ≪ u. Let n = l + u. We will often use L and U to

denote labeled and unlabeled data respectively. We assume the number of classes

C is known, and all classes are present in the labeled data. In most of the thesis we

study the transductive problem of finding the labels for U . The inductive problem

of finding labels for points outside of L ∪ U will be discussed in Chapter 10.

Intuitively we want data points that are similar to have the same label. We

create a graph where the nodes are all the data points, both labeled and unlabeled.

The edge between nodes i, j represents their similarity. For the time being let us

assume the graph is fully connected with the following weights:

wij = exp

(
−‖xi − xj‖2

α2

)
(2.1)

where α is a bandwidth hyperparameter. The construction of graphs will be dis-

cussed in later Chapters.

5



6 CHAPTER 2. LABEL PROPAGATION

2.2 The Algorithm

We propagate the labels through the edges. Larger edge weights allow labels to

travel through more easily. Define a n× n probabilistic transition matrix P

Pij = P (i→ j) =
wij∑n

k=1wik
(2.2)

where Pij is the probability of transit from node i to j. Also define a l × C label

matrix YL, whose ith row is an indicator vector for yi, i ∈ L: Yic = δ(yi, c). We

will compute soft labels f for the nodes. f is a n × C matrix, the rows can be

interpreted as the probability distributions over labels. The initialization of f is not

important. We are now ready to present the algorithm.

The label propagation algorithm is as follows:

1. Propagate f ← Pf

2. Clamp the labeled data fL = YL.

3. Repeat from step 1 until f converges.

In step 1, all nodes propagate their labels to their neighbors for one step. Step 2

is critical: we want persistent label sources from labeled data. So instead of letting

the initially labels fade away, we clamp them at YL. With this constant ‘push’ from

labeled nodes, the class boundaries will be pushed through high density regions

and settle in low density gaps. If this structure of data fits the classification goal,

then the algorithm can use unlabeled data to help learning.

2.3 Convergence

We now show the algorithm converges to a simple solution. Let f =

(
fL

fU

)
.

Since fL is clamped to YL, we are solely interested in fU . We split P into labeled

and unlabeled sub-matrices

P =

[
PLL PLU

PUL PUU

]
(2.3)

It can be shown that our algorithm is

fU ← PUUfU + PULYL (2.4)
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which leads to

fU = lim
n→∞

(PUU )nf0
U +

(
n∑

i=1

(PUU )(i−1)

)
PULYL (2.5)

where f0
U is the initial value for fU . We need to show (PUU )nf0

U → 0. Since P is

row normalized, and PUU is a sub-matrix of P , it follows

∃γ < 1,
u∑

j=1

(PUU )ij ≤ γ,∀i = 1 . . . u (2.6)

Therefore

∑

j

(PUU )n
ij =

∑

j

∑

k

(PUU )
(n−1)

ik(PUU )kj (2.7)

=
∑

k

(PUU )
(n−1)

ik

∑

j

(PUU )kj (2.8)

≤
∑

k

(PUU )
(n−1)

ikγ (2.9)

≤ γn (2.10)

Therefore the row sums of (PUU )n converges to zero, which means (PUU )nf0
U →

0. Thus the initial value f0
U is inconsequential. Obviously

fU = (I − PUU )−1PULYL (2.11)

is a fixed point. Therefore it is the unique fixed point and the solution to our

iterative algorithm. This gives us a way to solve the label propagation problem

directly without iterative propagation.

Note the solution is valid only when I − PUU is invertible. The condition is

satisfied, intuitively, when every connected component in the graph has at least one

labeled point in it.

2.4 Illustrative Examples

We demonstrate the properties of the Label Propagation algorithm on two synthetic

datasets. Figure 2.1(a) shows a synthetic dataset with three classes, each being a

narrow horizontal band. Data points are uniformly drawn from the bands. There

are 3 labeled points and 178 unlabeled points. 1-nearest-neighbor algorithm, one of

the standard supervised learning methods, ignores the unlabeled data and thus the
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(a) The data

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

(b) 1NN

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

(c) Label Propagation

Figure 2.1: The Three Bands dataset. Labeled data are marked with color symbols,

and unlabeled data are black dots in (a). 1NN ignores unlabeled data structure (b),

while Label Propagation takes advantage of it (c).

band structure (b). On the other hand, the Label Propagation algorithm takes into

account the unlabeled data (c). It propagates labels along the bands. In this exam-

ple, we used α = 0.22 from the minimum spanning tree heuristic (see Chapter 7).

Figure 2.2 shows a synthetic dataset with two classes as intertwined three-

dimensional spirals. There are 2 labeled points and 184 unlabeled points. Again,

1NN fails to notice the structure of unlabeled data, while Label Propagation finds

the spirals. We used α = 0.43.
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(c) Label Propagation

Figure 2.2: The Springs dataset. Again 1NN ignores unlabeled data structure,

while Label Propagation takes advantage of it.



Chapter 3

What is a Good Graph?

In Label Propagation we need a graph , represented by the weight matrix W . How

does one construct a graph? What is a good graph? In this chapter we give several

examples on different datasets. The goal is not to rigorously define ‘good’ graphs,

but to illustrate the assumptions behind graph based semi-supervised learning.

A good graph should reflect our prior knowledge about the domain. At the

present time, its design is more of an art than science. It is the practitioner’s respon-

sibility to feed a good graph to graph-based semi-supervised learning algorithms,

in order to expect useful output. The algorithms in this thesis do not deal directly

with the design of graphs (with the exception of Chapter 7).

3.1 Example One: Handwritten Digits

Our first example is optical character recognition (OCR) for handwritten digits.

The handwritten digits dataset originates from the Cedar Buffalo binary digits

database (Hull, 1994). The digits were initially preprocessed to reduce the size

of each image down to a 16× 16 grid by down-sampling and Gaussian smoothing,

with pixel values in 0 to 255 (Le Cun et al., 1990). Figure 3.1 shows a random sam-

ple of the digits. In some of the experiments below they are further scaled down to

8× 8 by averaging 2× 2 pixel bins.

We show why graphs based on pixel-wise Euclidean distance make sense for

digits semi-supervised learning. Euclidean distance by itself is a bad similarity

measure. For example the two images in Figure 3.2(a) have a large Euclidean

distance although they are in the same class. However Euclidean distance is a

good ‘local’ similarity measure. If it is small, we can expect the two images to

be in the same class. Consider a k-nearest-neighbor graph based on Euclidean

distance. Neighboring images have small Euclidean distance. With large amount

9
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Figure 3.1: some random samples of the handwritten digits dataset

(a) two images of ‘2’ with large Euclidean distance

(b) a path in an Euclidean distance kNN graph between them

Figure 3.2: Locally similar images propagate labels to globally dissimilar ones.

of unlabeled images of 2s, there will be many paths connecting the two images in

(a). One such path is shown in Figure 3.2(b). Note adjacent pairs are similar to

each other. Although the two images in (a) are not directly connected (not similar

in Euclidean distance), Label Propagation can propagate along the paths, marking

them with the same label.

Figure 3.3 shows a symmetrized 1 2NN graph based on Euclidean distance.

The small dataset has only a few 1s and 2s for clarity. The actual graphs used in

the OCR experiments are too large to show.

It should be mentioned that our focus is on semi-supervised learning methods,

not OCR handwriting recognizers. We could have normalized the image intensity,

or used edge detection or other invariant features instead of Euclidean distance.

These should be used for any real applications, as the graph should represent do-

main knowledge. The same is true for all other tasks described below.

1Symmetrization means we connect nodes i, j if i is in j’s kNN or vice versa, and therefore a

node can have more than k edges.
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Figure 3.3: A symmetrized Euclidean 2NN graph on some 1s and 2s. Label Prop-

agation on this graph works well.
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3.2 Example Two: Document Categorization

Our second example is document categorization on 20 newsgroups dataset 2 . Each

document has no header except ‘From’ and ‘Subject’ lines. Each document is

minimally processed into a tf.idf vector, without frequency cutoff, stemming, or

a stopword list. The ‘From’ and ‘Subject’ lines are included. We measure the

similarity between two documents u, v with the cosine similarity cs(u, v) = u⊤v
|u||v| .

Like Euclidean distance, cosine similarity is not a good ‘global’ measure: two

documents from the same class can have few common words. However it is a good

‘local’ measure.

A graph based on cosine similarity in this domain makes good sense. Docu-

ments from the same thread (class) tend to quote one another, giving them high

cosine similarities. Many paths in the graph are quotations. Even though the first

and last documents in a thread share few common words, them can be classified in

the same class via the graph.

The full graphs are again too large to visualize. We show the few nearest neigh-

bors of document 60532 in comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware

sub-dataset in Figure 3.4. The example is typical in the whole graph. Nevertheless

we note that not all edges are due to quotation.

3.3 Example Three: The FreeFoodCam

The Carnegie Mellon University School of Computer Science has a lounge, where

leftover pizza from various meetings converge, to the delight of students. In fact

a webcam (the FreeFoodCam 3) was set up in the lounge, so that people can see

whether food is available. The FreeFoodCam provides interesting research oppor-

tunities. We collect webcam images of 10 people over a period of several months.

The data is used for 10-way people recognition, i.e. identify the name of person in

FreeFoodCam images. The dataset consists of 5254 images with one and only one

person in it. Figure 3.5 shows some random images in the dataset. The task is not

trivial:

1. The images of each person were captured on multiple days during a four

month period. People changed clothes, had hair cut, one person even grew a

beard. We simulate a video surveillance scenario where a person is manually

labeled at first, and needs to be recognized on later days. Therefore we

choose labeled data within the first day of a person’s appearance, and test on

2http://www.ai.mit.edu/people/jrennie/20Newsgroups/, ‘18828 version’
3http://www-2.cs.cmu.edu/∼coke/, Carnegie Mellon internal access.
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From: rash@access.digex.com (Wayne Rash)
Subject: Re: 17" Monitors
mikey@sgi.com (Mike Yang) writes:
>In article <1qslfs$bm1@access.digex.net> rash@access.digex.com (Wayne Rash) writes:
>>I also reviewed a new Nanao, the F550iW, which has just
>>been released.
>What’s the difference between the F550i and the new F550iW? I’m
>about to buy a Gateway system and was going to take the F550i
>upgrade. Should I get the F550iW instead?
>-----------------------------------------------------------------------
> Mike Yang Silicon Graphics, Inc.
> mikey@sgi.com 415/390-1786
The F550iW is optimized for Windows. It powers down when the screen
blanker appears, it powers down with you turn your computer off, and it
meets all of the Swedish standards. It’s also protected against EMI from
adjacent monitors.
Personally, I think the F550i is more bang for the buck right now.

(a) document 60532. Its nearest neighbors are shown below.

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Re: 17" Monitors
In article <1qulqa$hp2@access.digex.net>, rash@access.digex.com (Wayne Rash) writes:
|> The F550iW is optimized for Windows. It powers down when the screen
|> blanker appears, it powers down with you turn your computer off, and it
|> meets all of the Swedish standards. It’s also protected against EMI from
|> adjacent monitors.
Thanks for the info.
|> Personally, I think the F550i is more bang for the buck right now.
How much more does the F550iW cost?
-----------------------------------------------------------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(b) The nearest neighbor 60538. It quotes a large portion of 60532.

From: rash@access.digex.com (Wayne Rash)
Subject: Re: 17" Monitors
mikey@eukanuba.wpd.sgi.com (Mike Yang) writes:
>In article <1qulqa$hp2@access.digex.net>, rash@access.digex.com (Wayne Rash) writes:
>|> The F550iW is optimized for Windows. It powers down when the screen
>|> blanker appears, it powers down with you turn your computer off, and it
>|> meets all of the Swedish standards. It’s also protected against EMI from
>|> adjacent monitors.
>Thanks for the info.
>|> Personally, I think the F550i is more bang for the buck right now.
>How much more does the F550iW cost?
>-----------------------------------------------------------------------
> Mike Yang Silicon Graphics, Inc.
> mikey@sgi.com 415/390-1786
I think the difference is about 400 dollars, but I could be wrong. These
things change between press time and publication.

(c) The 2nd nearest neighbor 60574. It also quotes 60532.

Figure 3.4: (continued on next page)
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From: mikey@sgi.com (Mike Yang)
Subject: Re: 17" Monitors
In article <1qslfs$bm1@access.digex.net> rash@access.digex.com (Wayne Rash) writes:
>I also reviewed a new Nanao, the F550iW, which has just
>been released.
What’s the difference between the F550i and the new F550iW? I’m
about to buy a Gateway system and was going to take the F550i
upgrade. Should I get the F550iW instead?
-----------------------------------------------------------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(d) The 3rd nearest neighbor 60445, quoted by 60532.

From: goyal@utdallas.edu (MOHIT K GOYAL)
Subject: Re: 17" Monitors
>the Mitsubishi. I also reviewed a new Nanao, the F550iW, which has just
>been released. Last year for the May ’92 issue of Windows, I reviewed
Do you have the specs for this monitor? What have they changed from the
F550i?
Do you know if their is going to be a new T560i soon? (a T560iW?)
Thanks.

(e) The 4th nearest neighbor 60463. It and 60532 quote the same source.

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Gateway 4DX2-66V update
I just ordered my 4DX2-66V system from Gateway. Thanks for all the net
discussions which helped me decide among all the vendors and options.
Right now, the 4DX2-66V system includes 16MB of RAM. The 8MB upgrade
used to cost an additional $340.
-----------------------------------------------------------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(f) The 5th nearest neighbor 61165. It has a different subject than 60532, but the

same author signature appears in both.

Figure 3.4: The nearest neighbors of document 60532 in the 20newsgroups dataset,

as measured by cosine similarity. Notice many neighbors either quote or are quoted

by the document. Many also share the same subject line.
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Figure 3.5: A few FreeFoodCam image examples

the remaining images of the day and all other days. It is harder than testing

only on the same day, or allowing labeled data to come from all days.

2. The FreeFoodCam is a low quality webcam. Each frame is 640 × 480 so

faces of far away people are small; The frame rate is a little over 0.5 frame

per second; Lighting in the lounge is complex and changing.

3. The person could turn the back to the camera. About one third of the images

have no face.

Since only a few images are labeled, and we have all the test images, it is a

natural task to apply semi-supervised learning techniques. As computer vision is

not the focus of the paper, we use only primitive image processing methods to

extract the following features:

Time. Each image has a time stamp.

Foreground color histogram. A simple background subtraction algorithm is ap-

plied to each image to find the foreground area. The foreground area is

assumed to be the person (head and body). We compute the color histogram

(hue, saturation and brightness) of the foreground pixels. The histogram is a

100 dimensional vector.
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Face image. We apply a face detector (Schneiderman, 2004b) (Schneiderman,

2004a) to each image. Note it is not a face recognizer (we do not use a

face recognizer for this task). It simply detects the presence of frontal or

profile faces. The output is the estimated center and radius of the detected

face. We take a square area around the center as the face image. If no face is

detected, the face image is empty.

One theme throughout the thesis is that the graph should reflect domain knowl-

edge of similarity. The FreeFoodCam is a good example. The nodes in the graph

are all the images. An edge is put between two images by the following criteria:

1. Time edges People normally move around in the lounge in moderate speed,

thus adjacent frames are likely to contain the same person. We represent

this belief in the graph by putting an edge between images i, j whose time

difference is less than a threshold t1 (usually a few seconds).

2. Color edges The color histogram is largely determined by a person’s clothes.

We assume people change clothes on different days, so color histogram is

unusable across multiple days. However it is an informative feature during a

shorter time period (t2) like half a day. In the graph for every image i, we find

the set of images having a time difference between (t1, t2) to i, and connect

i with its kc-nearest-neighbors (in terms of cosine similarity on histograms)

in the set. kc is a small number, e.g. 3.

3. Face edges We resort to face similarity over longer time spans. For every

image i with a face, we find the set of images more than t2 apart from i,
and connect i with its kf -nearest-neighbor in the set. We use pixel-wise

Euclidean distance between face images (the pair of face images are scaled

to the same size).

The final graph is the union of the three kinds of edges. The edges are unweighted

in the experiments (one could also learn different weights for different kinds of

edges. For example it might be advantageous to give time edges higher weights).

We used t1 = 2 second, t2 = 12 hours, kc = 3 and kf = 1 below. Incidentally

these parameters give a connected graph. It is impossible to visualize the whole

graph. Instead we show the neighbors of a random node in Figure 3.6.

3.4 Common Ways to Create Graphs

Sometimes one faces a dataset with limited domain knowledge. This section dis-

cusses some common ways to create a graph as a starting point.
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image 4005 neighbor 1: time edge

neighbor 2: color edge neighbor 3: color edge

neighbor 4: color edge neighbor 5: face edge

Figure 3.6: A random image and its neighbors in the graph
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Fully connected graphs One can create a fully connected graph with an edge be-

tween all pairs of nodes. The graph needs to be weighted so that similar

nodes have large edge weight between them. The advantage of a fully con-

nected graph is in weight learning – with a differentiable weight function,

one can easily take the derivatives of the graph w.r.t. weight hyperparam-

eters. The disadvantage is in computational cost as the graph is dense (al-

though sometimes one can apply fast approximate algorithms like N -body

problems). Furthermore we have observed that empirically fully connect

graphs performs worse than sparse graphs.

Sparse graphs One can create kNN or ǫNN graphs as shown below, where each

node connects to only a few nodes. Such sparse graphs are computationally

fast. They also tend to enjoy good empirical performance. We surmise it

is because spurious connections between dissimilar nodes (which tend to be

in different classes) are removed. With sparse graphs, the edges can be un-

weighted or weighted. One disadvantage is weight learning – a change in

weight hyperparameters will likely change the neighborhood, making opti-

mization awkward.

kNN graphs Nodes i, j are connected by an edge if i is in j’s k-nearest-neighborhood

or vice versa. k is a hyperparameter that controls the density of the graph.

kNN has the nice property of “adaptive scales,” because the neighborhood

radius is different in low and high data density regions. Small k may re-

sult in disconnected graphs. For Label Propagation this is not a problem if

each connected component has some labeled points. For other algorithms

introduced later in the thesis, one can smooth the Laplacian.

ǫNN graphs Nodes i, j are connected by an edge, if the distance d(i, j) ≤ ǫ. The

hyperparameter ǫ controls neighborhood radius. Although ǫ is continuous,

the search for the optimal value is discrete, with at most O(n2) values (the

edge lengths in the graph).

tanh-weighted graphs wij = (tanh(α1(d(i, j) − α2)) + 1)/2. The hyperbolic

tangent function is a ‘soft step’ function that simulates ǫNN in that when

d(i, j)≫ α2, wij ≈ 0; d(i, j)≪ α2, wij ≈ 1. The hyperparameters α1, α2

controls the slope and cutoff value respectively. The intuition is to create a

soft cutoff around distance α2, so that close examples (presumably from the

same class) are connected and examples from different classes (presumably

with large distance) are nearly disconnected. Unlike ǫNN, tanh-weighted

graph is continuous with respect to α1, α2 and is amenable to learning with

gradient methods.
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exp-weighted graphs wij = exp(−d(i, j)2/α2). Again this is a continuous weight-

ing scheme, but the cutoff is not as clear as tanh(). Hyperparameter α
controls the decay rate. If d is e.g. Euclidean distance, one can have one

hyperparameter per feature dimension.

These weight functions are all potentially useful when we do not have enough do-

main knowledge. However we observed that weighted kNN graphs with a small k
tend to perform well empirically. All the graph construction methods have hyper-

parameters. We will discuss graph hyperparameter learning in Chapter 7.

A graph is represented by the n × n weight matrix W , wij = 0 if there is

no edge between node i, j. We point out that W does not have to be positive

semi-definite. Nor need it satisfy metric conditions. As long as W ’s entries are

non-negative and symmetric, the graph Laplacian, an important quantity defined in

the next chapter, will be well defined and positive semi-definite.
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Chapter 4

Gaussian Random Fields and

Harmonic Functions

In this chapter we formalize label propagation with a probabilistic framework.

Without loss of generality we assume binary classification y ∈ {0, 1}. We as-

sume the n × n weight matrix W is given, which defines the graph. W has to be

symmetric with non-negative entries, but otherwise need not to be positive semi-

definite. Intuitively W specifies the ‘local similarity’ between points. Our task is

to assign labels to unlabeled nodes.

4.1 Gaussian Random Fields

Our strategy is to define a continuous random field on the graph. First we define

a real function over the nodes f : L ∪ U −→ R. Notice f can be negative or

larger than 1. Intuitively, we want unlabeled points that are similar (as determined

by edge weights) to have similar labels. This motivates the choice of the quadratic

energy function

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 (4.1)

ObviouslyE is minimized by constant functions. But since we have observed some

labeled data, we constrain f to take values f(i) = yi, i ∈ L on the labeled data.

We assign a probability distribution to functions f by a Gaussian random field

p(f) =
1

Z
e−βE(f) (4.2)

21
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where β is an “inverse temperature” parameter, and Z is the partition function

Z =

∫

fL=YL

exp (−βE(f)) df (4.3)

which normalizes over functions constrained to YL on the labeled data. We are in-

terested in the inference problem p(fi|YL), i ∈ U , or the mean
∫∞
−∞ fip(fi|YL) dfi.

The distribution p(f) is very similar to a standard Markov Random field with

discrete states (the Ising model, or Boltzmann machines (Zhu & Ghahramani,

2002b)). In fact the only difference is the relaxation to real-valued states. However

this relaxation greatly simplify the inference problem. Because of the quadratic

energy, p(f) and p(fU |YL) are both multivariate Gaussian distributions. This is

why p is called a Gaussian random field. The marginals p(fi|YL) are univariate

Gaussian too, and have closed form solutions.

4.2 The Graph Laplacian

We now introduce an important quantity: the combinatorial Laplacian ∆. Let D
be the diagonal degree matrix, where Dii =

∑
j Wij is the degree of node i. The

Laplacian is defined as

∆ ≡ D −W (4.4)

For the time being the Laplacian is useful shorthand for the energy function: One

can verify that

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 = f⊤∆f (4.5)

The Gaussian random field can be written as

p(f) =
1

Z
e−βf⊤∆f (4.6)

where the quadratic form becomes obvious. ∆ plays the role of the precision (in-

verse covariance) matrix in a multivariate Gaussian distribution. It is always pos-

itive semi-definite if W is symmetric and non-negative. The Laplacian will be

further explored in later chapters.

4.3 Harmonic Functions

It is not difficult to show that the minimum energy function f = arg minfL=YL
E(f)

is harmonic; namely, it satisfies ∆f = 0 on unlabeled data points U , and is equal

to YL on the labeled data points L. We use h to represent this harmonic function.
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The harmonic property means that the value of h(i) at each unlabeled data

point i is the average of its neighbors in the graph:

h(i) =
1

Dii

∑

j∼i

wijh(j), for i ∈ U (4.7)

which is consistent with our prior notion of smoothness with respect to the graph.

Because of the maximum principle of harmonic functions (Doyle & Snell, 1984),

h is unique and satisfies 0 ≤ h(i) ≤ 1 for i ∈ U (remember h(i) = 0 or 1 for

i ∈ L).

To compute the harmonic solution, we partition the weight matrix W (and

similarly D,∆, etc.) into 4 blocks for L and U :

W =

[
WLL WLU

WUL WUU

]
(4.8)

The harmonic solution ∆h = 0 subject to hL = YL is given by

hU = (DUU −WUU )−1WULYL (4.9)

= −(∆UU )−1∆ULYL (4.10)

= (I − PUU )−1PULYL (4.11)

The last representation is the same as equation (2.11), where P = D−1W is the

transition matrix on the graph. The Label Propagation algorithm in Chapter 2 in

fact computes the harmonic function.

The harmonic function minimizes the energy and is thus the mode of (4.2).

Since (4.2) defines a Gaussian distribution which is symmetric and unimodal, the

mode is also the mean.

4.4 Interpretation and Connections

The harmonic function can be viewed in several fundamentally different ways, and

these different viewpoints provide a rich and complementary set of techniques for

reasoning about this approach to the semi-supervised learning problem.

4.4.1 Random Walks

Imagine a random walk on the graph. Starting from an unlabeled node i, we move

to a node j with probability Pij after one step. The walk stops when we hit a

labeled node. Then h(i) is the probability that the random walk, starting from

node i, hits a labeled node with label 1. Here the labeled data is viewed as an

“absorbing boundary” for the random walk. The random walk interpretation is

shown in Figure 4.1.
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1

0

i

Figure 4.1: Harmonic function as random walk on the graph

+1 volt

wij

R  =ij

1

1

0

Figure 4.2: Harmonic function as electric network graph

4.4.2 Electric Networks

We can also view the framework as electrical networks. Imagine the edges of the

graph to be resistors with conductance W . Equivalently the resistance between

nodes i, j is 1/wij . We connect positive labeled nodes to a +1 volt source, and

negative labeled nodes to the ground. Then hU is the voltage in the resulting elec-

tric network on each of the unlabeled nodes (Figure 4.2). Furthermore hU min-

imizes the energy dissipation, in the form of heat, of the electric network. The

energy dissipation is exactly E(h) as in (4.1). The harmonic property here follows

from Kirchoff’s and Ohm’s laws, and the maximum principle then shows that this

is precisely the same solution obtained in (4.11).

4.4.3 Graph Mincut

The harmonic function can be viewed as a soft version of the graph mincut ap-

proach by Blum and Chawla (2001). In graph mincut the problem is cast as one
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of finding a minimum st-cut. The minimum st-cuts minimize the same energy

function (4.1) but with discrete labels 0,1. Therefore they are the modes of a stan-

dard Boltzmann machine. It is difficult to compute the mean. One often has to use

Monte Carlo Markov Chain or use approximation methods. Furthermore, the min-

imum st-cut is not necessarily unique. For example, consider a linear chain graph

with n nodes. Let wi,i+1 = 1 and other edges zero. Let node 1 be labeled positive,

node n negative. Then a cut on any one edge is a minimum st-cut. In contrast, the

harmonic solution has a closed form, unique solution for the mean, which is also

the mode.

The Gaussian random fields and harmonic functions also have connection to

graph spectral clustering, and kernel regularization. These will be discussed later.

4.5 Incorporating Class Proportion Knowledge

To go from f to class labels, the obvious decision rule is to assign label 1 to node

i if h(i) > 0.5, and label 0 otherwise. We call this rule 0.5-threshold. In terms

of the random walk interpretation if h(i) > 0.5, then starting at i, the random

walk is more likely to reach a positively labeled point before a negatively labeled

point. This decision rule works well when the classes are well separated. However

in practice, 0.5-threshold tends to produce unbalanced classification (most points

in one of the classes). The problem stems from the fact that W , which specifies

the data manifold, is often poorly estimated in practice and does not reflect the

classification goal. In other words, we should not “fully trust” the graph structure.

Often we have the knowledge of class proportions, i.e. how many unlabeled

data are from class 0 and 1 respectively. This can either be estimated from the

labeled set, or given by domain experts. This is a valuable piece of complementary

information.

We propose a heuristic method called class mass normalization (CMN) to in-

corporate the information as follows. Let’s assume the desirable proportions for

classes 1 and 0 are q and 1 − q respectively. Define the mass of class 1 to be∑
i hU (i), and the mass of class 0 to be

∑
i(1− hU (i)). Class mass normalization

scales these masses to match q and 1 − q. In particular an unlabeled point i is

classified as class 1 iff

q
hU (i)∑
i hU (i)

> (1− q) 1− hU (i)∑
i(1− hU (i))

(4.12)

CMN extends naturally to the general multi-label case. It is interesting to note

CMN’s potential connection to the procedures in (Belkin et al., 2004a). Further

research is needed to study whether the heuristic (or its variation) can be justified

in theory.
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4.6 Incorporating Vertex Potentials on Unlabeled Instances

We can incorporate the knowledge on individual class label of unlabeled instances

too. This is similar to using a “assignment cost” for each unlabeled instance. For

example, the external knowledge may come from an external classifier which is

constructed on labeled data alone (It could come from domain expert too). The

external classifier produces labels gU on the unlabeled data; g can be 0/1 or soft

labels in [0, 1]. We combine g with the harmonic function h by a simple modifi-

cation of the graph. For each unlabeled node i in the original graph, we attach a

“dongle” node which is a labeled node with value gi. Let the transition probabil-

ity from i to its dongle be η, and discount other transitions from i by 1 − η. We

then compute the harmonic function on this augmented graph. Thus, the external

classifier introduces assignment costs to the energy function, which play the role

of vertex potentials in the random field. It is not difficult to show that the harmonic

solution on the augmented graph is, in the random walk view,

hU = (I − (1− η)PUU )−1 ((1− η)PULYL + ηgU ) (4.13)

We note that up to now we have assumed the labeled data to be noise free, and

so clamping their values makes sense. If there is reason to doubt this assumption,

it would be reasonable to attach dongles to labeled nodes as well, and to move the

labels to these dongles. An alternative is to use Gaussian process classifiers with a

noise model, which will be discussed in Chapter 6.

4.7 Experimental Results

We evaluate harmonic functions on the following tasks. For each task, we gradually

increase the labeled set size systematically. For each labeled set size, we perform

30 random trials. In each trial we randomly sample a labeled set with the specific

size (except for the Freefoodcam task where we sample labeled set from the first

day only). However if a class is missing from the sampled labeled set, we redo the

random sampling. We use the remaining data as the unlabeled set and report the

classification accuracy with harmonic functions on them.

To compare the harmonic function solution against a standard supervised learn-

ing method, we use a Matlab implementation of SVM (Gunn, 1997) as the baseline.

Notice the SVMs are not semi-supervised: the unlabeled data are merely used as

test data. For c-class multiclass problems, we use a one-against-all scheme which

creates c binary subproblems, one for each class against the rest classes, and select

the class with the largest margin. We use 3 standard kernels for each task: linear

K(i, j) = 〈xi, xj〉, quadratic K(i, j) = (〈xi, xj〉 + 1)2, and radial basis function
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(RBF) K(i, j) = exp
(
−‖xi − xj‖2/2σ2

)
. The slack variable upper bound (usu-

ally denoted by C) for each kernel, as well as the bandwidth σ for RBF, are tuned

by 5 fold cross validation for each task.

1. 1 vs. 2. Binary classification for OCR handwritten digits “1” vs. “2”. This

is a subset of the handwritten digits dataset. There are 2200 images, half are

“1”s and the other half are “2”s.

The graph (or equivalently the weight matrixW ) is the single most important

input to the harmonic algorithm. To demonstrate its importance, we show the

results of not one but six related graphs:

(a) 16 × 16 full. Each digit image is 16 × 16 gray scale with pixel values

between 0 and 255. The graph is fully connected, and the weights

decrease exponentially with Euclidean distance:

wij = exp

(
−

256∑

d=1

(xi,d − xj,d)
2

3802

)
(4.14)

The parameter 380 is chosen by evidence maximization (see Section

7.1). This was the graph used in (Zhu et al., 2003a).

(b) 16× 16 10NN weighted. Same as ‘16× 16 full’, but i, j are connected

only if i is in j’s 10-nearest-neighbor or vice versa. Other edges are re-

moved. The weights on the surviving edges are unchanged. Therefore

this is a much sparser graph. The number 10 is chosen arbitrarily and

not tuned for semi-supervised learning.

(c) 16× 16 10NN unweighted. Same as ‘16× 16 10NN weighted’ except

that the weights on the surviving edges are all set to 1. This represents

a further simplification of prior knowledge.

(d) 8 × 8 full. All images are down sampled to 8 × 8 by averaging 2 × 2
pixel bins. Lowering resolution helps to make Euclidean distance less

sensitive to small spatial variations. The graph is fully connected with

weights

wij = exp

(
−

64∑

d=1

(x′i,d − x′j,d)2
1402

)
(4.15)

(e) 8× 8 10NN weighted. Similar to ‘16× 16 10NN weighted’.

(f) 8× 8 10NN unweighted. Ditto.
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The classification accuracy with these graphs are shown in Figure 4.3(a).

Different graphs give very different accuracies. This should be a reminder

that the quality of the graph determines the performance of harmonic func-

tion (as well as semi-supervised learning methods based on graphs in gen-

eral). 8 × 8 seems to be better than 16 × 16. Sparser graphs are better than

fully connected graphs. The better graphs outperform SVM baselines when

labeled set size is not too small.

2. ten digits. 10-class classification for 4000 OCR handwritten digit images.

The class proportions are intentionally chosen to be skewed, with 213, 129,

100, 754, 970, 275, 585, 166, 353, and 455 images for digits “1,2,3,4,5,6,7,8,9,0”

respectively. We use 6 graphs constructed similarly as in 1 vs. 2. Figure

4.3(b) shows the result, which is similar to 1 vs. 2 except the overall accu-

racy is lower.

3. odd vs. even. Binary classification for OCR handwritten digits “1,3,5,7,9”

vs. “0,2,4,6,8”. Each digit has 400 images, i.e. 2000 per class and 4000 total.

We show only the 8 × 8 graphs in Figure 4.3(c), which do not outperform

the baseline.

4. baseball vs. hockey Binary document classification for rec.sport.baseball

vs. rec.sport.hockey in the 20newsgroups dataset (18828 version). The pro-

cessing of documents into tf.idf vectors has been described in section 3.2.

The classes have 994 and 999 documents respectively. We report the results

of three graphs in Figure 4.3(d):

(a) full. A fully connected graph with weights

wij = exp

(
− 1

0.03

(
1− 〈di, dj〉
|di||dj |

))
(4.16)

so that the weights decreases with the cosine similarity between docu-

ment di, dj .

(b) 10NN weighted. Only symmetrized 10-nearest-neighbor edges are kept

in the graph, with the same weights above. This was the graph in (Zhu

et al., 2003a).

(c) 10NN unweighted. Same as above except all weights are set to 1.

5. PC vs. MAC Binary classification on comp.sys.ibm.pc.hardware (number

of documents 982) vs. comp.sys.mac.hardware (961) in the 20 newsgroups

dataset. The three graphs are constructed in the same way as baseball vs.

hockey. See Figure 4.3(e).
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6. religion vs. atheism Binary classification on talk.religion.misc (628) vs.

alt.atheism (799). See Figure 4.3(f). The three 20newsgroups tasks have

increasing difficulty.

7. isolet This is the ISOLET dataset from the UCI data repository (Blake &

Merz, 1998). It is a 26-class classification problem for isolated spoken En-

glish letter recognition. There are 7797 instances. We use the Euclidean

distance on raw features, and create a 100NN unweighted graph. The result

is in Figure 4.3(g).

8. freefoodcam The details of the dataset and graph construction are discussed

in section 3.3. The experiments need special treatment compared to other

datasets. Since we want to recognize people across multiple days, we only

sample the labeled set from the first days of a person’s appearance. This is

harder and more realistic than sampling labeled set from the whole dataset.

We show two graphs in Figure 4.3(h), one with t1 = 2 seconds, t2 = 12
hours, kc = 3, kf = 1, the other the same except kc = 1.

The kernel for SVM baseline is optimized differently as well. We use an

interpolated linear kernel K(i, j) = wtKt(i, j) +wcKc(i, j) +wfKf (i, j),
where Kt,Kc,Kf are linear kernels (inner products) on time stamp, color

histogram, and face sub-image (normalized to 50 × 50 pixels) respectively.

If an image i contains no face, we define Kf (i, ·) = 0. The interpolation

weights wt, wc, wf are optimized with cross validation.

The experiments demonstrate that the performance of harmonic function varies

considerably depending on the graphs. With certain graphs, the semi-supervised

learning method outperforms SVM, a standard supervised learning method. In par-

ticular sparse nearest-neighbor graphs, even unweighted, tend to outperform fully

connected graphs. We believe the reason is that in fully connected graphs the edges

between different classes, even with relatively small weights, create unwarrantedly

strong connections across the classes. This highlights the sensitivity to the graph

in graph-based semi-supervised learning methods.

It is also apparent from the results that the benefit of semi-supervised learn-

ing deminishes as the labeled set size grows. This suggests that semi-supervised

learning is most helpful when the cost of getting labels is prohibitive.

CMN: Incorporating Class Proportion Knowledge

The harmonic function accuracy can be significantly improved, if we incorporate

class proportion knowledge with the simple CMN heuristic. The class proportion is

estimated from labeled data with Laplace (add one) smoothing. All the graphs and
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Figure 4.3: harmonic function accuracy
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other settings are the same as in section 4.7. The CMN results are shown in Figure

4.4. Compared to Figure 4.3 we see that in most cases CMN helps to improve

accuracy.

For several tasks, CMN gives a huge improvement for the smallest labeled set

size. The improvement is so large that the curves become ‘V’ shaped at the left

hand side. This is an artifact: we often use the number of classes as the smallest

labeled set size. Because of our sampling method, there will be one instance from

each class in the labeled set. The CMN class proportion estimation is thus uniform.

Incidentally, many datasets have close to uniform class proportions. Therefore the

CMN class proportion estimation is close to the truth for the smallest labeled set

size, and produces large improvement. On the other hand, intermediate labeled set

size tends to give the worst class proportion estimates and hence little improve-

ment.

In conclusion, it is important to incorporate class proportion knowledge to as-

sist semi-supervised learning. However for clarity, CMN is not used in the remain-

ing experiments.

Dongles: Incorporating External Classifier

We use the odd vs. even task, where the RBF SVM baseline is sometimes better

than the harmonic function with a 10NN unweighted graph. We augment the graph

with a dongle on each unlabeled node. We use the hard (0/1) labels from the RBF

SVM (Figure 4.3) on the dongles. The dongle transition probability η is set to

0.1 by cross validation. As before, we experiment on different labeled set sizes,

and 30 random trials per size. In Figure 4.5, we compare the average accuracy of

incorporating the external classifier (dongle) to the external classifier (SVM) or the

harmonic function (harmonic) alone. The combination results in higher accuracy

than either method alone, suggesting there is complementary information used by

each.
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Figure 4.4: CMN accuracy
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Figure 4.4: CMN accuracy (continued)
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Chapter 5

Active Learning

In this chapter, we take a brief detour to look at the active learning problem. We

combine semi-supervised learning and active learning naturally and efficiently.

5.1 Combining Semi-Supervised and Active Learning

So far, we assumed the labeled data set is given and fixed. In practice, it may make

sense to utilize active learning in conjunction with semi-supervised learning. That

is, we might allow the learning algorithm to pick unlabeled instances to be labeled

by a domain expert. The expert returns the label, which will then be used as (or to

augment) the labeled data set. In other words, if we have to label a few instances

for semi-supervised learning, it may be attractive to let the learning algorithm tell

us which instances to label, rather than selecting them randomly. We will limit the

range of query selection to the unlabeled data set, a practice known as pool-based

active learning or selective sampling.

There has been a great deal of research in active learning. For example, Tong

and Koller (2000) select queries to minimize the version space size for support

vector machines; Cohn et al. (1996) minimize the variance component of the esti-

mated generalization error; Freund et al. (1997) employ a committee of classifiers,

and query a point whenever the committee members disagree. Most of the active

learning methods do not take further advantage of the large amount of unlabeled

data once the queries are selected. The work by McCallum and Nigam (1998b)

is an exception, where EM with unlabeled data is integrated into active learning.

Another exception is (Muslea et al., 2002), which uses a semi-supervised learning

method during training. In addition to this body of work from the machine learning

community, there is a large literature on the closely related topic of experimental

design in statistics; Chaloner and Verdinelli (1995) give a survey of experimental

35
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design from a Bayesian perspective.

The Gaussian random fields and harmonic functions framework allows a nat-

ural combination of active learning and semi-supervised learning. In brief, the

framework allows one to efficiently estimate the expected generalization error af-

ter querying a point, which leads to a better query selection criterion than naively

selecting the point with maximum label ambiguity. Then, once the queries are se-

lected and added to the labeled data set, the classifier can be trained using both the

labeled and remaining unlabeled data. Minimizing the estimated generalization er-

ror was first proposed by Roy and McCallum (2001). We independently discovered

the same idea (Zhu et al., 2003b), and the effective combination of semi-supervised

learning and active learning is novel.

We perform active learning with the Gaussian random field model by greedily

selecting queries from the unlabeled data to minimize the risk of the harmonic

energy minimization function. The risk is the estimated generalization error of the

Bayes classifier, and can be computed with matrix methods. We define the true

riskR(h) of the Bayes classifier based on the harmonic function h to be

R(h) =
n∑

i=1

∑

yi=0,1

[sgn(hi) 6= yi] p
∗(yi)

where sgn(hi) is the Bayes decision rule with threshold 0.5, such that (with a slight

abuse of notation) sgn(hi) = 1 if hi > 0.5 and sgn(hi) = 0 otherwise. Here p∗(yi)
is the unknown true label distribution at node i, given the labeled data. Because of

this,R(h) is not computable. In order to proceed, it is necessary to make assump-

tions. We begin by assuming that we can estimate the unknown distribution p∗(yi)
with the mean of the Gaussian field model:

p∗(yi = 1) ≈ hi

Intuitively, recalling hi is the probability of reaching 1 in a random walk on the

graph, our assumption is that we can approximate the distribution using a biased

coin at each node, whose probability of heads is hi. With this assumption, we can

compute the estimated risk R̂(h) as

R̂(h) =
n∑

i=1

[sgn(hi) 6= 0] (1− hi) + [sgn(hi) 6= 1]hi

=
n∑

i=1

min(hi, 1− hi) (5.1)

If we perform active learning and query an unlabeled node k, we will receive an

answer yk (0 or 1). Adding this point to the training set and retraining, the Gaussian
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field and its mean function will of course change. We denote the new harmonic

function by h+(xk,yk). The estimated risk will also change:

R̂(h+(xk,yk)) =
n∑

i=1

min(h
+(xk,yk)
i , 1− h+(xk,yk)

i )

Since we do not know what answer yk we will receive, we again assume the proba-

bility of receiving answer p∗(yk = 1) is approximately hk. The expected estimated

risk after querying node k is therefore

R̂(h+xk) = (1− hk) R̂(h+(xk,0)) + hk R̂(h+(xk,1))

The active learning criterion we use in this paper is the greedy procedure of choos-

ing the next query k that minimizes the expected estimated risk:

k = arg mink′R̂(h+xk′ ) (5.2)

To carry out this procedure, we need to compute the harmonic function h+(xk,yk)

after adding (xk, yk) to the current labeled training set. This is the retraining prob-

lem and is computationally intensive in general. However for Gaussian fields and

harmonic functions, there is an efficient way to retrain. Recall that the harmonic

function solution is

hU = −∆−1
UU∆ULYL

What is the solution if we fix the value yk for node k? This is the same as finding

the conditional distribution of all unlabeled nodes, given the value of yk. In Gaus-

sian fields the conditional on unlabeled data is multivariate Normal distributions

N (hU ,∆
−1
UU ). A standard result (a derivation is given in Appendix A) gives the

mean of the conditional once we fix yk:

h
+(xk,yk)
U = hU + (yk − hk)

(∆−1
UU )·k

(∆−1
UU )kk

where (∆−1
UU )·k is the k-th column of the inverse Laplacian on unlabeled data,

and (∆−1
UU )kk is the k-th diagonal element of the same matrix. Both are already

computed when we compute the harmonic function h. This is a linear computation

and therefore can be carried out efficiently.

To summarize, the active learning algorithm is shown in Figure 5.1. The time

complexity to find the best query is O(n2). As a final word on computational

efficiency, we note that after adding query xk and its answer to L, in the next

iteration we will need to compute ((∆UU )¬k)
−1, the inverse of the Laplacian on

unlabeled data, with the row/column for xk removed. Instead of naively taking the

inverse, there are efficient algorithms to compute it from (∆UU )−1; a derivation is

given in Appendix B.
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Input: L,U , weight matrix W
While more labeled data required:

Compute harmonic h using (4.11)

Find best query k using (5.2)

Query point xk, receive answer yk

Add (xk, yk) to L, remove xk from U
end

Output: L and classifier h.

Figure 5.1: The active learning algorithm
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Figure 5.2: Entropy Minimization selects the most uncertain point a as the next

query. Our method will select a point in B, a better choice.

5.2 Why not Entropy Minimization

We used the estimated generalization error to select queries. A different query

selection criterion, entropy minimization (or selecting the most uncertain instance),

has been suggested in some papers. We next show why it is inappropriate when

the loss function is based on individual instances. Such loss functions include the

widely used accuracy for classification and mean squared error for regression.

To illustrate the idea, Figure 5.2 shows a synthetic dataset with two labeled

data (marked ‘1’, ‘0’), an unlabeled point ‘a’ in the center above and a cluster of 9

unlabeled points ‘B’ below. ‘B’ is slighted shifted to the right. The graph is fully

connected with weights wij = exp(−d2
ij), where dij is the Euclidean distance be-

tween i, j. In this configuration, we have the most uncertainty in ‘a’: the harmonic

function at node ‘a’ is h(a) = 0.43. Points in ‘B’ have their harmonic func-



5.3. EXPERIMENTS 39

tion values around 0.32. Therefore entropy minimization will pick ’a’ as the query.

However, the risk minimization criterion picks the upper center point (marked with

a star) in ‘B’ to query, instead of ‘a’. In fact the estimated risk is R̂(a) = 2.9, and

R̂(b ∈ B) ≈ 1.1. Intuitively knowing the label of one point in B let us know the

label of all points in B, which is a larger gain. Entropy minimization is worse than

risk minimization in this example.

The root of the problem is that entropy does not account for the loss of mak-

ing a large number of correlated mistakes. In a pool-based incremental active

learning setting, given the current unlabeled set U , entropy minimization finds the

query q ∈ U such that the conditional entropy H(U \ q|q) is minimized. As

H(U \ q|q) = H(U) − H(q), it amounts to selecting q with the largest entropy,

or the most ambiguous unlabeled point as the query. Consider another example

where U = {a, b1, . . . , b100}. Let P (a = +) = P (a = −) = 0.5 and P (bi =
+) = 0.51, P (bi = −) = 0.49 for i = 1 . . . 100. Furthermore let b1 . . . b100 be

perfectly correlated so they always take the same value; Let a and bi’s be inde-

pendent. Entropy minimization will select a as the next query since H(a) = 1 >
H(bi) = 0.9997. If our goal were to reduce uncertainty about U , such query selec-

tion is good: H(b1 . . . b100|a) = 0.9997 < H(a, b1, . . . , bi−1, bi+1, . . . , b100|bi) =
H(a|bi) = 1. However if our loss function is the accuracy on the remaining

instances in U , the picture is quite different. After querying a, P (bi = +) re-

mains at 0.51, so that each bi incurs a Bayes error of 0.49 by always predict

bi = +. The problem is that the individual error adds up, and the overall accuracy

is 0.51 ∗ 100/100 = 0.51. On the other hand if we query b1, we know the labels of

b2 . . . b100 too because of their perfect correlation. The only error we might make is

on a with Bayes error of 0.5. The overall accuracy is (0.5 + 1 ∗ 99)/100 = 0.995.

The situation is analogous to speech recognition in which one can measure the

‘word level accuracy’ or ‘sentence level accuracy’ where a sentence is correct if all

words in it are correct. The sentence corresponds to the whole U in our example.

Entropy minimization is more aligned with sentence level accuracy. Nevertheless

since most active learning systems use instance level loss function, it can leads to

suboptimal query choices as we show above.

5.3 Experiments

Figure 5.3 shows a check-board synthetic dataset with 400 points. We expect active

learning to discover the pattern and query a small number of representatives from

each cluster. On the other hand, we expect a much larger number of queries if

queries are randomly selected. We use a fully connected graph with weight wij =
exp(−d2

ij/4). We perform 20 random trials. At the beginning of each trial we
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Figure 5.3: A check-board example. Left: dataset and true labels; Center: esti-

mated risk; Right: classification accuracy.

randomly select a positive example and a negative example as the initial training

set. We then run active learning and compare it to two baselines: (1) “Random

Query”: randomly selecting the next query from U ; (2) “Most Uncertain Query”:

selecting the most uncertain instance inU , i.e. the one with h closest to 0.5. In each

case, we run for 20 iterations (queries). At each iteration, we plot the estimated risk

(5.1) of the selected query (center), and the classification accuracy on U (right).

The error bars are ±1 standard deviation, averaged over the random trials. As

expected, with risk minimization active learning we reduce the risk more quickly

than random queries or the most uncertain queries. In fact, risk minimization active

learning with about 15 queries (plus 2 initial random points) learns the correct

concept, which is nearly optimal given that there are 16 clusters. Looking at the

queries, we find that active learning mostly selects the central points within the

clusters.

Next, we ran the risk minimization active learning method on several tasks

(marked active learning in the plots). We compare it with several alternative ways

of picking queries:

• random query. Randomly select the next query from the unlabeled set.

Classification on the unlabeled set is based on the harmonic function. There-

fore, this method consists of no active learning, but only semi-supervised

learning.

• most uncertain. Pick the most ambiguous point (h closest to 0.5 for binary

problems) as the query. Classification is based on the harmonic function.

• SVM random query. Randomly select the next query from the unlabeled

set. Classification with SVM. This is neither active nor semi-supervised

learning.

• SVM most uncertain. Pick the query closest to the SVM decision boundary.
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Figure 5.4: Active learning accuracy

Classification with SVM.

For each task, we use the best graph for harmonic functions, and the best kernel

for SVM, as in section 4.7. We run 30 trials and the plots are the average. In

each trial, we start from a randomly selected labeled set, so that each class has

exactly one labeled example. The query selection methods mentioned above are

used independently to grow the labeled set until a predetermined size. We plot

the classification accuracy on the remaining unlabeled data in Figure 5.4. For the

FreeFoodCam task, there are two experiments: 1. We allow the queries to come

from all days; 2. From only the first days of a person’s first appearance.

It is interesting to see what queries are selected by different methods. Figures

5.5 and 5.6 compare the first few queries for the 1 vs. 2 and ten digits tasks. In

each case, the initial labeled set is the same.

The combined semi-supervised learning and risk minimization active learning

method performs well on the tasks. Compared to the results reported in (Roy &
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Figure 5.4: Active learning accuracy (continued)

initial labeled set

active learning

most uncertain

random query

SVM most uncertain

Figure 5.5: The first few queries selected by different active learning methods on

the 1 vs. 2 task. All methods start with the same initial labeled set.
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Figure 5.6: The first few queries selected by different active learning methods on

the ten digits task. All methods start with the same initial labeled set.

McCallum, 2001), we think that good semi-supervised learning algorithm is a key

to the success of the active learning scheme.
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Chapter 6

Connection to Gaussian Processes

A Gaussian process define a prior p(f(x)) over function values f(x), where x
ranges over an infinite input space. It is an extension to an n-dimensional Gaus-

sian distribution as n goes to infinity. A Gaussian process is defined by its mean

function µ(x) (usually taken to be zero everywhere), and a covariance function

C(x, x′). For any finite set of points x1, . . . , xm, the Gaussian process on the

set reduces to an m-dimensional Gaussian distribution with a covariance matrix

Cij = C(xi, xj), for i, j = 1 . . .m. More information can be found in Chapter 45

of (MacKay, 2003).

Gaussian random fields are equivalent to Gaussian processes that are restricted

to a finite set of points. Thus, the standard machineries for Gaussian processes can

be used for semi-supervised learning. Through this connection, we establish the

link between the graph Laplacian and kernel methods in general.

6.1 A Finite Set Gaussian Process Model

Recall for any real-valued function f on the graph, the energy is defined as

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 = f⊤∆f (6.1)

the corresponding Gaussian random field is

p(f) =
1

Z
e−βE(f) =

1

Z
e−βf⊤∆f (6.2)

The Gaussian random field is nothing but a multivariate Gaussian distribution on

the nodes. Meanwhile a Gaussian process restricted to finite data is a multivariate

Gaussian distribution too (MacKay, 1998). This indicates a connection between

45
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Gaussian random fields and finite set Gaussian processes. Notice the ‘finite set

Gaussian processes’ are not real Gaussian processes, since the kernel matrix is

only defined on L ∪ U , not the whole input space X .

Equation (6.2) can be viewed as a Gaussian process restricted to L ∪ U with

covariance matrix (2β∆)−1. However the covariance matrix is an improper prior.

The Laplacian ∆ by definition has a zero eigenvalue with constant eigenvector 1.

To see this note that the degree matrix D is the row sum of W . This makes ∆
singular: we cannot invert ∆ to get the covariance matrix. To make a proper prior

out of the Laplacian, we can smooth its spectrum to remove the zero eigenvalues,

as suggested in (Smola & Kondor, 2003). In particular, we choose to transform the

eigenvalues λ according to the function r(λ) = λ + 1/σ2 where 1/σ2 is a small

smoothing parameter. This gives the regularized Laplacian

∆ + I/σ2 (6.3)

Using the regularized Laplacian, we define a zero mean prior as

p(f) ∝ exp

(
−1

2
f⊤∆̃f

)
(6.4)

which corresponds to a kernel with Gram matrix (i.e. covariance matrix)

K = ∆̃−1 =
(
2β(∆ + I/σ2)

)−1
(6.5)

We note several important aspects of the resulting finite set Gaussian process:

• f ∼ N
(
0, ∆̃−1

)
;

• Unlike ∆, ∆̃ gives a proper covariance matrix.

• The parameter β controls the overall sharpness of the distribution; large β
means p(f) is more peaked around its mean.

• The parameter σ2 controls the amount of spectral smoothing; large σ smoothes

less.

• The kernel (covariance) matrix K = ∆̃−1 is the inverse of a function of the

Laplacian ∆. Therefore the covariance between any two point i, j in general

depends on all the points. This is how unlabeled data influences the prior.

The last point warrants further explanation. In many standard kernels, the entries

are ‘local’. For example, in a radial basis function (RBF) kernelK, the matrix entry

kij = exp
(
−d2

ij/α
2
)

only depends on the distance between i, j and not any other
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points. In this case unlabeled data is useless because the influence of unlabeled

data in K is marginalized out. In contrast, the entries in kernel (6.4) depends on all

entries in ∆, which in turn depends on all edge weights W . Thus, unlabeled data

will influence the kernel, which is desirable for semi-supervised learning. Another

way to view the difference is that in RBF (and many other) kernels we parameterize

the covariance matrix directly, while with graph Laplacians we parameterize the

inverse covariance matrix.

6.2 Incorporating a Noise Model

In moving from Gaussian fields to finite set Gaussian processes, we no longer

assume that the soft labels fL for the labeled data are fixed at the observed labels

YL. Instead we now assume the data generation process is x → f → y, where

f → y is a noisy label generation process. We use a sigmoid noise model between

the hidden soft labels fi and observed labels yi:

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
=

1

1 + e−2γfiyi
(6.6)

where γ is a hyperparameter which controls the steepness of the sigmoid. This

assumption allows us to handle noise in training labels, and is a common practice

in Gaussian process classification.

We are interested in p(YU |YL), the labels for unlabeled data. We first need to

compute the posterior distribution p(fL, fU |YL). By Bayes’ theorem,

p(fL, fU |YL) =

∏l
i=1 P (yi|fi)p(fL, fU )

P (YL)
(6.7)

Because of the noise model, the posterior is not Gaussian and has no closed form

solution. There are several ways to approximate the posterior. For simplicity we

use the Laplace approximation to find the approximate p(fL, fU |YL). A deriva-

tion can be found in Appendix C, which largely follows (Herbrich, 2002) (B.7).

Bayesian classification is based on the posterior distribution p(YU |YL). Since un-

der the Laplace approximation this distribution is also Gaussian, the classification

rule depends only on the sign of the mean (which is also the mode) of fU .

6.3 Experiments

We compare the accuracy of Gaussian process classification with the 0.5-threshold

harmonic function (without CMN). To simplify the plots, we use the same graphs
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Figure 6.1: Gaussian process accuracy

that give the best harmonic function accuracy (except FreeFoodCam). To aid com-

parison we also show SVMs with the best kernel among linear, quadratic or RBF.

In the experiments, the inverse temperature parameter β, smoothing parameter σ
and noise model parameter γ are tuned with cross validation for each task. The

results are in Figure 6.1.

For FreeFoodCam we also use two other graphs with no face edges at all

(kf = 0). The first one limits color edges to within 12 hours (t2 = 12 hour), thus

the first days that contain the labeled data is disconnected from the rest. The second

one allows color edges on far away images (t2 = ∞). Neither has good accuracy,

indicating that face is an important feature to use.
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Figure 6.1: Gaussian process accuracy (continued)
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6.4 Extending to Unseen Data

We have so far restricted ourselves to the L ∪ U nodes in the graph. In this finite

case Gaussian processes are nothing but n-dimensional multivariate normal distri-

butions, and are equivalent to Gaussian random fields. However Gaussian fields,

by definition, cannot handle unseen instances. Any new data points need to be-

come additional nodes in the graph. The Laplacian and kernel matrices need to

be re-computed, which is expensive. We would like to extend the framework to

allow arbitrary new points. Equivalently, this is the problem of induction instead

of transduction.

The simplest strategy is to divide the input space into Voronoi cells. The

Voronoi cells are centered on instances in L ∪ U . We classify any new instance

x by the Voronoi cell it falls into. Let x∗ ∈ L ∪ U be the point closest to x:

x∗ = arg maxz∈L∪Uwxz (6.8)

where closeness is measured by weights wxz . From an algorithmic point of view,

we classify x by its 1-nearest-neighbor x∗. When the unlabeled data size is large,

the approximation is reasonable.

We will discuss more inductive methods in Chapter 10.



Chapter 7

Graph Hyperparameter Learning

Previously we assumed that the weight matrixW is given and fixed. In this chapter

we investigate learning the weights from both labeled and unlabeled data. We

present three methods. The first one is evidence maximization in the context of

Gaussian processes. The second is entropy minimization, and the third one is based

on minimum spanning trees. The latter ones are heuristic but also practical.

7.1 Evidence Maximization

We assume the edge weights are parameterized with hyperparameters Θ. For in-

stance the edge weights can be

wij = exp

(
−

D∑

d=1

(xi,d − xj,d)
2

α2
d

)

and Θ = {α1, . . . , αD}. To learn the weight hyperparameters in a Gaussian pro-

cess, one can choose the hyperparameters that maximize the log likelihood: Θ∗ =
arg maxΘ log p(yL|Θ). log p(yL|Θ) is known as the evidence and the procedure is

also called evidence maximization . One can also assume a prior on Θ and find the

maximum a posteriori (MAP) estimate Θ∗ = arg maxΘ log p(yL|Θ) + log p(Θ).
The evidence can be multimodal and usually gradient methods are used to find a

mode in hyperparameter space. This requires the derivatives ∂ log p(yL|Θ)/∂Θ. A

complete derivation is given in Appendix D.

In a full Bayesian setup, one would average over all hyperparameter values

(weighted by the posterior p(Θ|yL)) instead of using a point estimate Θ∗. This

usually involves Markov Chain Monte Carlo techniques, and is not pursued in this

paper.
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regularized evidence accuracy

task before after before after

1 vs. 2 -24.6 -23.9 0.973 0.982

7 vs. 9 -40.5 -39.9 0.737 0.756

Table 7.1: the regularized evidence and classification before and after learning α’s

for the two digits recognition tasks

We use binary OCR handwritten digits recognition tasks as our example, since

the results are more interpretable. We choose two tasks: “1 vs. 2” which has been

presented previously, and “ 7 vs. 9” which are the two most confusing digits in

terms of Euclidean distance. We use fully connected graphs with weights

wij = exp

(
−

64∑

d=1

(xi,d − xj,d)
2

α2
d

)
(7.1)

The hyperparameters are the 64 length scales αd for each pixel dimension on 8× 8
images. Intuitively they determine which pixel positions are salient for the classifi-

cation task: if αd is close to zero, a difference at pixel position d will be magnified;

if it is large, pixel position d will be essentially ignored. The weight function

is an extension to eq (4.15) by giving each dimension its own length scale. For

each task there are 2200 images, and we run 10 trials, in each trial we randomly

pick 50 images as the labeled set. The rest is used as unlabeled set. For each

trial we start at αi = 140, i = 1 . . . 64, which is the same as in eq (4.15). We

compute the gradients for αi for evidence maximization. However since there are

64 hyperparameters and only 50 labeled points, regularization is important. We

use a Normal prior on the hyperparameters which is centered at the initial value:

p(αi) ∼ N (140, 302), i = 1 . . . 64. We use a line search algorithm to find a (pos-

sibly local) optimum for the α’s.

Table 7.1 shows the regularized evidence and classification before and after

learning α’s for the two tasks. Figure 7.1 compares the learned hyperparameters

with the mean images of the tasks. Smaller (darker) α’s correspond to feature

dimensions in which the learning algorithm pays more attention. It is obvious, for

instance in the 7 vs. 9 task, that the learned hyperparameters focus on the ‘gap on

the neck of the image’, which is the distinguishing feature between 7’s and 9’s.
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Figure 7.1: Graph hyperparameter learning. The upper row is for the 1 vs. 2 task,

and the lower row for 7 vs. 9. The four images are: (a,b) Averaged digit images

for the two classes; (c) The 64 initial length scale hyperparameters α, shown as an

8× 8 array; (d) Learned hyperparameters.

7.2 Entropy Minimization

Alternatively, we can use average label entropy as a heuristic criterion for parame-

ter learning 1. This heuristic uses only the harmonic function and does not depend

on the Gaussian process setup.

The average label entropy H(h) of the harmonic function h is defined as

H(h) =
1

u

l+u∑

i=l+1

Hi(h(i)) (7.2)

whereHi(h(i)) = −h(i) log h(i)−(1−h(i)) log(1−h(i)) is the Shannon entropy

of individual unlabeled data point i. Here we use the random walk interpretation

of h, relying on the maximum principle of harmonic functions which guarantees

that 0 ≤ h(i) ≤ 1 for i ∈ U . Small entropy implies that h(i) is close to 0 or 1; this

captures the intuition that a good W (equivalently, a good set of hyperparameters

Θ) should result in a confident labeling. There are of course many arbitrary label-

ings of the data that have low entropy, which might suggest that this criterion will

not work. However, it is important to point out that we are constraining h on the

labeled data—most of these arbitrary low entropy labelings are inconsistent with

this constraint. In fact, we find that the space of low entropy labelings achievable

by harmonic function is small and lends itself well to tuning the hyperparameters.

1We could have used the estimated risk, cf. Chapter 5. The gradient will be more difficult because

of the min function.
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As an example, let us consider the case where weights are parameterized as

(7.1). We can apply entropy minimization but there is a complication, namely H
has a minimum at 0 as αd → 0. As the length scale approaches zero, the tail of the

weight function (7.1) is increasingly sensitive to the distance. In the end, the label

predicted for an unlabeled example is dominated by its nearest neighbor’s label,

which results in the following equivalent labeling procedure: (1) starting from the

labeled data set, find the unlabeled point xu that is closest to some labeled point

xl; (2) label xu with xl’s label, put xu in the labeled set and repeat. Since these are

hard labels, the entropy is zero. This solution is desirable only when the classes

are well separated, and is inferior otherwise. This complication can be avoided by

smoothing the transition matrix. Inspired by analysis of the PageRank algorithm

in (Ng et al., 2001b), we smooth the transition matrix P with the uniform matrix

U : Uij = 1/n. The smoothed transition matrix is P̃ = ǫU + (1− ǫ)P .

We use gradient descent to find the hyperparameters αd that minimize H . The

gradient is computed as

∂H

∂αd
=

1

u

l+u∑

i=l+1

log

(
1− h(i)
h(i)

)
∂h(i)

∂αd
(7.3)

where the values ∂h(i)/∂αd can be read off the vector ∂hU/∂αd, which is given

by

∂hU

∂αd
= (I − P̃UU )−1

(
∂P̃UU

∂αd
hU +

∂P̃UL

∂αd
YL

)
(7.4)

using the fact that dX−1 = −X−1(dX)X−1. Both ∂P̃UU/∂αd and ∂P̃UL/∂αd

are sub-matrices of ∂P̃/∂αd = (1− ǫ) ∂P
∂αd

. Since the original transition matrix P
is obtained by normalizing the weight matrix W , we have that

∂pij

∂αd
=

∂wij

∂αd
− pij

∑l+u
n=1

∂win

∂αd∑l+u
n=1win

(7.5)

Finally,
∂wij

∂αd
= 2wij(xdi − xdj)

2/α3
d.

In the above derivation we use hU as label probabilities directly; that is, p(yi =
1) = hU (i). If we incorporate class proportion information, or combine the har-

monic function with other classifiers, it makes sense to minimize entropy on the

combined probabilities. For instance, if we incorporate class proportions using

CMN, the probability is given by

h′(i) =
q(u−∑hU )hU (i)

q(u−∑hU )hU (i) + (1− q)∑hU (1− hU (j))
(7.6)
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Figure 7.2: The effect of parameter α on the harmonic function. (a) If not

smoothed, H → 0 as α → 0, and the algorithm performs poorly. (b) Result at

optimal α = 0.67, smoothed with ǫ = 0.01 (c) Smoothing helps to remove the

entropy minimum.

and we use this probability in place of h(i) in (7.2). The derivation of the gradient

descent rule is a straightforward extension of the above analysis.

We use a toy dataset in Figure 7.2 as an example for Entropy Minimization.

The upper grid is slightly tighter than the lower grid, and they are connected by a

few data points. There are two labeled examples, marked with large symbols. We

learn the optimal length scales for this dataset by minimizing entropy on unlabeled

data.

To simplify the problem, we first tie the length scales in the two dimensions,

so there is only a single parameter α to learn. As noted earlier, without smoothing,

the entropy approaches the minimum at 0 as α → 0. Under such conditions,

the harmonic function is usually undesirable, and for this dataset the tighter grid

“invades” the sparser one as shown in Figure 7.2(a). With smoothing, the “nuisance

minimum” at 0 gradually disappears as the smoothing factor ǫ grows, as shown

in Figure 7.2(c). When we set ǫ = 0.01, the minimum entropy is 0.898 bits at

α = 0.67. The harmonic function under this length scale is shown in Figure 7.2(b),

which is able to distinguish the structure of the two grids.

If we allow separate α’s for each dimension, parameter learning is more dra-

matic. With the same smoothing of ǫ = 0.01, αx keeps growing toward infinity

(we use αx = 1016 for computation) while αy stabilizes at 0.65, and we reach a

minimum entropy of 0.619 bits. In this case αx → ∞ is legitimate; it means that

the learning algorithm has identified the x-direction as irrelevant, based on both the

labeled and unlabeled data. The harmonic function under these hyperparameters

gives the same classification as shown in Figure 7.2(b).
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7.3 Minimum Spanning Tree

If the graph edges are exp-weighted with a single hyperparameter α (Section 3.4),

we can set the hyperparameter α with the following heuristic. We construct a

minimum spanning tree over all data points with Kruskal’s algorithm (Kruskal,

1956). In the beginning no node is connected. During tree growth, the edges are

examined one by one from short to long. An edge is added to the tree if it connects

two separate components. The process repeats until the whole graph is connected.

We find the first tree edge that connects two components with different labeled

points in them. We regard the length of this edge d0 as a heuristic to the minimum

distance between different class regions. We then set α = d0/3 following the 3σ
rule of Normal distribution, so that the weight of this edge is close to 0, with the

hope that local propagation is then mostly within classes.

7.4 Discussion

Other ways to learn the weight hyperparameters are possible. For example one can

try to maximize the kernel alignment to labeled data. This criterion will be used to

learn a spectral transformation from the Laplacian to a graph kernel in Chapter 8.

There the graph weights are fixed, and the hyperparameters are the eigenvalues of

the graph kernel. It is possible that one can instead fix a spectral transformation but

learn the weight hyperparameters, or better yet jointly learn both. The hope is the

problem can be formulated as convex optimization. This remains future research.



Chapter 8

Kernels from the Spectrum of

Laplacians

We used the inverse of a smoothed Laplacian as kernel matrix in Chapter 6. In

fact, one can construct a whole family of graph kernels from the spectral decom-

position of graph Laplacians. These kernels combine labeled and unlabeled data in

a systematic fashion. In this chapter we devise the best one (in a certain sense) for

semi-supervised learning.

8.1 The Spectrum of Laplacians

Let us denote the Laplacian ∆’s eigen-decomposition by {λi, φi}, so that ∆ =∑n
i=1 λiφiφ

⊤
i . We assume the eigenvalues are sorted in non-decreasing order. The

Laplacian ∆ has many interesting properties (Chung, 1997); For example ∆ has

exactly k zero eigenvalues λ1 = · · · = λk = 0, where k is the number of con-

nected subgraphs. The corresponding eigenvectors φ1, . . . , φk are constant over

the individual subgraphs and zero elsewhere. Perhaps the most important property

of the Laplacian related to semi-supervised learning is the following: a smaller

eigenvalue λ corresponds to a smoother eigenvector φ over the graph; that is, the

value
∑

ij wij(φ(i) − φ(j))2 is small. Informally, a smooth eigenvector has the

property that two elements of the vector have similar values if there are many large

weight paths between the nodes in the graph. In a physical system, the smoother

eigenvectors correspond to the major vibration modes. Figure 8.1(top) shows a

simple graph consisting of two linear segments. The edges have the same weight

1. Its Laplacian spectral decomposition is shown below, where the eigenvalues are

sorted from small to large. The first two eigenvalues should be zero – there are

numerical errors in Matlab eigen computation. As the eigenvalues increase, the

57
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−4.5874e−17 3.7245e−16 0.043705 0.17291 0.38197

0.38197 0.66174 1 1.382 1.382

1.7909 2.2091 2.618 2.618 3

3.3383 3.618 3.618 3.8271 3.9563

Figure 8.1: A simple graph with two segments, and its Laplacian spectral decom-

position. The numbers are the eigenvalues, and the zigzag shapes are the corre-

sponding eigenvectors.

corresponding eigenvectors become less and less smooth.

8.2 From Laplacians to Kernels

Kernel-based methods are increasingly being used for data modeling and predic-

tion because of their conceptual simplicity and good performance on many tasks.

A promising family of semi-supervised learning methods can be viewed as con-

structing kernels by transforming the spectrum (i.e. eigen-decomposition) of the

graph Laplacian. These kernels, when viewed as regularizers, penalize functions

that are not smooth over the graph (Smola & Kondor, 2003).

Assuming the graph structure is correct, from a regularization perspective we
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want to encourage smooth functions, to reflect our belief that labels should vary

slowly over the graph. Specifically, Chapelle et al. (2002) and Smola and Kondor

(2003) suggest a general principle for creating a family of semi-supervised kernels

K from the graph Laplacian ∆: transform the eigenvalues λ into r(λ), where the

spectral transformation r is a non-negative and usually decreasing function1

K =
n∑

i=1

r(λi)φiφ
⊤
i (8.1)

Note it may be that r reverses the order of the eigenvalues, so that smooth φi’s have

larger eigenvalues inK. With such a kernel, a “soft labeling” function f =
∑
ciφi

in a kernel machine has a penalty term in the RKHS norm given by Ω(||f ||2K) =
Ω(
∑
c2i /r(λi)). If r is decreasing, a greater penalty is incurred for those terms of

f corresponding to eigenfunctions that are less smooth.

In previous work r has often been chosen from a parametric family. For exam-

ple, the diffusion kernel (Kondor & Lafferty, 2002) corresponds to

r(λ) = exp(−σ
2

2
λ) (8.2)

The regularized Gaussian process kernel in Chapter 6 corresponds to

r(λ) =
1

λ+ σ
(8.3)

Figure 8.2 shows such a regularized Gaussian process kernel, constructed from

the Laplacian in Figure 8.1 with σ = 0.05. Cross validation has been used to

find the hyperparameter σ for these spectral transformations. Although the general

principle of equation (8.1) is appealing, it does not address the question of which

parametric family to use for r. Moreover, the degree of freedom (or the number of

hyperparameters) may not suit the task, resulting in overly constrained kernels.

We address these limitations with a nonparametric method. Instead of using

a parametric transformation r(λ), we allow the transformed eigenvalues µi =
r(λi), i = 1 . . . n to be almost independent. The only additional condition is that

µi’s have to be non-increasing, to encourage smooth functions over the graph. Un-

der this condition, we find the set of optimal spectral transformation µ that maxi-

mizes the kernel alignment to the labeled data. The main advantage of using kernel

alignment is that it gives us a convex optimization problem, and does not suf-

fer from poor convergence to local minima. The optimization problem in general

is solved using semi-definite programming (SDP) (Boyd & Vandenberge, 2004);

1We use a slightly different notation where r is the inverse of that in (Smola & Kondor, 2003).
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Figure 8.2: The kernel constructed from the Laplacian in Figure 8.1, with spectrum

transformation r(λ) = 1/(λ+ 0.05).

however, in our approach the problem can be formulated in terms of quadratically

constrained quadratic programming (QCQP), which can be solved more efficiently

than a general SDP. We review QCQP next.

8.3 Convex Optimization using QCQP

Let Ki = φiφ
⊤
i , i = 1 · · ·n be the outer product matrices of the Laplacian’s eigen-

vectors. Our kernel K is a linear combination

K =

n∑

i=1

µiKi (8.4)

where µi ≥ 0. We formulate the problem of finding the optimal spectral transfor-

mation as one that finds the interpolation coefficients {r(λi) = µi} by optimizing

some convex objective function on K. To maintain the positive semi-definiteness

constraint on K, one in general needs to invoke SDPs (Boyd & Vandenberge,

2004). Semi-definite optimization can be described as the problem of optimizing

a linear function of a symmetric matrix subject to linear equality constraints and

the condition that the matrix be positive semi-definite. The well known linear pro-

gramming problem can be generalized to a semi-definite optimization by replacing

the vector of variables with a symmetric matrix, and replacing the non-negativity

constraints with a positive semi-definite constraints. This generalization inherits

several properties: it is convex, has a rich duality theory and allows theoretically

efficient solution algorithms based on iterating interior point methods to either fol-

low a central path or decrease a potential function. However, a limitation of SDPs is

their computational complexity (Boyd & Vandenberge, 2004), which has restricted

their application to small-scale problems (Lanckriet et al., 2004). However, an

important special case of SDPs are quadratically constrained quadratic programs
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(QCQP) which are computationally more efficient. Here both the objective func-

tion and the constraints are quadratic as illustrated below,

minimize
1

2
x⊤P0x+ q⊤0 x+ r0 (8.5)

subject to
1

2
x⊤Pix+ q⊤i x+ ri ≤ 0 i = 1 · · ·m (8.6)

Ax = b (8.7)

where Pi ∈ Sn
+, i = 1, . . . ,m, where Sn

+ defines the set of square symmetric

positive semi-definite matrices. In a QCQP, we minimize a convex quadratic func-

tion over a feasible region that is the intersection of ellipsoids. The number of

iterations required to reach the solution is comparable to the number required for

linear programs, making the approach feasible for large datasets. However, as ob-

served in (Boyd & Vandenberge, 2004), not all SDPs can be relaxed to QCQPs.

For the semi-supervised kernel learning task presented here solving an SDP would

be computationally infeasible.

Recent work (Cristianini et al., 2001a; Lanckriet et al., 2004) has proposed ker-

nel target alignment that can be used not only to assess the relationship between

the feature spaces generated by two different kernels, but also to assess the similar-

ity between spaces induced by a kernel and that induced by the labels themselves.

Desirable properties of the alignment measure can be found in (Cristianini et al.,

2001a). The crucial aspect of alignment for our purposes is that its optimization can

be formulated as a QCQP. The objective function is the empirical kernel alignment

score:

Â(Ktr, T ) =
〈Ktr, T 〉F√

〈Ktr,Ktr〉F 〈T, T 〉F
(8.8)

where Ktr is the kernel matrix restricted to the training points, 〈M,N〉F denotes

the Frobenius product between two square matrices 〈M,N〉F =
∑

ij mijnij =
trace(MN⊤), and T is the target matrix on training data, with entry Tij set to +1
if yi = yj and −1 otherwise. Note for binary {+1,−1} training labels YL this

is simply the rank one matrix T = YLY
⊤
L . K is guaranteed to be positive semi-

definite by constraining µi ≥ 0. Our kernel alignment problem is special in that

the Ki’s were derived from the graph Laplacian with the goal of semi-supervised

learning. We require smoother eigenvectors to receive larger coefficients, as shown

in the next section.

8.4 Semi-Supervised Kernels with Order Constraints

As stated above, we would like to maintain a decreasing order on the spectral

transformation µi = r(λi) to encourage smooth functions over the graph. This
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motivates the set of order constraints

µi ≥ µi+1, i = 1 · · ·n− 1 (8.9)

We can specify the desired semi-supervised kernel as follows.

Definition 1 An order constrained semi-supervised kernel K is the solution to the

following convex optimization problem:

maxK Â(Ktr, T ) (8.10)

subject to K =
∑n

i=1 µiKi (8.11)

µi ≥ 0 (8.12)

trace(K) = 1 (8.13)

µi ≥ µi+1, i = 1 · · ·n− 1 (8.14)

where T is the training target matrix, Ki = φiφ
⊤
i and φi’s are the eigenvectors of

the graph Laplacian.

The formulation is an extension to (Lanckriet et al., 2004) with order constraints,

and with special components Ki’s from the graph Laplacian. Since µi ≥ 0 and

Ki’s are outer products, K will automatically be positive semi-definite and hence

a valid kernel matrix. The trace constraint is needed to fix the scale invariance of

kernel alignment. It is important to notice the order constraints are convex, and as

such the whole problem is convex. This problem is equivalent to:

maxK 〈Ktr, T 〉F (8.15)

subject to 〈Ktr,Ktr〉F ≤ 1 (8.16)

K =
∑n

i=1 µiKi (8.17)

µi ≥ 0 (8.18)

µi ≥ µi+1, ∀i (8.19)

Let vec(A) be the column vectorization of a matrix A. Defining a l2 ×m matrix

M =
[
vec(K1,tr) · · · vec(Km,tr)

]
(8.20)

it is not hard to show that the problem can then be expressed as

maxµ vec(T )⊤Mµ (8.21)

subject to ||Mµ|| ≤ 1 (8.22)

µi ≥ 0 (8.23)

µi ≥ µi+1, i = 1 · · ·n− 1 (8.24)
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The objective function is linear in µ, and there is a simple cone constraint, making

it a quadratically constrained quadratic program (QCQP) 2.

An improvement of the above order constrained semi-supervised kernel can be

obtained by taking a closer look at the Laplacian eigenvectors with zero eigenval-

ues. As stated earlier, for a graph Laplacian there will be k zero eigenvalues if the

graph has k connected subgraphs. The k eigenvectors are piecewise constant over

individual subgraphs, and zero elsewhere. This is desirable when k > 1, with the

hope that subgraphs correspond to different classes. However if k = 1, the graph is

connected. The first eigenvector φ1 is a constant vector over all nodes. The corre-

sponding K1 is a constant matrix, and acts as a bias term in (8.1). In this situation

we do not want to impose the order constraint µ1 ≥ µ2 on the constant bias term,

rather we let µ1 vary freely during optimization:

Definition 2 An improved order constrained semi-supervised kernel K is the so-

lution to the same problem in Definition 1, but the order constraints (8.14) apply

only to non-constant eigenvectors:

µi ≥ µi+1, i = 1 · · ·n− 1, and φi not constant (8.25)

In practice we do not need all n eigenvectors of the graph Laplacian, or equiva-

lently all n Ki’s. The first m < n eigenvectors with the smallest eigenvalues work

well empirically. Also note we could have used the fact that Ki’s are from orthog-

onal eigenvectors φi to further simplify the expression. However we neglect this

observation, making it easier to incorporate other kernel components if necessary.

It is illustrative to compare and contrast the order constrained semi-supervised

kernels to other semi-supervised kernels with different spectral transformation. We

call the original kernel alignment solution in (Lanckriet et al., 2004) a maximal-

alignment kernel. It is the solution to Definition 1 without the order constraints

(8.14). Because it does not have the additional constraints, it maximizes kernel

alignment among all spectral transformation. The hyperparameters σ of the Diffu-

sion kernel and Gaussian fields kernel (described earlier) can be learned by max-

imizing the alignment score too, although the optimization problem is not neces-

sarily convex. These kernels use different information in the original Laplacian

eigenvalues λi. The maximal-alignment kernels ignore λi altogether. The order

constrained semi-supervised kernels only use the order of λi and ignore their ac-

tual values. The diffusion and Gaussian field kernels use the actual values. In

terms of the degree of freedom in choosing the spectral transformation µi’s, the

maximal-alignment kernels are completely free. The diffusion and Gaussian field

2An alternative formulation results in a quadratic program (QP), which is faster than QCQP.

Details can be found at http://www.cs.cmu.edu/˜zhuxj/pub/QP.pdf
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kernels are restrictive since they have an implicit parametric form and only one free

parameter. The order constrained semi-supervised kernels incorporates desirable

features from both approaches.

8.5 Experiments

We evaluate the order constrained kernels on seven datasets. baseball-hockey

(1993 instances / 2 classes), pc-mac (1943/2) and religion-atheism (1427/2) are

document categorization tasks taken from the 20-newsgroups dataset. The distance

measure is the standard cosine similarity between tf.idf vectors. one-two (2200/2),

odd-even (4000/2) and ten digits (4000/10) are handwritten digits recognition

tasks. one-two is digits “1” vs. “2”; odd-even is the artificial task of classify-

ing odd “1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits, such that each class has several

well defined internal clusters; ten digits is 10-way classification. isolet (7797/26)

is isolated spoken English alphabet recognition from the UCI repository. For these

datasets we use Euclidean distance on raw features. We use 10NN unweighted

graphs on all datasets except isolet which is 100NN. For all datasets, we use the

smallest m = 200 eigenvalue and eigenvector pairs from the graph Laplacian.

These values are set arbitrarily without optimizing and do not create a unfair ad-

vantage to the proposed kernels. For each dataset we test on five different labeled

set sizes. For a given labeled set size, we perform 30 random trials in which a la-

beled set is randomly sampled from the whole dataset. All classes must be present

in the labeled set. The rest is used as unlabeled (test) set in that trial. We compare

5 semi-supervised kernels (improved order constrained kernel, order constrained

kernel, Gaussian field kernel, diffusion kernel3 and maximal-alignment kernel),

and 3 standard supervised kernels (RBF (bandwidth learned using 5-fold cross val-

idation),linear and quadratic). We compute the spectral transformation for order

constrained kernels and maximal-alignment kernels by solving the QCQP using

standard solvers (SeDuMi/YALMIP). To compute accuracy we use these kernels in

a standard SVM. We choose the bound on slack variables C with cross validation

for all tasks and kernels. For multiclass classification we perform one-against-all

and pick the class with the largest margin.

Table 8.1 through Table 8.7 list the results. There are two rows for each cell:

The upper row is the average test set accuracy with one standard deviation; The

lower row is the average training set kernel alignment, and in parenthesis the av-

erage run time in seconds for QCQP on a 2.4GHz Linux computer. Each number

is averaged over 30 random trials. To assess the statistical significance of the re-

3The hyperparameters σ are learned with the fminbnd() function in Matlab to maximize kernel

alignment.
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semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 200
10 95.7 ± 8.9 93.9 ±12.0 63.1 ±15.8 65.8 ±22.8 93.2 ± 6.8 53.6 ± 5.5 68.1 ± 7.6 68.1 ± 7.6

0.90 ( 2) 0.69 ( 1) 0.35 0.44 0.95 ( 1) 0.11 0.29 0.23

30 98.0 ± 0.2 97.3 ± 2.1 91.8 ± 9.3 59.1 ±17.9 96.6 ± 2.2 69.3 ±11.2 78.5 ± 8.5 77.8 ±10.6

0.91 ( 9) 0.67 ( 9) 0.25 0.39 0.93 ( 6) 0.03 0.17 0.11

50 97.9 ± 0.5 97.8 ± 0.6 96.7 ± 0.6 93.7 ± 6.8 97.0 ± 1.1 77.7 ± 8.3 84.1 ± 7.8 75.6 ±14.2

0.89 (29) 0.63 (29) 0.22 0.36 0.90 (27) 0.02 0.15 0.09

70 97.9 ± 0.3 97.9 ± 0.3 96.8 ± 0.6 97.5 ± 1.4 97.2 ± 0.8 83.9 ± 7.2 87.5 ± 6.5 76.1 ±14.9

0.90 (68) 0.64 (64) 0.22 0.37 0.90 (46) 0.01 0.13 0.07

90 98.0 ± 0.5 98.0 ± 0.2 97.0 ± 0.4 97.8 ± 0.2 97.6 ± 0.3 88.5 ± 5.1 89.3 ± 4.4 73.3 ±16.8

0.89 (103) 0.63 (101) 0.21 0.36 0.89 (90) 0.01 0.12 0.06

Table 8.1: Baseball vs. Hockey

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 100
10 87.0 ± 5.0 84.9 ± 7.2 56.4 ± 6.2 57.8 ±11.5 71.1 ± 9.7 51.6 ± 3.4 63.0 ± 5.1 62.3 ± 4.2

0.71 ( 1) 0.57 ( 1) 0.32 0.35 0.90 ( 1) 0.11 0.30 0.25

30 90.3 ± 1.3 89.6 ± 2.3 76.4 ± 6.1 79.6 ±11.2 85.4 ± 3.9 62.6 ± 9.6 71.8 ± 5.5 71.2 ± 5.3

0.68 ( 8) 0.49 ( 8) 0.19 0.23 0.74 ( 6) 0.03 0.18 0.13

50 91.3 ± 0.9 90.5 ± 1.7 81.1 ± 4.6 87.5 ± 2.8 88.4 ± 2.1 67.8 ± 9.0 77.6 ± 4.8 75.7 ± 5.4

0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25) 0.02 0.14 0.10

70 91.5 ± 0.6 90.8 ± 1.3 84.6 ± 2.1 90.5 ± 1.2 89.6 ± 1.6 74.7 ± 7.4 80.2 ± 4.6 74.3 ± 8.7

0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59) 0.01 0.12 0.08

90 91.5 ± 0.6 91.3 ± 1.3 86.3 ± 2.3 91.3 ± 1.1 90.3 ± 1.0 79.0 ± 6.4 82.5 ± 4.2 79.1 ± 7.3

0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84) 0.01 0.11 0.08

Table 8.2: PC vs. MAC

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 130
10 72.8 ±11.2 70.9 ±10.9 55.2 ± 5.8 60.9 ±10.7 60.7 ± 7.5 55.8 ± 5.8 60.1 ± 7.0 61.2 ± 4.8

0.50 ( 1) 0.42 ( 1) 0.31 0.31 0.85 ( 1) 0.13 0.30 0.26

30 84.2 ± 2.4 83.0 ± 2.9 71.2 ± 6.3 80.3 ± 5.1 74.4 ± 5.4 63.4 ± 6.5 63.7 ± 8.3 70.1 ± 6.3

0.38 ( 8) 0.31 ( 6) 0.20 0.22 0.60 ( 7) 0.05 0.18 0.15

50 84.5 ± 2.3 83.5 ± 2.5 80.4 ± 4.1 83.5 ± 2.7 77.4 ± 6.1 69.3 ± 6.5 69.4 ± 7.0 70.7 ± 8.5

0.31 (28) 0.26 (23) 0.17 0.20 0.48 (27) 0.04 0.15 0.11

70 85.7 ± 1.4 85.3 ± 1.6 83.0 ± 2.9 85.4 ± 1.8 82.3 ± 3.0 73.1 ± 5.8 75.7 ± 6.0 71.0 ±10.0

0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51) 0.03 0.13 0.10

90 86.6 ± 1.3 86.4 ± 1.5 84.5 ± 2.1 86.2 ± 1.6 82.8 ± 2.6 77.7 ± 5.1 74.6 ± 7.6 70.0 ±11.5

0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85) 0.02 0.12 0.09

Table 8.3: Religion vs. Atheism

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1000
10 96.2 ± 2.7 90.6 ±14.0 58.2 ±17.6 59.4 ±18.9 85.4 ±11.5 78.7 ±14.3 85.1 ± 5.7 85.7 ± 4.8

0.87 ( 2) 0.66 ( 1) 0.43 0.53 0.95 ( 1) 0.38 0.26 0.30

20 96.4 ± 2.8 93.9 ± 8.7 87.0 ±16.0 83.2 ±19.8 94.5 ± 1.6 90.4 ± 4.6 86.0 ± 9.4 90.9 ± 3.7

0.87 ( 3) 0.64 ( 4) 0.38 0.50 0.90 ( 3) 0.33 0.22 0.25

30 98.2 ± 2.1 97.2 ± 2.5 98.1 ± 2.2 98.1 ± 2.7 96.4 ± 2.1 93.6 ± 3.1 89.6 ± 5.9 92.9 ± 2.8

0.84 ( 8) 0.61 ( 7) 0.35 0.47 0.86 ( 6) 0.30 0.17 0.24

40 98.3 ± 1.9 96.5 ± 2.4 98.9 ± 1.8 99.1 ± 1.4 96.3 ± 2.3 94.0 ± 2.7 91.6 ± 6.3 94.9 ± 2.0

0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21

50 98.4 ± 1.9 95.6 ± 9.0 99.4 ± 0.5 99.6 ± 0.3 96.6 ± 2.3 96.1 ± 2.4 93.0 ± 3.6 95.8 ± 2.3

0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20

Table 8.4: One vs. Two
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semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1500
10 69.6 ± 6.5 68.8 ± 6.1 65.5 ± 8.9 68.4 ± 8.5 55.7 ± 4.4 65.0 ± 7.0 63.1 ± 6.9 65.4 ± 6.5

0.45 ( 1) 0.41 ( 1) 0.32 0.34 0.86 ( 1) 0.23 0.25 0.27

30 82.4 ± 4.1 82.0 ± 4.0 79.6 ± 4.1 83.0 ± 4.2 67.2 ± 5.0 77.7 ± 3.5 72.4 ± 6.1 76.5 ± 5.1

0.32 ( 6) 0.28 ( 6) 0.21 0.23 0.56 ( 6) 0.10 0.11 0.16

50 87.6 ± 3.5 87.5 ± 3.4 85.9 ± 3.8 89.1 ± 2.7 76.0 ± 5.3 81.8 ± 2.7 74.4 ± 9.2 81.3 ± 3.1

0.29 (24) 0.26 (25) 0.19 0.21 0.45 (26) 0.07 0.09 0.12

70 89.2 ± 2.6 89.0 ± 2.7 89.0 ± 1.9 90.3 ± 2.8 80.9 ± 4.4 84.4 ± 2.0 73.6 ±10.0 83.8 ± 2.8

0.27 (65) 0.24 (50) 0.17 0.20 0.39 (51) 0.06 0.07 0.12

90 91.5 ± 1.5 91.4 ± 1.6 90.5 ± 1.4 91.9 ± 1.7 85.4 ± 3.1 86.1 ± 1.8 66.1 ±14.8 85.5 ± 1.6

0.26 (94) 0.23 (97) 0.16 0.19 0.36 (88) 0.05 0.07 0.11

Table 8.5: Odd vs. Even

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 2000
50 76.6 ± 4.3 71.5 ± 5.0 41.4 ± 6.8 49.8 ± 6.3 70.3 ± 5.2 57.0 ± 4.0 50.2 ± 9.0 66.3 ± 3.7

0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25

100 84.8 ± 2.6 83.4 ± 2.6 63.7 ± 3.5 72.5 ± 3.3 80.7 ± 2.6 69.4 ± 1.9 56.0 ± 7.8 77.2 ± 2.3

0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100) -0.64 -0.52 -0.29

150 86.5 ± 1.7 86.4 ± 1.3 75.1 ± 3.0 80.4 ± 2.1 84.5 ± 1.9 75.2 ± 1.4 56.2 ± 7.2 81.4 ± 2.2

0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244) -0.66 -0.53 -0.31

200 88.1 ± 1.3 88.0 ± 1.3 80.4 ± 2.5 84.4 ± 1.6 86.0 ± 1.5 78.3 ± 1.3 60.8 ± 7.3 84.3 ± 1.7

0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523) -0.65 -0.54 -0.33

250 89.1 ± 1.1 89.3 ± 1.0 84.6 ± 1.4 87.2 ± 1.3 87.2 ± 1.3 80.4 ± 1.4 61.3 ± 7.6 85.7 ± 1.3

0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706) -0.65 -0.54 -0.33

Table 8.6: Ten Digits (10 classes)

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 30
50 56.0 ± 3.5 42.0 ± 5.2 41.2 ± 2.9 29.0 ± 2.7 50.1 ± 3.7 28.7 ± 2.0 30.0 ± 2.7 23.7 ± 2.4

0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65

100 64.6 ± 2.1 59.0 ± 3.6 58.5 ± 2.9 47.4 ± 2.7 63.2 ± 1.9 46.3 ± 2.4 46.6 ± 2.7 42.0 ± 2.9

0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102) -0.90 -0.82 -0.69

150 67.6 ± 2.6 65.2 ± 3.0 65.4 ± 2.6 57.2 ± 2.7 67.9 ± 2.5 57.6 ± 1.5 57.3 ± 1.8 53.8 ± 2.2

0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221) -0.90 -0.83 -0.70

200 71.0 ± 1.8 70.9 ± 2.3 70.6 ± 1.9 64.8 ± 2.1 72.3 ± 1.7 63.9 ± 1.6 64.2 ± 2.0 60.5 ± 1.6

0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423) -0.91 -0.83 -0.72

250 71.8 ± 2.3 73.6 ± 1.5 73.7 ± 1.2 69.8 ± 1.5 74.2 ± 1.5 68.8 ± 1.5 69.5 ± 1.7 66.2 ± 1.4

0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665) -0.91 -0.84 -0.72

Table 8.7: ISOLET (26 classes)



8.5. EXPERIMENTS 67

sults, we perform paired t-test on test accuracy. We highlight the best accuracy

in each row, and those that cannot be determined as different from the best, with

paired t-test at significance level 0.05. The semi-supervised kernels tend to out-

perform standard supervised kernels. The improved order constrained kernels are

consistently among the best. Figure 8.3 shows the spectral transformation µi of

the semi-supervised kernels for different tasks. These are for the 30 trials with the

largest labeled set size in each task. The x-axis is in increasing order of λi (the

original eigenvalues of the Laplacian). The mean (thick lines) and ±1 standard de-

viation (dotted lines) of only the top 50 µi’s are plotted for clarity. The µi values are

scaled vertically for easy comparison among kernels. As expected the maximal-

alignment kernels’ spectral transformation is zigzagged, diffusion and Gaussian

field’s are very smooth, while order constrained kernels’ are in between. The or-

der constrained kernels (green) have large µ1 because of the order constraint. This

seems to be disadvantageous — the spectral transformation tries to balance it out

by increasing the value of other µi’s so that the constant K1’s relative influence is

smaller. On the other hand the improved order constrained kernels (black) allow

µ1 to be small. As a result the rest µi’s decay fast, which is desirable.

In conclusion, the method is both computationally feasible and results in im-

provements to classification performance when used with support vector machines.
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Figure 8.3: Spectral transformation of the 5 semi-supervised kernels.



Chapter 9

Sequences and Beyond

So far, we have treated each data point individually. However in many problems

the data has complex structures. For example in speech recognition the data is se-

quential. Most semi-supervised learning methods have not addressed this problem.

We use sequential data as an example in the following discussion because it is sim-

ple. Nevertheless the discussion applies to other complex data structures like grids,

trees etc.

It is important to clarify the setting. By sequential data we do not mean each

data item x is a sequence and we give a single label y to the whole sequence.

Instead we want to give individual labels to the constituent data points in the se-

quence.

There are generative and discriminative methods that can be used for semi-

supervised learning on sequences.

The Hidden Markov Model (HMM) is such a generative methods. Specifi-

cally the standard EM training with forward-backward algorithm (also known as

Baum-Welch (Rabiner, 1989)) is a sequence semi-supervised learning algorithm,

although it is usually not presented that way. The training data typically consists

of a small labeled set with l labeled sequences {XL, YL} = {(x1,y1) . . . (xl,yl)},
and a much larger unlabeled set of sequences XU = {xl+1 . . .xl+u}. We use

bold font xi to represent the i-th sequence with length mi, whose elements are

xi1 . . . ximi
. Similarly yi is a sequence of labels yi1 . . . yimi

. The labeled set is

used to estimate initial HMM parameters. The unlabeled data is then used to run

the EM algorithm on, to improve the HMM likelihood P (XU ) to a local maxi-

mum. The trained HMM parameters thus are determined by both the labeled and

unlabeled sequences. This parallels the mixture models and EM algorithm in the

i.i.d. case. We will not discuss it further in the thesis.

For discriminative methods one strategy is to use a kernel machine for se-

69
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quences, and introduce semi-supervised dependency via the kernels in Chapter 8.

Recent kernel machines for sequences and other complex structures include Ker-

nel Conditional Random Fields (KCRFs) (Lafferty et al., 2004) and Max-Margin

Markov Networks (Taskar et al., 2003), which are generalization of logistic re-

gression and support vector machines respectively to structured data. These kernel

machines by themselves are not designed specifically for semi-supervised learn-

ing. However we can use a semi-supervised kernel, for example the graph kernels

in Chapter 8, with the kernel machines. This results in semi-supervised learning

methods on sequential data.

The idea is straightforward. The remainder of the chapter focuses on KCRFs,

describing the formalism and training issues, with a synthetic example on semi-

supervised learning.

9.1 Cliques and Two Graphs

Before we start, it is useful to distinguish two kinds of graphs in KCRF for semi-

supervised learning. The first graph (gs) represents the conditional random field

structure, for example a linear chain graph for sequences. In this case the size of

gs is the length of the sequence. In general let x be the features on gs’s nodes and

y the labels. A clique c is a subset of the nodes which is fully connected, with

any pair of nodes joined by an edge. Let yc be the labels on the clique. We want

Mercer kernels K to compare cliques in different graphs,

K((gs,x, c,yc), (g
′
s,x

′, c′,y′
c′)) ∈ R (9.1)

Intuitively, this assigns a measure of similarity between a labeled clique in one

graph and a labeled clique in a (possibly) different graph. We denote by HK the

associated reproducing kernel Hilbert space, and by ‖·‖K the associated norm.

In the context of semi-supervised learning, we are interested in kernels with

the special form:

K((gs,x, c,yc), (g
′
s,x

′, c′,y′
c′)) = ψ

(
K ′(xc,x

′
c),gs,yc,g

′
s,y

′
c′
)

(9.2)

i.e. some function ψ of a kernel K ′, where K ′ depends only on the features, not

the labels. This is where the second graph (denoted gk) comes in. gk is the semi-

supervised graph discussed in previous chapters. Its nodes are the cliques xc in

both labeled and unlabeled data, and edges represent similarity between the cliques.

The size of gk is the total number of cliques in the whole dataset. It however

does not represent the sequence structure. gk is used to derive the Laplacian and

ultimately the kernel matrix K ′(xc,x
′
c), as in Chapter 8.
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9.2 Representer Theorem for KCRFs

We start from a function f which, looking at a clique (c) in graph (gs,x) and an

arbitrary labeling of the clique (yc), computes a ‘compatibility’ score. That is,

f(gs,x, c,yc)→ R. We define a conditional random field

p(y|gs,x) = Z−1(gs,x, f) exp

(
∑

c

f(gs,x, c,yc)

)
(9.3)

The normalization factor is

Z(gs,x, f) =
∑

y′

exp

(
∑

c

f(gs,x, c,y
′
c)

)
(9.4)

Notice we sum over all possible labelings of all cliques. The conditional random

field induces a loss function, the negative log loss

φ(y|gs,x, f) (9.5)

= − log p(y|gs,x) (9.6)

= −
∑

c

f(gs,x, c,yc) + log
∑

y′

exp

(
∑

c

f(gs,x, c,y
′
c)

)
(9.7)

We now extend the standard “representer theorem” of kernel machines (Kimel-

dorf & Wahba, 1971) to conditional graphical models. Consider a regularized loss

function (i.e. risk) of the form

Rφ(f) =
l∑

i=1

φ
(
y(i)|g(i)

s ,x(i), f
)

+ Ω(‖f‖K) (9.8)

on a labeled training set of size l. Ω is a strictly increasing function. It is important

to note that the risk depends on all possible assignments yc of labels to each clique,

not just those observed in the labeled data y(i). This is due to the normalization

factor in the negative log loss. We have the following representer theorem for

KCRFs:

Proposition (Representer theorem for CRFs). The minimizer f⋆ of the risk

(9.8), if it exists, has the form

f⋆(gs,x, c,yc) =
l∑

i=1

∑

c′

∑

y′

α
(i)
c′ (y′)K((g(i)

s ,x(i), c′,y′), (gs,x, c,yc)) (9.9)
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where the sum y′ is over all labelings of clique c′. The key property distinguish-

ing this result from the standard representer theorem is that the “dual parameters”

α
(i)
c′ (y′) now depend on all assignments of labels. That is, for each training graph

i, and each clique c′ within the graph, and each labeling y′ of the clique, not just

the labeling in the training data, there is a dual parameter α.

The difference between KCRFs and the earlier non-kernel version of CRFs is

the representation of f . In a standard non-kernel CRF, f is represented as a sum of

weights times feature functions

f(gs,x, c,yc) = Λ⊤Φ(gs,x, c,yc) (9.10)

where Λ is a vector of weights (the “primal parameters”), and Φ is a set of fixed

feature functions. Standard CRF learning finds the optimal Λ. Therefore one ad-

vantage of KCRFs is the use of kernels which can correspond to infinite features.

In addition if we plug in a semi-supervised learning kernel to KCRFs, we obtain a

semi-supervised learning algorithm on structured data.

Let us look at two special cases of KCRF. In the first case let the cliques be the

vertices v, and with a special kernel

K((gs,x, v,yv), (g
′
s,x

′, v′,y′
v′)) = K ′(xv, x

′
v′)δ(yv, y

′
v′) (9.11)

The representer theorem states that

f⋆(x, y) =

l∑

i=1

∑

v∈g
(i)
s

α(i)
v (y)K ′(x, x(i)

v ) (9.12)

Under the probabilistic model 9.3, this is simply kernel logistic regression. It has

no ability to model sequences.

In the second case let the cliques be edges connecting two vertices v1, v2. Let

the kernel be

K((gs,x, v1v2, yv1yv2), (g
′
s,x

′, v′1v
′
2, y

′
v1
y′v2

)) (9.13)

= K ′(xv1 , x
′
v1

)δ(yv1 , y
′
v1

) + δ(yv1 , y
′
v1

)δ(yv2 , y
′
v2

) (9.14)

and we have

f⋆(xv1 , yv1yv2) =
l∑

i=1

∑

u∈g
(i)
s

α(i)
u (yv1)K

′(xv1 , x
(i)
u ) + α(yv1 , yv2) (9.15)

which is a simple type of semiparametric CRF. It has rudimentary ability to model

sequences with α(yv1 , yv2), similar to a transition matrix between states. In both

cases, we can use a graph kernel K ′ on both labeled and unlabeled data for semi-

supervised learning.
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9.3 Sparse Training: Clique Selection

The representer theorem shows that the minimizing function f is supported by la-

beled cliques over the training examples; however, this may result in an extremely

large number of parameters. We therefore pursue a strategy of incrementally select-

ing cliques in order to greedily reduce the risk. The resulting procedure is parallel

to forward stepwise logistic regression, and to related methods for kernel logistic

regression (Zhu & Hastie, 2001).

Our algorithm will maintain an active set
{

(g
(i)
s ,x(i), c,yc)

}
, each item uniquely

specifies a labeled clique. Again notice the labelings yc are not necessarily those

appearing in the training data. Each labeled clique can be represented by a ba-

sis function h(·) = K((g
(i)
s ,x(i), c,yc), ·) ∈ HK , and is assigned a parameter

αh = α
(i)
c (yc). We work with the regularized risk

Rφ(f) =
l∑

i=1

φ
(
y(i)|g(i)

s ,x(i), f
)

+
λ

2
‖f‖2K (9.16)

where φ is the negative log loss of equation (9.5). To evaluate a candidate h, one

strategy is to compute the gain supαRφ(f) − Rφ(f + αh), and to choose the

candidate h having the largest gain. This presents an apparent difficulty, since the

optimal parameter α cannot be computed in closed form, and must be evaluated nu-

merically. For sequence models this would involve forward-backward calculations

for each candidate h, the cost of which is prohibitive.

As an alternative, we adopt the functional gradient descent approach, which

evaluates a small change to the current function. For a given candidate h, consider

adding h to the current model with small weight ε; thus f 7→ f + εh. Then

Rφ(f + εh) = Rφ(f) + εdRφ(f, h) + O(ε2), where the functional derivative of

Rφ at f in the direction h is computed as

dRφ(f, h) = Ef [h]− Ẽ[h] + λ〈f, h〉K (9.17)

where Ẽ[h] =
∑

i

∑
c h(g

(i)
s ,x(i), c,y

(i)
c ) is the empirical expectation andEf [h] =∑

i

∑
y

∑
c p(y|x(i), f)h(g

(i)
s ,x(i), c,yc) is the model expectation conditioned on

x. The idea is that in directions h where the functional gradient dRφ(f, h) is large,

the model is mismatched with the labeled data; this direction should be added to the

model to make a correction. This results in the greedy clique selection algorithm,

as summarized in Figure 9.1.

An alternative to the functional gradient descent algorithm above is to estimate

parameters αh for each candidate. When each candidate clique is a vertex, the
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Initialize with f = 0, and iterate:

1. For each candidate h ∈ HK , supported by a single labeled

clique, calculate the functional derivative dRφ(f, h).

2. Select the candidate h = arg maxh|dRφ(f, h)| having the largest

gradient direction. Set f 7→ f + αhh.

3. Estimate parameters αf for each active f by minimizing Rφ(f).

Figure 9.1: Greedy Clique Selection. Labeled cliques encode basis functions h
which are greedily added to the model, using a form of functional gradient descent.
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Figure 9.2: Left: The galaxy data is comprised of two interlocking spirals together

with a “dense core” of samples from both classes. Center: Kernel logistic regres-

sion comparing two kernels, RBF and a graph kernel using the unlabeled data.

Right: Kernel conditional random fields, which take into account the sequential

structure of the data.

gain can be efficiently approximated using a mean field approximation. Under this

approximation, a candidate is evaluated according to the approximate gain

Rφ(f)−Rφ(f + αh) (9.18)

≈
∑

i

∑

v

Z(f,x(i))−1p(y(i)
v |x(i), f) exp(αh(x(i),y(i)

v )) + λ〈f, h〉(9.19)

which is a logistic approximation. Details can be found in Appendix E.

9.4 Synthetic Data Experiments

In the experiments reported below for sequences, the marginal probabilities p(yv =
1|x) and expected counts for the state transitions are required; these are computed
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using the forward-backward algorithm, with log domain arithmetic to avoid un-

derflow. A quasi-Newton method (BFGS, cubic-polynomial line search) is used to

estimate the parameters in step 3 of Figure 9.1.

To work with a data set that will distinguish a semi-supervised graph kernel

from a standard kernel, and a sequence model from a non-sequence model, we

prepared a synthetic data set (“galaxy”) that is a variant of spirals, see Figure 9.2

(left). Note data in the dense core come from both classes.

We sample 100 sequences of length 20 according to an HMM with two states,

where each state emits instances uniformly from one of the classes. There is a 90%

chance of staying in the same state, and the initial state is uniformly chosen. The

idea is that under a sequence model we should be able to use the context to deter-

mine the class of an example at the core. However, under a non-sequence model

without the context, the core region will be indistinguishable, and the dataset as a

whole will have about 20% Bayes error rate. Note the choice of semi-supervised

vs. standard kernels and sequence vs. non-sequence models are orthogonal; the

four combinations are all tested on.

We construct the semi-supervised graph kernel by first building an unweighted

10-nearest neighbor graph. We compute the associated graph Laplacian ∆, and

then the graph kernel K = 10
(
∆ + 10−6I

)−1
. The standard kernel is the radial

basis function (RBF) kernel with an optimal bandwidth σ = 0.35.

First we apply both kernels to a non-sequence model: kernel logistic regression

(9.12), see Figure 9.2 (center). The sequence structure is ignored. Ten random

trials were performed with each training set size, which ranges from 20 to 400

points. The error intervals are one standard error. As expected, when the labeled

set size is small, the RBF kernel results in significantly larger test error than the

graph kernel. Furthermore, both kernels saturate at the 20% Bayes error rate.

Next we apply both kernels to a KCRF sequence model 9.15. Experimental

results are shown in Figure 9.2 (right). Note the x-axis is the number of train-

ing sequences: Since each sequence has 20 instances, the range is the same as

Figure 9.2 (center). The kernel CRF is capable of getting below the 20% Bayes

error rate of the non-sequence model, with both kernels and sufficient labeled data.

However the graph kernel is able to learn the structure much faster than the RBF

kernel. Evidently the high error rate for small label data sizes prevents the RBF

model from effectively using the context.

Finally we examine clique selection in KCRFs. For this experiment we use 50

training sequences. We use the mean field approximation and only select vertex

cliques. At each iteration the selection is based on the estimated change in risk for

each candidate vertex (training position). We plot the estimated change in risk for

the first four iterations of clique selection, with the graph kernel and RBF kernel re-
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spectively in Figure 9.3. Smaller values (lower on z-axis) indicate good candidates

with potentially large reduction in risk if selected. For the graph kernel, the first

two selected vertices are sufficient to reduce the risk essentially to the minimum

(note in the third iteration the z-axis scale is already 10−6). Such reduction does

not happen with the RBF kernel.
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Figure 9.3: Mean field estimate of the change in loss function with the graph kernel

(top) and the RBF kernel (bottom) for the first four iterations of clique selection on

the galaxy dataset. For the graph kernel the endpoints of the spirals are chosen as

the first two cliques.
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Chapter 10

Harmonic Mixtures: Handling

Unseen Data and Reducing

Computation

There are two important questions to graph based semi-supervised learning meth-

ods:

1. The graph is constructed only on the labeled and unlabeled data. Many such

methods are transductive in nature. How can we handle unseen new data

points?

2. They often involve expensive manipulation on large matrices, for example

matrix inversion, which can be O(n3). Because unlabeled data is relatively

easy to obtain in large quantity, the matrix could be too big to handle. How

can we reduce computation when the unlabeled dataset is large?

In this chapter we address these questions by combining graph method with a mix-

ture model.

Mixture model has long been used for semi-supervised learning, e.g. Gaussian

mixture model (GMM) (Castelli & Cover, 1996) (Ratsaby & Venkatesh, 1995), and

mixture of multinomial (Nigam et al., 2000). Training is typically done with the

EM algorithm. It has several advantages: The model is inductive and handles un-

seen points naturally; It is a parametric model with a small number of parameters.

However when there is underlying manifold structure in the data, EM may have

difficulty making the labels follow the manifold: An example is given in Figure

10.1. The desired behavior is shown in Figure 10.2, which can be achieved by the

harmonic mixture method discussed in this Chapter.

79
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Mixture models and graph based semi-supervised learning methods make dif-

ferent assumptions about the relation between unlabeled data and labels. Neverthe-

less, they are not mutually exclusive. It is possible that the data fits the component

model (e.g. Gaussian) locally, while the manifold structure appears globally. We

combine the best from both. From a graph method point of view, the resulting

model is a much smaller (thus computationally less expensive) ‘backbone graph’

with ‘supernodes’ induced by the mixture components; From a mixture model

point of view, it is still inductive and naturally handles new points, but also has the

ability for labels to follow the data manifold. Our approach is related to graph reg-

ularization in (Belkin et al., 2004b), and is an alternative to the induction method in

(Delalleau et al., 2005). It should be noted that we are interested in mixture models

with a large number (possibly more than the number of labeled points) of compo-

nents, so that the manifold structure can appear, which is different from previous

works.

10.1 Review of Mixture Models and the EM Algorithm

In typical mixture models for classification, the generative process is the follow-

ing. One first picks a class y, then chooses a mixture component m ∈ {1 . . .M}
by p(m|y), and finally generates a point x according to p(x|m). Thus p(x, y) =∑M

m=1 p(y)p(m|y)p(x|m). In this paper we take a different but equivalent param-

eterization,

p(x, y) =
M∑

m=1

p(m)p(y|m)p(x|m) (10.1)

We allow p(y|m) > 0 for all y, enabling classes to share a mixture component.

The standard EM algorithm learns these parameters to maximize the log like-

lihood of observed data:

L(Θ) = log p(xL, xU , yL|Θ) (10.2)

=
∑

i∈L

log p(xi, yi|Θ) +
∑

i∈U

log p(xi|Θ)

=
∑

i∈L

log
M∑

m=1

p(m)p(yi|m)p(xi|m) +
∑

i∈U

log
M∑

m=1

p(m)p(xi|m)

We introduce arbitrary distributions qi(m|i) on mixture membership, one for each
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i. By Jensen’s inequality

L(Θ) =
∑

i∈L

log
M∑

m=1

qi(m|xi, yi)
p(m)p(yi|m)p(xi|m)

qi(m|xi, yi)
(10.3)

+
∑

i∈U

log
M∑

m=1

qi(m|xi)
p(m)p(xi|m)

qi(m|xi)

≥
∑

i∈L

M∑

m=1

qi(m|xi, yi) log
p(m)p(yi|m)p(xi|m)

qi(m|xi, yi)
(10.4)

+
∑

i∈U

M∑

m=1

qi(m|xi) log
p(m)p(xi|m)

qi(m|xi)

≡ F(q,Θ) (10.5)

The EM algorithm works by iterating coordinate-wise ascend on q and Θ to max-

imize F(q,Θ). The E step fixes Θ and finds the q that maximizes F(q,Θ). We

denote the fixed Θ at iteration t by p(m)(t), p(y|m)(t) and p(x|m)(t). Since the

terms of F has the form of KL divergence, it is easy to see that the optimal q are

the posterior on m:

q
(t)
i (m|xi, yi) = p(m|xi, yi) =

p(m)(t)p(yi|m)(t)p(xi|m)(t)
∑M

k=1 p(k)
(t)p(yi|k)(t)p(xi|k)(t)

, i ∈ L

q
(t)
i (m|xi) = p(m|xi) =

p(m)(t)p(xi|m)(t)
∑M

k=1 p(k)
(t)p(xi|k)(t)

, i ∈ U (10.6)

The M step fixes q(t) and finds Θ(t+1) to maximize F . Taking the partial deriva-

tives and set to zero, we find

p(m)(t+1) ∝
∑

i∈L∪U

qi(m)(t) (10.7)

θ(t+1)
m ≡ p(y = 1|m)(t+1) =

∑
i∈L, yi=1 qi(m)(t)
∑

i∈L qi(m)(t)
(10.8)

∑

i∈L∪U

qi(m)(t)
1

p(xi|m)

∂p(xi|m)

∂Θx
= 0 (10.9)

The last equation needs to be reduced further with the specific generative model
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for x, e.g. Gaussian or multinomial. For Gaussian, we have

µ(t+1)
m =

∑
i∈L∪U qi(m)(t)xi∑
i∈L∪U qi(m)(t)

(10.10)

Σ(t+1)
m =

∑
i∈L∪U qi(m)(t)(xi − µ(t)

m )(xi − µ(t)
m )⊤∑

i∈L∪U qi(m)(t)
(10.11)

In practice one can smooth the ML estimate of covariance to avoid degeneracy:

Σ(t+1)
m =

ǫI +
∑

i∈L∪U qi(m)(t)(xi − µ(t)
m )(xi − µ(t)

m )⊤

ǫ+
∑

i∈L∪U qi(m)(t)
(10.12)

After EM converges, the classification of a new point x is done by

p(y = 1|x) =
M∑

m=1

p(y = 1|m)p(m|x)

=

∑M
m=1 p(y = 1|m)p(x|m)p(m)
∑M

m=1 p(x|m)p(m)
(10.13)

10.2 Label Smoothness on the Graph

Graph-based semi-supervised learning methods enforce label smoothness over a

graph, so that neighboring labels tend to have the same label. The graph has n
nodes L ∪ U . Two nodes are connected by an edge with higher weights if they

are more likely to be in the same class. The graph is represented by the n × n
symmetric weight matrix W , and is assumed given.

Label smoothness can be expressed in different ways. We use the energy of the

label posterior as the measure,

E(f) =
1

2

n∑

i,j=1

wij (fi − fj)
2 = f⊤∆f (10.14)

where f is the label posterior vector, defined as

fi =

{
δ(yi, 1) i ∈ L

p(yi = 1|xi,Θ) i ∈ U (10.15)

That is, fi is the probability that point i having label 1 under the mixture model

Θ. The energy is small when f varies smoothly on the graph. ∆ = D − W
is the combinatorial Laplacian matrix, and D is the diagonal degree matrix with

Dii =
∑

j wij . See Chapter 4 for more details. Other smoothness measures are

possible too, for example those derived from the normalized Laplacian (Zhou et al.,

2004a) or spectral transforms (Zhu et al., 2005).
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10.3 Combining Mixture Model and Graph

We want to train a mixture model that maximizes the data log likelihood (10.3) and

minimizes the graph energy (10.14) at the same time. One way of doing so is to

learn the parameters p(m), p(x|m), p(y|m) to maximize the objective

O = αL − (1− α)E (10.16)

where α ∈ [0, 1] is a coefficient that controls the relative strength of the two terms.

The E term may look like a prior e−f⊤∆f on the parameters. But it involves the

observed labels yL, and is best described as a discriminative objective, while L
is a generative objective. This is closely related to, but different from, the graph

regularization framework of (Belkin et al., 2004b). Learning all the parameters

together however is difficult. Because of the E term, it is similar to conditional

EM training which is more complicated than the standard EM algorithm. Instead

we take a two-step approach:

• Step 1: Train all parameters p(m), p(x|m), p(y|m) with standard EM, which

maximizes L only;

• Step 2: Fix p(m) and p(x|m), and only learn p(y|m) to maximize (10.16).

It is suboptimal in terms of optimizing the objective function. However it has two

advantages: We created a concave optimization problem in the second step (see

section 10.3.2); Moreover, we can use standard EM without modification. We call

the solution harmonic mixtures.

We focus on step 2. The free parameters are p(y|m) for m = 1 . . .M . To sim-

plify the notation, we use the shorthand θm ≡ p(y = 1|m), and θ ≡ (θ1, . . . , θM )⊤.

We first look at the special case with α = 0 in the objective function (10.16), as it

has a particularly simple closed form solution and interpretation. Notice although

α = 0, the generative objective L still influences θ through p(m) and p(x|m)
learned in step 1.

10.3.1 The Special Case with α = 0

We need to find the parameters θ that minimize E. θ are constrained in [0, 1]M .

However let us look at the unconstrained optimization problem first. Applying the

chain rule:

∂E

∂θm
= 〈 ∂E

∂fU
,
∂fU

∂θm
〉 (10.17)
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The first term is

∂E

∂fU
=

∂

∂fU
(f⊤∆f) (10.18)

=
∂

∂fU
(f⊤

L ∆LLfL + 2f⊤
L ∆LUfU + f⊤

U ∆UUfU ) (10.19)

= 2∆LUfL + 2∆UUfU (10.20)

where we partitioned the Laplacian matrix into labeled and unlabeled parts respec-

tively. The second term is

∂fU

∂θm
= (p(m|xl+1), . . . , p(m|xl+u))⊤ ≡ Rm (10.21)

where we defined a u×M responsibility matrix R such that Rim = p(m|xi), and

Rm is its m-th column. We used the fact that for i ∈ U ,

fi = p(yi = 1|xi,Θ) (10.22)

=

∑
m p(m)p(yi = 1|m)p(xi|m)∑

m p(m)p(xi|m)
(10.23)

=
∑

m

p(m|xi)p(yi = 1|m) (10.24)

=
∑

m

p(m|xi)θm (10.25)

Notice we can write fU = Rθ. Therefore

∂E

∂θm
= R⊤

m (2∆UUfU + 2∆ULfL) (10.26)

= R⊤
m (2∆UURθ + 2∆ULfL) (10.27)

When we put all M partial derivatives in a vector and set them to zero, we find

∂E

∂θ
= R⊤ (2∆UURθ + 2∆ULfL) = 0 (10.28)

where 0 is the zero vector of length M . This is a linear system and the solution is

θ = − (R⊤∆UUR)
−1

R⊤∆ULfL (10.29)

Notice this is the solution to the unconstrained problem, where some θ might be

out of the bound [0, 1]. If it happens, we set out-of-bound θ’s to their corresponding

boundary values of 0 or 1, and use them as starting point in a constrained convex
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optimization (the problem is convex, as shown in the next section) to find the global

solution. In practice however we found most of the time the closed form solution

for the unconstrained problem is already within bounds. Even when some compo-

nents are out of bounds, the solution is close enough to the constrained optimum

to allow quick convergence.

With the component class membership θ, the soft labels for the unlabeled data

are given by

fU = −Rθ (10.30)

Unseen new points can be classified similarly.

We can compare (10.29) with the (completely graph based) harmonic function

solution (Zhu et al., 2003a). The former is fU = −R (R⊤∆UUR)−1
R⊤∆ULfL;

The latter is fU = −∆−1
UU∆ULfL. Computationally the former only needs to invert

a M ×M matrix, which is much cheaper than the latter of u× u because typically

the number of mixture components is much smaller than the number of unlabeled

points. This reduction is possible because fU are now tied together by the mixture

model.

In the special case where R corresponds to hard clustering, we just created a

much smaller backbone graph with supernodes induced by the mixture compo-

nents. In this case Rim = 1 for cluster m to which point i belongs, and 0 for all

other M − 1 clusters. The backbone graph has the same L labeled nodes as in the

original graph, but only M unlabeled supernodes. Let wij be the weight between

nodes i, j in the original graph. By rearranging the terms it is not hard to show that

in the backbone graph, the equivalent weight between supernodes s, t ∈ {1 . . .M}
is

w̃st =
∑

i,j∈U

RisRjtwij (10.31)

and the equivalent weight between a supernode s and a labeled node l ∈ L is

w̃sl =
∑

i∈U

Riswil (10.32)

θ is simply the harmonic function on the supernodes in the backbone graph. For

this reason θ ∈ [0, 1]M is guaranteed. Let c(m) = {i|Rim = 1} be the cluster m.

The equivalent weight between supernodes s, t reduces to

w̃st =
∑

i∈c(s), j∈c(t)

wij (10.33)

The supernodes are the clusters themselves. The equivalent weights are the sum

of edges between the clusters (or the cluster and a labeled node). One can easily
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Input: initial mixture model p(m), p(x|m), p(y|m),m = 1 . . .M
data xL, yL, xU

graph Laplacian ∆
1. Run standard EM on data and get converged model p(m), p(x|m), p(y|m)

2. Fix p(m), p(x|m). Compute θm ≡ p(y = 1|m) = − (R⊤∆UUR)−1
R⊤∆ULfL

3. Set out-of-bound θ’s to 0 or 1, run constrained convex optimization

Output: mixture model p(m), p(x|m), p(y|m),m = 1 . . .M

Table 10.1: The harmonic mixture algorithm for the special case α = 0

create such a backbone graph by e.g. k-means clustering. In the general case when

R is soft, the solution deviates from that of the backbone graph.

The above algorithm is listed in Table 10.1. In practice some mixture compo-

nents may have little or no responsibility (p(m) ≈ 0). They should be excluded

from (10.29) to avoid numerical problems. In addition, if R is rank deficient we

use the pseudo inverse in (10.29).

10.3.2 The General Case with α > 0

The objective (10.16) is concave in θ. To see this, we first write L as

L(Θ) =
∑

i∈L

log
M∑

m=1

p(m)p(yi|m)p(xi|m) + const (10.34)

=
∑

i∈L

yi=1

log
M∑

m=1

p(m)p(xi|m)θm +
∑

i∈L

yi=−1

log
M∑

m=1

p(m)p(xi|m)(1− θm) + const

Since we fix p(m) and p(x|m), the term within the first sum has the form log
∑

m amθm.

We can directly verify the Hessian

H =

[
∂ log

∑
m amθm

∂θi∂θj

]
= − 1

(
∑

m amθm)2
aa⊤ � 0 (10.35)

is negative semi-definite. Therefore the first term (i ∈ L and yi = 1) is concave.

Similarly the Hessian for the second term is

H =

[
∂ log

∑
m am(1− θm)

∂θi∂θj

]
= − aa⊤

(
∑

m am(1− θm))2
� 0 (10.36)



10.4. EXPERIMENTS 87

L is the non-negative sum of concave terms and is concave. Recall fU = Rθ, the

graph energy can be written as

E = f⊤∆f (10.37)

= f⊤
L ∆LLfL + 2f⊤

L ∆LUfU + f⊤
U ∆UUfU (10.38)

= f⊤
L ∆LLfL + 2f⊤

L ∆LURθ + θ⊤R⊤∆UURθ (10.39)

The Hessian is 2R⊤∆UUR � 0 because ∆UU � 0. Therefore E is convex in θ.

Putting them together, O is concave in θ.

As θm is in [0, 1], we perform constrained convex optimization in the general

case with α > 0. The gradient of the objective is easily computed:

∂O
∂θm

= α
∂L
∂θm

− (1− α)
∂E

∂θm
(10.40)

∂L
∂θm

(10.41)

=
∑

i∈L

yi=1

p(m)p(xi|m)
∑M

k=1 p(k)p(xi|k)θk

−
∑

i∈L

yi=−1

p(m)p(xi|m)
∑M

k=1 p(k)p(xi|k)(1− θk)
(10.42)

and ∂E/∂θ was given in (10.28). One can also use the sigmoid function to trans-

form it into an unconstrained optimization problem with

θm = σ(γm) =
1

e−γm + 1
(10.43)

and optimize the γ’s.

Although the objective is concave, a good starting point for θ is still important

to reduce the computation time until convergence. We find a good initial value for

θ by solving an one-dimensional concave optimization problem first. We have two

parameters at hand: θem is the solution from the standard EM algorithm in step

1, and θspecial is the special case solution in section 10.3.1. We find the optimal

interpolated coefficient ǫ ∈ [0, 1]

θinit = ǫθem + (1− ǫ)θspecial (10.44)

that maximizes the objective (the optimal ǫ in general will not be α). Then we start

from θinit and use a quasi-Newton algorithm to find the global optimum for θ.
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(a) M = 2 Gaussian components (b) M = 36 Gaussian components

Figure 10.1: Gaussian mixture models learned with the standard EM algorithm

cannot make labels follow the manifold structure in an artificial dataset. Small dots

are unlabeled data. The two labeled points are marked with red + and green �.

The left panel has M = 2 and right M = 36 mixture components. Top plots show

the initial settings of the GMM. Bottom plots show the GMM after EM converges.

The ellipses are the contours of covariance matrices. The colored central dots

have sizes proportional to the component weight p(m). Components with very

small p(m) are not plotted. The color stands for component class membership

θm ≡ p(y = 1|m): red for θ = 1, green for θ = 0, and intermediate yellow for

values in between – which did not occur in the converged solutions. Notice in the

bottom-right plot, although the density p(x) is estimated well by EM, θ does not

follow the manifold.
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Figure 10.2: The GMM with the component class membership θ learned as in the

special case α = 0. θ, color coded from red to yellow and green, now follow the

structure of the unlabeled data.

10.4 Experiments

We test harmonic mixture on synthetic data, image and text classification. The

emphases are on how harmonic mixtures perform on unlabeled data compared to

EM or the harmonic function; how they handle unseen data; and whether they

can reduce the problem size. Unless otherwise noted, the harmonic mixtures are

computed with α = 0.

10.4.1 Synthetic Data

First we look at a synthetic dataset in Figure 10.1. It has a Swiss roll structure,

and we hope the labels can follow the spiral arms. There is one positive and one

negative labeled point, at roughly the opposite ends. We use u = 766 unlabeled

points and an additional 384 points as unseen test data.

The mixture model and standard EM. We start with Figure 10.1(a, top), the

initial setting for a Gaussian mixture model with M = 2 components. The initial

means are set by running a k-means algorithm. The initial covariances are identity,

thus the circles. The initial θ are all set to 0.5, represented by the yellow color. (a,

bottom) shows the GMM after EM converges. Obviously it is a bad model because

M is too small.

Next we consider a Gaussian mixture model (GMM) with M = 36 compo-
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nents, each with full covariance. Figure 10.1(b, top) shows the initial GMM and

(b, bottom) the converged GMM after running EM. The GMM models the manifold

density p(x) well. However the component class membership θm ≡ p(y = 1|m)
(red and green colors) does not follow the manifold. In fact θ takes the extreme

values of 0 or 1 along a somewhat linear boundary instead of following the spiral

arms, which is undesirable. The classification of data points will not follow the

manifold either.

The graph and harmonic mixtures. Next we combine the mixture model with

a graph to compute the harmonic mixtures, as in the special case α = 0. We

construct a fully connected graph on the L ∪ U data points with weighted edges

wij = exp
(
−||xi − xj ||2/0.01

)
. We then reestimate θ, which are shown in Figure

10.2. Note θ now follow the manifold as it changes from 0 (green) to approximately

0.5 (yellow) and finally 1 (red). This is the desired behavior.

The particular graph-based method we use needs extra care. The harmonic

function solution f is known to sometimes skew toward 0 or 1. This problem is

easily corrected if we know or have an estimate of the proportion of positive and

negative points, with the Class Mass Normalization heuristic (Zhu et al., 2003a).

In this paper we use a similar but simpler heuristic. Assuming the two classes are

about equal in size, we simply set the decision boundary at the median. That is, let

f(l + 1), . . . , f(n) be the soft label values on the unlabeled nodes. Let m(f) =
median(f(l + 1), . . . , f(n)). We classify point i as positive if f(i) > m(f), and

negative otherwise.

Sensitivity to M . If the number of mixture components M is too small, the GMM

is unable to model p(x) well, let alone θ. In other words, the harmonic mixture

is sensitive to M . M has to be larger than a certain threshold so that the man-

ifold structure can appear. In fact M may need to be larger than the number of

labeled points l, which is unusual in traditional mixture model methods for semi-

supervised learning. However onceM is over the threshold, further increase should

not dramatically change the solution. In the end the harmonic mixture may ap-

proach the harmonic function solution when M = u.

Figure 10.3(a) shows the classification accuracy on U as we change M . We

find that the threshold for harmonic mixtures is M = 35, at which point the ac-

curacy (‘HM’) jumps up and stabilizes thereafter. This is the number of mixture

components needed for harmonic mixture to capture the manifold structure. The

harmonic function on the complete graph (‘graph’) is not a mixture model and

appears flat. The EM algorithm (‘EM’) fails to discover the manifold structure

regardless of the number of mixtures M .

Computational savings. The harmonic mixtures perform almost as well as the

harmonic function on the complete graph, but with a much smaller problem size.

As Figure 10.3(a) shows, we only need to invert a 35 × 35 matrix instead of a
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766 × 766 one as required by the harmonic function solution. The difference can

be significant if the unlabeled set size is even larger. There is of course the overhead

of EM training.

Handling unseen data. Because the harmonic mixture model is a mixture model,

it naturally handles unseen points. On 384 new test points harmonic mixtures

perform similarly to Figure 10.3(a), with accuracies around 95.3% after M ≥ 35.

10.4.2 Image Recognition: Handwritten Digits

We use the ‘1vs2’ dataset which contains equal number of images of handwritten

digit of 1s and 2s. Each gray scale image is 8 × 8, which is represented by a 64

dimensional vector of pixel values. We use l+u = 1600 images as the labeled and

unlabeled set, and 600 additional images as unseen new data to test induction.

The mixture model. We use Gaussian mixture models. To avoid data sparse-

ness problem, we model each Gaussian component with a spherical covariance,

i.e. diagonal covariance matrix with the same variance in all dimensions. Different

components may have different variances. We set the initial means and variances

of the GMM with k-means algorithm before running EM.

The graph. We use a symmetrized 10-nearest-neighbor weighted graph on the

1600 images. That is, images i, j are connected if i is within j’s 10NN or vice

versa, as measured by Euclidean distance. The weights arewij = exp
(
−||xi − xj ||2/1402

)
.

Sensitivity to M . As illustrated in the synthetic data, the number of mixture com-

ponents M needs to be large enough for harmonic mixture to work. We vary M
and observe the classification accuracies on the unlabeled data with different meth-

ods. For each M we perform 20 trials with random L/U split and plot the mean

and standard deviation of classification accuracies in Figure 10.3(b). The exper-

iments were performed with labeled set size fixed at l = 10. We conclude that

harmonic mixtures need only M ≈ 100 components to match the performance of

the harmonic function method.

Computational savings. In terms of graph method computation, we invert a 100×
100 matrix instead of the original 1590× 1590 matrix for harmonic function. This

is good saving with little sacrifice in accuracy. We fix M = 100 in the experiments

that follow.

Handling unseen data. We systematically vary labeled set size l. For each l we

run 20 random trials. The classification accuracy on U (with 1600-l points) and

unseen data (600 points) are listed in Table 10.2. On U , harmonic mixtures (‘HM’)

achieve the same accuracy as harmonic function (‘graph’). Both are not sensitive to

l. The GMM trained with EM (‘EM’) also performs well when l is not too small,

but suffers otherwise. On the unseen test data, the harmonic mixtures maintain

high accuracy.
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The general case α > 0. We also vary the parameter α between 0 and 1, which

balances the generative and discriminative objectives. In our experiments α = 0
always gives the best accuracies.

10.4.3 Text Categorization: PC vs. Mac

We perform binary text classification on the two groups comp.sys.ibm.pc.hardware

vs. comp.sys.mac.hardware (982 and 961 documents respectively) in the 18828

version of the 20-newsgroups data. We use rainbow (McCallum, 1996) to prepro-

cess the data, with the default stopword list, no stemming, and keep words that

occur at least 5 times. We represent documents by tf.idf vectors with the Okapi

TF formula (Zhai, 2001), which was also used in (Zhu et al., 2003a). Of the 1943

documents, we use 1600 as L ∪ U and the rest as unseen test data.

The mixture model. We use multinomial mixture models (bag-of-words naive

Bayes model), treating tf.idf as ‘pseudo word counts’ of the documents. We found

this works better than using the raw word counts. We use k-means to initialize the

models.

The graph. We use a symmetrized 10NN weighted graph on the 1600 docu-

ments. The weight between documents u, v is wuv = exp (−(1− cuv)/0.03),
where cuv = 〈u, v〉/ (||u|| · ||v||) is the cosine between the tf.idf vectors u, v.

Sensitivity to M . The accuracy on U with different number of components M
is shown in Figure 10.3(c). l is fixed at 10. Qualitatively the performance of

harmonic mixtures increases when M > 400. From the plot it may look like the

‘graph’ curve varies with M , but this is an artifact as we used different randomly

sampledL,U splits for differentM . The error bars on harmonic mixtures are large.

We suspect the particular mixture model is bad for the task.

Computational savings. Unlike the previous tasks, we need a much larger M
around 600. We still have a smaller problem than the original u = 1590, but the

saving is limited.

Handling unseen data. We fixM = 600 and vary labeled set size l. For each l we

run 20 random trials. The classification accuracy on U (with 1600-l documents)

and unseen data (343 documents) are listed in Table 10.3. The harmonic mixture

model has lower accuracies than the harmonic function on the L ∪ U graph. The

harmonic mixture model performs similarly on U and on unseen data.

10.5 Related Work

Recently Delalleau et al. (2005) use a small random subset of the unlabeled data to

create a small graph. This is related to the Nyström method in spectral clustering
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l HM EM graph

on U :

2 98.7± 0.0 86.7± 5.7 98.7± 0.0
5 98.7± 0.0 90.1± 4.1 98.7± 0.1
10 98.7± 0.1 93.6± 2.4 98.7± 0.1
20 98.7± 0.2 96.0± 3.2 98.7± 0.2
30 98.7± 0.2 97.1± 1.9 98.8± 0.2

on unseen:

2 96.1± 0.1 87.1± 5.4 -

5 96.1± 0.1 89.8± 3.8 -

10 96.1± 0.1 93.2± 2.3 -

20 96.1± 0.1 95.1± 3.2 -

30 96.1± 0.1 96.8± 1.7 -

Table 10.2: Image classification 1 vs. 2: Accuracy on U and unseen data. M =
100. Each number is the mean and standard deviation of 20 trials.

l HM EM graph

on U :

2 75.9± 14.3 54.5± 6.2 84.6± 10.9
5 74.5± 16.6 53.7± 5.2 87.9± 3.9
10 84.5± 2.1 55.7± 6.5 89.5± 1.0
20 83.3± 7.1 59.5± 6.4 90.1± 1.0
40 85.7± 2.3 61.8± 6.1 90.3± 0.6

on unseen:

2 73.6± 13.0 53.5± 6.0 -

5 73.2± 15.2 52.3± 5.9 -

10 82.9± 2.9 55.7± 5.7 -

20 82.0± 6.5 58.9± 6.1 -

40 84.7± 3.3 60.4± 5.9 -

Table 10.3: Text classification PC vs. Mac: Accuracy on U and unseen data.

M = 600. Each number is the mean and standard deviation of 20 trials.
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(Fowlkes et al., 2004), and to the random ‘landmarks’ in dimensionality reduction

(Weinberger et al., 2005). Our method is different in that

• It incorporates a generative mixture model, which is a second knowledge

source besides the graph;

• The backbone graph is not built on randomly selected points, but on mean-

ingful mixture components;

• When classifying an unseen point x, it does not need graph edges from land-

mark points to x. This is less demanding on the graph because the burden

is transferred to the mixture component models. For example one can now

use kNN graphs. In the other works one needs edges between x and the

landmarks, which are non-existent or awkward for kNN graphs.

In terms of handling unseen data, our approach is closely related to the regu-

larization framework of (Belkin et al., 2004b; Krishnapuram et al., 2005) as graph

regularization on mixture models. However instead of a regularization term we

used a discriminative term, which allows for the closed form solution in the special

case.

10.6 Discussion

To summarize, the proposed harmonic mixture method reduces the graph prob-

lem size, and handles unseen test points. It achieves comparable accuracy as the

harmonic function for semi-supervised learning.

There are several questions for further research. First, the component model

affects the performance of the harmonic mixtures. For example the Gaussian in the

synthetic task and 1 vs. 2 task seem to be more amenable to harmonic mixtures

than the multinomial in PC vs. Mac task. How to quantify the influence remains a

question. A second question is when α > 0 is useful in practice. Finally, we want

to find a way to automatically select the appropriate number of mixture components

M .

The backbone graph is certainly not the only way to speed up computation.

We list some other methods in literature review in Chapter 11. In addition, we

also performed an empirical study to compare several iterative methods, including

Label Propagation, loopy belief propagation, and conjugate gradient, which all

converge to the harmonic function. The study is presented in Appendix F.
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Figure 10.3: Sensitivity to M in three datasets. Shown are the classification accu-

racies on U asM changes. ‘graph’ is the harmonic function on the complete L∪U
graph; ‘HM’ is the harmonic mixture, and ‘EM’ is the standard EM algorithm. The

intervals are ±1 standard deviation with 20 random trials when applicable.
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Chapter 11

Literature Review

We review some of the literature on semi-supervised learning. There has been a

whole spectrum of interesting ideas on how to learn from both labeled and un-

labeled data. The review is by no means comprehensive and the field of semi-

supervised learning is evolving rapidly. The author apologizes in advance for any

inaccuracies in the descriptions, and welcomes corrections and comments. Please

send corrections and suggest papers to zhuxj@cs.cmu.edu. To make the review

more useful, we maintain an online version at

http://www.cs.cmu.edu/˜zhuxj/pub/semireview.html
which will be updated indefinitely.

11.1 Q&A

Q: What is semi-supervised learning?

A: It’s a special form of classification. Traditional classifiers need labeled data

(feature / label pairs) to train. Labeled instances however are often difficult, ex-

pensive, or time consuming to obtain, as they require the efforts of experienced

human annotators. Meanwhile unlabeled data may be relatively easy to collect,

but there has been few ways to use them. Semi-supervised learning addresses this

problem by using large amount of unlabeled data, together with the labeled data,

to build better classifiers. Because semi-supervised learning requires less human

effort and gives higher accuracy, it is of great interest both in theory and in practice.

Q: Can we really learn anything from unlabeled data? It looks like magic.

A: Yes we can – under certain assumptions. It’s not magic, but good matching of

problem structure with model assumption.

97
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Q: Does unlabeled data always help?

A: No, there’s no free lunch. Bad matching of problem structure with model as-

sumption can lead to degradation in classifier performance. For example, quite a

few semi-supervised learning methods assume that the decision boundary should

avoid regions with high p(x). These methods include transductive support vector

machines (SVMs), information regularization, Gaussian processes with null cate-

gory noise model, graph-based methods if the graph weights is determined by pair-

wise distance. Nonetheless if the data is generated from two heavily overlapping

Gaussian, the decision boundary would go right through the densest region, and

these methods would perform badly. On the other hand EM with generative mix-

ture models, another semi-supervised learning method, would have easily solved

the problem. Detecting bad match in advance however is hard and remains an open

question.

Q: How many semi-supervised learning methods are there?

A: Many. Some often-used methods include: EM with generative mixture models,

self-training, co-training, transductive support vector machines, and graph-based

methods. See the following sections for more methods.

Q: Which method should I use / is the best?

A: There is no direct answer to this question. Because labeled data is scarce, semi-

supervised learning methods make strong model assumptions. Ideally one should

use a method whose assumptions fit the problem structure. This may be difficult

in reality. Nonetheless we can try the following checklist: Do the classes produce

well clustered data? If yes, EM with generative mixture models may be a good

choice; Do the features naturally split into two sets? If yes, co-training may be

appropriate; Is it true that two points with similar features tend to be in the same

class? If yes, graph-based methods can be used; Already using SVM? Transductive

SVM is a natural extension; Is the existing supervised classifier complicated and

hard to modify? Self-training is a practical wrapper method.

Q: How do semi-supervised learning methods use unlabeled data?

A: Semi-supervised learning methods use unlabeled data to either modify or re-

prioritize hypotheses obtained from labeled data alone. Although not all methods

are probabilistic, it is easier to look at methods that represent hypotheses by p(y|x),
and unlabeled data by p(x). Generative models have common parameters for the

joint distribution p(x, y). It is easy to see that p(x) influences p(y|x). Mixture

models with EM is in this category, and to some extent self-training. Many other

methods are discriminative, including transductive SVM, Gaussian processes, in-

formation regularization, and graph-based methods. Original discriminative train-
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ing cannot be used for semi-supervised learning, since p(y|x) is estimated ignoring

p(x). To solve the problem, p(x) dependent terms are often brought into the ob-

jective function, which amounts to assuming p(y|x) and p(x) share parameters.

Q: Where can I learn more?

A: An existing survey can be found in (Seeger, 2001).

11.2 Generative Mixture Models and EM

This is perhaps the oldest semi-supervised learning method. It assumes a genera-

tive model p(x, y) = p(y)p(x|y) where p(x|y) is an identifiable mixture distribu-

tion, for example Gaussian mixture models. With large amount of unlabeled data,

the mixture components can be identified; then ideally we only need one labeled

example per component to fully determine the mixture distribution. One can think

of the mixture components as ‘soft clusters’.

Nigam et al. (2000) apply the EM algorithm on mixture of multinomial for

the task of text classification. They showed the resulting classifiers perform better

than those trained only from L. Baluja (1998) uses the same algorithm on a face

orientation discrimination task.

One has to pay attention to a few things:

11.2.1 Identifiability

The mixture model ideally should be identifiable. In general let {pθ} be a family of

distributions indexed by a parameter vector θ. θ is identifiable if θ1 6= θ2 ⇒ pθ1 6=
pθ2 , up to a permutation of mixture components. If the model family is identifiable,

in theory with infinite U one can learn θ up to a permutation of component indices.

Here is an example showing the problem with unidentifiable models. The

model p(x|y) is uniform for y ∈ {+1,−1}. Assuming with large amount of un-

labeled data U we know p(x) is uniform in [0, 1]. We also have 2 labeled data

points (0.1,+1), (0.9,−1). Can we determine the label for x = 0.5? No. With

our assumptions we cannot distinguish the following two models:

p(y = 1) = 0.2, p(x|y = 1) = unif(0, 0.2), p(x|y = −1) = unif(0.2, 1) (11.1)

p(y = 1) = 0.6, p(x|y = 1) = unif(0, 0.6), p(x|y = −1) = unif(0.6, 1) (11.2)

which give opposite labels at x = 0.5, see Figure 11.1. It is known that a mixture of

Gaussian is identifiable. Mixture of multivariate Bernoulli (McCallum & Nigam,

1998a) is not identifiable. More discussions on identifiability and semi-supervised

learning can be found in e.g. (Ratsaby & Venkatesh, 1995) and (Corduneanu &

Jaakkola, 2001).
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Figure 11.1: An example of unidentifiable models. Even if we known p(x) (top)

is a mixture of two uniform distributions, we cannot uniquely identify the two

components. For instance, the mixtures on the second and third line give the same

p(x), but they classify x = 0.5 differently.
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Figure 11.2: If the model is wrong, higher likelihood may lead to lower classifica-

tion accuracy. For example, (a) is clearly not generated from two Gaussian. If we

insist that each class is a single Gaussian, (b) will have higher probability than (c).

But (b) has around 50% accuracy, while (c)’s is much better.

11.2.2 Model Correctness

If the mixture model assumption is correct, unlabeled data is guaranteed to improve

accuracy (Castelli & Cover, 1995) (Castelli & Cover, 1996) (Ratsaby & Venkatesh,

1995). However if the model is wrong, unlabeled data may actually hurt accuracy.

Figure 11.2 shows an example. This has been observed by multiple researchers.

Cozman et al. (2003) give a formal derivation on how this might happen.

It is thus important to carefully construct the mixture model to reflect reality.

For example in text categorization a topic may contain several sub-topics, and will

be better modeled by multiple multinomial instead of a single one (Nigam et al.,

2000). Some other examples are (Shahshahani & Landgrebe, 1994) (Miller &

Uyar, 1997). Another solution is to down-weighing unlabeled data (Corduneanu &
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Jaakkola, 2001), which is also used by Nigam et al. (2000), and by Callison-Burch

et al. (2004) who estimate word alignment for machine translation.

11.2.3 EM Local Maxima

Even if the mixture model assumption is correct, in practice mixture components

are identified by the Expectation-Maximization (EM) algorithm (Dempster et al.,

1977). EM is prone to local maxima. If a local maximum is far from the global

maximum, unlabeled data may again hurt learning. Remedies include smart choice

of starting point by active learning (Nigam, 2001).

11.2.4 Cluster and Label

We shall also mention that instead of using an probabilistic generative mixture

model, some approaches employ various clustering algorithms to cluster the whole

dataset, then label each cluster with labeled data, e.g. (Demiriz et al., 1999) (Dara

et al., 2000). Although they may perform well if the particular clustering algo-

rithms match the true data distribution, these approaches are hard to analyze due to

their algorithmic nature.

11.3 Self-Training

Self-training is a commonly used technique for semi-supervised learning. In self-

training a classifier is first trained with the small amount of labeled data. The

classifier is then used to classify the unlabeled data. Typically the most confident

unlabeled points, together with their predicted labels, are added to the training

set. The classifier is re-trained and the procedure repeated. Note the classifier

uses its own predictions to teach itself. The procedure is also called self-teaching

or bootstrapping (not to be confused with the statistical procedure with the same

name). The generative model and EM approach of section 11.2 can be viewed as

a special case of ‘soft’ self-training. One can imagine that a classification mistake

can reinforce itself. Some algorithms try to avoid this by ‘unlearn’ unlabeled points

if the prediction confidence drops below a threshold.

Self-training has been applied to several natural language processing tasks.

Yarowsky (1995) uses self-training for word sense disambiguation, e.g. deciding

whether the word ‘plant’ means a living organism or a factory in a give context.

Riloff et al. (2003) uses it to identify subjective nouns. Maeireizo et al. (2004)

classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure involving

two classifiers.Self-training has also been applied to parsing and machine transla-

tion. Rosenberg et al. (2005) apply self-training to object detection systems from
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(a) x1 view (b) x2 view

Figure 11.3: Co-Training: Conditional independent assumption on feature split.

With this assumption the high confident data points in x1 view, represented by

circled labels, will be randomly scattered in x2 view. This is advantageous if they

are to be used to teach the classifier in x2 view.

images, and show the semi-supervised technique compares favorably with a state-

of-the-art detector.

11.4 Co-Training

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that features can

be split into two sets; Each sub-feature set is sufficient to train a good classifier;

The two sets are conditionally independent given the class. Initially two separate

classifiers are trained with the labeled data, on the two sub-feature sets respectively.

Each classifier then classifies the unlabeled data, and ‘teaches’ the other classifier

with the few unlabeled examples (and the predicted labels) they feel most confi-

dent. Each classifier is retrained with the additional training examples given by the

other classifier, and the process repeats.

In co-training, unlabeled data helps by reducing the version space size. In other

words, the two classifiers (or hypotheses) must agree on the much larger unlabeled

data as well as the labeled data.

We need the assumption that sub-features are sufficiently good, so that we can

trust the labels by each learner on U . We need the sub-features to be conditionally

independent so that one classifier’s high confident data points are iid samples for

the other classifier. Figure 11.3 visualizes the assumption.

Nigam and Ghani (2000) perform extensive empirical experiments to compare

co-training with generative mixture models and EM. Their result shows co-training

performs well if the conditional independence assumption indeed holds. In addi-

tion, it is better to probabilistically label the entire U , instead of a few most con-

fident data points. They name this paradigm co-EM. Finally, if there is no natural

feature split, the authors create artificial split by randomly break the feature set into
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two subsets. They show co-training with artificial feature split still helps, though

not as much as before. Jones (2005) used co-training, co-EM and other related

methods for information extraction from text.

Co-training makes strong assumptions on the splitting of features. One might

wonder if these conditions can be relaxed. Goldman and Zhou (2000) use two

learners of different type but both takes the whole feature set, and essentially use

one learner’s high confidence data points, identified with a set of statistical tests, in

U to teach the other learning and vice versa. Recently Balcan et al. (2005) relax

the conditional independence assumption with a much weaker expansion condition,

and justify the iterative co-training procedure.

11.5 Maximizing Separation

11.5.1 Transductive SVM

Discriminative methods work on p(y|x) directly. This brings up the danger of

leaving p(x) outside of the parameter estimation loop, if p(x) and p(y|x) do not

share parameters. Notice p(x) is usually all we can get from unlabeled data. It is

believed that if p(x) and p(y|x) do not share parameters, semi-supervised learning

cannot help. This point is emphasized in (Seeger, 2001). Zhang and Oles (2000)

give both theoretical and experimental evidence of the same point specifically on

transductive support vector machines (TSVM). However this is controversial as

empirically TSVMs seem beneficial.

TSVM is an extension of standard support vector machines with unlabeled

data. In a standard SVM only the labeled data is used, and the goal is to find a

maximum margin linear boundary in the Reproducing Kernel Hilbert Space. In a

TSVM the unlabeled data is also used. The goal is to find a labeling of the unla-

beled data, so that a linear boundary has the maximum margin on both the original

labeled data and the (now labeled) unlabeled data. The decision boundary has the

smallest generalization error bound on unlabeled data (Vapnik, 1998). Intuitively,

unlabeled data guides the linear boundary away from dense regions. However

finding the exact transductive SVM solution is NP-hard. Several approximation al-

gorithms have been proposed and show positive results, see e.g. (Joachims, 1999)

(Bennett & Demiriz, 1999) (Demirez & Bennettt, 2000) (Fung & Mangasarian,

1999) (Chapelle & Zien, 2005).

The maximum entropy discrimination approach (Jaakkola et al., 1999) also

maximizes the margin, and is able to take into account unlabeled data, with SVM

as a special case.

The application of graph kernels (Zhu et al., 2005) to SVMs differs from

TSVM. The graph kernels are special semi-supervised kernels applied to a stan-
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Figure 11.4: In TSVM, U helps to put the decision boundary in sparse regions.

With labeled data only, the maximum margin boundary is plotted with dotted lines.

With unlabeled data (black dots), the maximum margin boundary would be the one

with solid lines.

dard SVM; TSVM is a special optimization criterion regardless of the kernel being

used.

11.5.2 Gaussian Processes

Lawrence and Jordan (2005) proposed a Gaussian process approach, which can be

viewed as the Gaussian process parallel of TSVM. The key difference to a standard

Gaussian process is in the noise model. A ‘null category noise model’ maps the

hidden continuous variable f to three instead of two labels, specifically to the never

used label ‘0’ when f is around zero. On top of that, it is restricted that unlabeled

data points cannot take the label 0. This pushes the posterior of f away from zero

for the unlabeled points. It achieves the similar effect of TSVM where the margin

avoids dense unlabeled data region. However nothing special is done on the process

model. Therefore all the benefit of unlabeled data comes from the noise model. A

very similar noise model is proposed in (Chu & Ghahramani, 2004) for ordinal

regression.

This is different from the Gaussian processes in (Zhu et al., 2003c), where we

have a semi-supervised Gram matrix, and semi-supervised learning originates from

the process model, not the noise model.

11.5.3 Information Regularization

Szummer and Jaakkola (2002) propose the information regularization framework

to control the label conditionals p(y|x) by p(x), where p(x) may be estimated from

unlabeled data. The idea is that labels shouldn’t change too much in regions where

p(x) is high. The authors use the mutual information I(x; y) between x and y as

a measure of label complexity. I(x; y) is small when the labels are homogeneous,
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and large when labels vary. This motives the minimization of the product of p(x)
mass in a region with I(x; y) (normalized by a variance term). The minimization

is carried out on multiple overlapping regions covering the data space.

The theory is developed further in (Corduneanu & Jaakkola, 2003). Cor-

duneanu and Jaakkola (2005) extend the work by formulating semi-supervised

learning as a communication problem. Regularization is expressed as the rate of

information, which again discourages complex conditionals p(y|x) in regions with

high p(x). The problem becomes finding the unique p(y|x) that minimizes a regu-

larized loss on labeled data. The authors give a local propagation algorithm.

11.5.4 Entropy Minimization

The hyperparameter learning method in section 7.2 uses entropy minimization.

Grandvalet and Bengio (2005) used the label entropy on unlabeled data as a reg-

ularizer. By minimizing the entropy, the method assumes a prior which prefers

minimal class overlap.

11.6 Graph-Based Methods

Graph-based semi-supervised methods define a graph where the nodes are labeled

and unlabeled examples in the dataset, and edges (may be weighted) reflect the

similarity of examples. These methods usually assume label smoothness over the

graph. Graph methods are nonparametric, discriminative, and transductive in na-

ture. This thesis largely focuses on graph-based semi-supervised learning algo-

rithms.

11.6.1 Regularization by Graph

Many graph-based methods can be viewed as estimating a function f on the graph.

One wants f to satisfy two things at the same time: 1) it should be close to the

given labels yL on the labeled nodes, and 2) it should be smooth on the whole

graph. This can be expressed in a regularization framework where the first term is

a loss function, and the second term is a regularizer.

Several graph-based methods listed here are similar to each other. They differ

in the particular choice of the loss function and the regularizer. Are these differ-

ences crucial? Probably not. We believe it is much more important to construct

a good graph than to choose among the methods. However graph construction, as

we will see later, is not a well studied area.
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Mincut

Blum and Chawla (2001) pose semi-supervised learning as a graph mincut (also

known as st-cut) problem. In the binary case, positive labels act as sources and

negative labels act as sinks. The objective is to find a minimum set of edges whose

removal blocks all flow from the sources to the sinks. The nodes connecting to the

sources are then labeled positive, and those to the sinks are labeled negative. Equiv-

alently mincut is the mode of a Markov random field with binary labels (Boltzmann

machine). The loss function can be viewed as a quadratic loss with infinity weight:

∞∑i∈L(yi − yi|L)2, so that the values on labeled data are in fact clamped. The

labeling y minimizes

1

2

∑

i,j

wij |yi − yj | =
1

2

∑

i,j

wij(yi − yj)
2 (11.3)

which can be thought of as a regularizer on binary (0 and 1) labels.

One problem with mincut is that it only gives hard classification without con-

fidence. Blum et al. (2004) perturb the graph by adding random noise to the edge

weights. Mincut is applied to multiple perturbed graphs, and the labels are deter-

mined by a majority vote. The procedure is similar to bagging, and creates a ‘soft’

mincut.

Pang and Lee (2004) use mincut to improve the classification of a sentence into

either ‘objective’ or ‘subjective’, with the assumption that sentences close to each

other tend to have the same class.

Gaussian Random Fields and Harmonic Functions

The Gaussian random fields and harmonic function methods in (Zhu et al., 2003a)

can be viewed as having a quadratic loss function with infinity weight, so that

the labeled data are clamped, and a regularizer based on the graph combinatorial

Laplacian ∆:

∞
∑

i∈L

(fi − yi)
2 + 1/2

∑

i,j

wij(fi − fj)
2 (11.4)

= ∞
∑

i∈L

(fi − yi)
2 + f⊤∆f (11.5)

Recently Grady and Funka-Lea (2004) applied the harmonic function method to

medical image segmentation tasks, where a user labels classes (e.g. different or-

gans) with a few strokes. Levin et al. (2004) use essentially harmonic functions for

colorization of gray-scale images. Again the user specifies the desired color with
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only a few strokes on the image. The rest of the image is used as unlabeled data,

and the labels propagation through the image. Niu et al. (2005) applied the label

propagation algorithm (which is equivalent to harmonic functions) to word sense

disambiguation.

Local and Global Consistency

The local and global consistency method (Zhou et al., 2004a) uses the loss function∑n
i=1(fi−yi)

2, and the normalized LaplacianD−1/2∆D−1/2 = I−D−1/2WD−1/2

in the regularizer,

1/2
∑

i,j

wij(fi/
√
Dii − fj/

√
Djj)

2 = f⊤D−1/2∆D−1/2f (11.6)

Tikhonov Regularization

The Tikhonov regularization algorithm in (Belkin et al., 2004a) uses the loss func-

tion and regularizer:

1/k
∑

i

(fi − yi)
2 + γf⊤Sf (11.7)

where S = ∆ or ∆p for some integer p.

Graph Kernels

For kernel methods, the regularizer is a (typically monotonically increasing) func-

tion of the RKHS norm ||f ||K = f⊤K−1f with kernelK. Such kernels are derived

from the graph, e.g. the Laplacian.

Chapelle et al. (2002) and Smola and Kondor (2003) both show the spectral

transformation of a Laplacian results in kernels suitable for semi-supervised learn-

ing. The diffusion kernel (Kondor & Lafferty, 2002) corresponds to a spectrum

transform of the Laplacian with

r(λ) = exp(−σ
2

2
λ) (11.8)

The regularized Gaussian process kernel ∆ + I/σ2 in (Zhu et al., 2003c) corre-

sponds to

r(λ) =
1

λ+ σ
(11.9)

Similarly the order constrained graph kernels in (Zhu et al., 2005) are con-

structed from the spectrum of the Laplacian, with non-parametric convex opti-

mization. Learning the optimal eigenvalues for a graph kernel is in fact a way to
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(at least partially) correct an imprecise graph. In this sense it is related to graph

construction.

Spectral Graph Transducer

The spectral graph transducer (Joachims, 2003) can be viewed with a loss function

and regularizer

c(f − γ)⊤C(f − γ) + f⊤Lf (11.10)

where γi =
√
l−/l+ for positive labeled data, −

√
l+/l− for negative data, l−

being the number of negative data and so on. L can be the combinatorial or nor-

malized graph Laplacian, with a transformed spectrum.

Tree-Based Bayes

Kemp et al. (2003) define a probabilistic distribution P (Y |T ) on discrete (e.g. 0

and 1) labelings Y over an evolutionary tree T . The tree T is constructed with

the labeled and unlabeled data being the leaf nodes. The labeled data is clamped.

The authors assume a mutation process, where a label at the root propagates down

to the leaves. The label mutates with a constant rate as it moves down along the

edges. As a result the tree T (its structure and edge lengths) uniquely defines the

label prior P (Y |T ). Under the prior if two leaf nodes are closer in the tree, they

have a higher probability of sharing the same label. One can also integrate over all

tree structures.

The tree-based Bayes approach can be viewed as an interesting way to incor-

porate structure of the domain. Notice the leaf nodes of the tree are the labeled and

unlabeled data, while the internal nodes do not correspond to physical data. This is

in contrast with other graph-based methods where labeled and unlabeled data are

all the nodes.

Some Other Methods

Szummer and Jaakkola (2001) perform a t-step Markov random walk on the graph.

The influence of one example to another example is proportional to how easy the

random walk goes from one to the other. It has certain resemblance to the diffusion

kernel. The parameter t is important.

Chapelle and Zien (2005) use a density-sensitive connectivity distance between

nodes i, j (a given path between i, j consists of several segments, one of them

is the longest; now consider all paths between i, j and find the shortest ‘longest

segment’). Exponentiating the negative distance gives a graph kernel.
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Bousquet et al. (2004) consider the continuous counterpart of graph-based

regularization. They define regularization based on a known p(x) and provide

interesting theoretical analysis. However there seem to be problems in applying

the theoretical results to higher (D > 2) dimensional tasks.

11.6.2 Graph Construction

Although the graph is the heart and soul of graph-based semi-supervised learning

methods, its construction has not been studied carefully. The issue has been dis-

cussed informally in Chapter 3, and graph hyperparameter learning discussed in

Chapter 7. There are relatively few literatures on graph construction. For example

Carreira-Perpinan and Zemel (2005) build robust graphs from multiple minimum

spanning trees by perturbation and edge removal. It is possible that graph construc-

tion is domain specific because it encodes prior knowledge, and has thus far been

treated on an individual basis.

11.6.3 Induction

Most graph-based semi-supervised learning algorithms are transductive, i.e. they

cannot easily extend to new test points outside of L ∪ U . Recently induction has

received increasing attention. One common practice is to ‘freeze’ the graph on

L ∪ U . New points do not (although they should) alter the graph structure. This

avoids expensive graph computation every time one encounters new points.

Zhu et al. (2003c) propose that new test point be classified by its nearest neigh-

bor in L∪U . This is sensible when U is sufficiently large. In (Chapelle et al., 2002)

the authors approximate a new point by a linear combination of labeled and unla-

beled points. Similarly in (Delalleau et al., 2005) the authors proposes an induction

scheme to classify a new point x by

f(x) =

∑
i∈L∪U wxif(xi)∑

i∈L∪U wxi
(11.11)

This can be viewed as an application of the Nyström method (Fowlkes et al., 2004).

In the regularization framework of (Belkin et al., 2004b), the function f does

not have to be restricted to the graph. The graph is merely used to regularize f
which can have a much larger support. It is necessarily a combination of an in-

ductive algorithm and graph regularization. The authors give the graph-regularized

version of least squares and SVM. Note such an SVM is different from the graph

kernels in standard SVM in (Zhu et al., 2005). The former is inductive with both

a graph regularizer and an inductive kernel. The latter is transductive with only

the graph regularizer. Following the work, Krishnapuram et al. (2005) use graph
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regularization on logistic regression. These methods create inductive learners that

naturally handle new test points.

The harmonic mixture model in Chapter 10 naturally handles new points with

the help of a mixture model.

11.6.4 Consistency

The consistency of graph-based semi-supervised learning algorithms has not been

studied extensively according to the author’s knowledge. By consistency we mean

whether the classification converges to the right solution as the number of labeled

and unlabeled data grows to infinity. Recently von Luxburg et al. (2005) (von

Luxburg et al., 2004) study the consistency of spectral clustering methods. The au-

thors find that the normalized Laplacian is better than the unnormalized Laplacian

for spectral clustering. The convergence of the eigenvectors of the unnormalized

Laplacian is not clear, while the normalized Laplacian always converges under

general conditions. There are examples where the top eigenvectors of the unnor-

malized Laplacian do not yield a sensible clustering. Although these are valuable

results, we feel the parallel problems in semi-supervised learning needs further

study. One reason is that in semi-supervised learning the whole Laplacian (nor-

malized or not) is often used for regularization, not only the top eigenvectors.

11.6.5 Ranking

Given a large collection of items, and a few ‘query’ items, ranking orders the items

according to their similarity to the queries. It can be formulated as semi-supervised

learning with positive data only (Zhou et al., 2004b), with the graph induced simi-

larity measure.

11.6.6 Directed Graphs

Zhou et al. (2005) take a hub/authority approach, and essentially convert a directed

graph into an undirected one. Two hub nodes are connected by an undirected edge

with appropriate weight if they co-link to authority nodes, and vice versa. Semi-

supervised learning then proceeds on the undirected graph.

Lu and Getoor (2003) convert the link structure in a directed graph into per-

node features, and combines them with per-node object features in logistic regres-

sion. They also use an EM-like iterative algorithm.
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11.6.7 Fast Computation

Fast computation with sparse graphs and iterative methods has been briefly dis-

cussed in Chapter 10. Recently numerical methods for fast N-body problems have

been applied to dense graphs in semi-supervised learning, reducing the computa-

tional cost from O(n3) to O(n) (Mahdaviani et al., 2005). This is achieved with

Krylov subspace methods and the fast Gauss transform.

11.7 Metric-Based Model Selection

Metric-based model selection (Schuurmans & Southey, 2001) is a method to detect

hypotheses inconsistency with unlabeled data. We may have two hypotheses which

are consistent on L, for example they all have zero training set error. However they

may be inconsistent on the much larger U . If so we should reject at least one of

them, e.g. the more complex one if we employ Occam’s razor.

The key observation is that a distance metric is defined in the hypothesis space

H . One such metric is the number of different classifications two hypotheses make

under the data distribution p(x): dp(h1, h2) = Ep[h1(x) 6= h2(x)]. It is easy to

verify that the metric satisfies the three metric properties. Now consider the true

classification function h∗ and two hypotheses h1, h2. Since the metric satisfies the

triangle inequality (the third property), we have

dp(h1, h2) ≤ dp(h1, h
∗) + dp(h

∗, h2)

Under the premise that labels in L is noiseless, let’s assume we can approximate

dp(h1, h
∗) and dp(h

∗, h2) by h1 and h2’s training set error rates dL(h1, h
∗) and

dL(h2, h
∗), and approximate dp(h1, h2) by the difference h1 and h2 make on a

large amount of unlabeled data U : dU (h1, h2). We get

dU (h1, h2) ≤ dL(h1, h
∗) + dL(h∗, h2)

which can be verified directly. If the inequality does not hold, at least one of the

assumptions is wrong. If |U | is large enough and U
iid∼ p(x), dU (h1, h2) will be

a good estimate of dp(h1, h2). This leaves us with the conclusion that at least one

of the training errors does not reflect its true error. If both training errors are close

to zero, we would know that at least one model is overfitting. An Occam’s razor

type of argument then can be used to select the model with less complexity. Such

use of unlabeled data is very general and can be applied to almost any learning

algorithms. However it only selects among hypotheses; it does not generate new

hypothesis based on unlabeled data.

The co-validation method (Madani et al., 2005) also uses unlabeled data for

model selection and active learning.
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11.8 Related Areas

The focus of the thesis is on classification with semi-supervised methods. There

are some closely related areas with a rich literature.

11.8.1 Spectral Clustering

Spectral clustering is unsupervised. As such there is no labeled data to guide the

process. Instead the clustering depends solely on the graph weights W . On the

other hand semi-supervised learning for classification has to maintain a balance

between how good the ‘clustering’ is, and how well the labeled data can be ex-

plained by it. Such balance is expressed explicitly in the regularization framework.

As we have seen in section 8.1 and 11.6.4, the top eigenvectors of the graph

Laplacian can unfold the data manifold to form meaningful clusters. This is the

intuition behind spectral clustering. There are several criteria on what constitutes

a good clustering (Weiss, 1999).

The normalized cut (Shi & Malik, 2000) seeks to minimize

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(11.12)

The continuous relaxation of the cluster indicator vector can be derived from the

normalized Laplacian. In fact it is derived from the second smallest eigenvector of

the normalized Laplacian. The continuous vector is then discretized to obtain the

clusters.

The data points are mapped into a new space spanned by the first k eigenvec-

tors of the normalized Laplacian in (Ng et al., 2001a), with special normalization.

Clustering is then performed with traditional methods (like k-means) in this new

space. This is very similar to kernel PCA.

Fowlkes et al. (2004) use the Nyström method to reduce the computation cost

for large spectral clustering problems. This is related to our method in Chapter 10.

Chung (1997) presents the mathematical details of spectral graph theory.

11.8.2 Clustering with Side Information

This is the ‘opposite’ of semi-supervised classification. The goal is clustering but

there are some ‘labeled data’ in the form of must-links (two points must in the same

cluster) and cannot-links (two points cannot in the same cluster). There is a tension

between satisfying these constraints and optimizing the original clustering criterion

(e.g. minimizing the sum of squared distances within clusters). Procedurally one

can modify the distance metric to try to accommodate the constraints, or one can
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bias the search. We refer readers to a recent short survey (Grira et al., 2004) for the

literatures.

11.8.3 Nonlinear Dimensionality Reduction

The goal of nonlinear dimensionality reduction is to find a faithful low dimensional

mapping of the high dimensional data. As such it belongs to unsupervised learning.

However the way it discovers low dimensional manifold within a high dimensional

space is closely related to spectral graph semi-supervised learning. Representative

methods include Isomap (Tenenbaum et al., 2000), locally linear embedding (LLE)

(Roweis & Saul, 2000) (Saul & Roweis, 2003), Hessian LLE (Donoho & Grimes,

2003), Laplacian eigenmaps (Belkin & Niyogi, 2003), and semidefinite embedding

(SDE) (Weinberger & Saul, 2004) (Weinberger et al., 2004) (Weinberger et al.,

2005).

11.8.4 Learning a Distance Metric

Many learning algorithms depend, either explicitly or implicitly, on a distance met-

ric on X . We use the term metric here loosely to mean a measure of distance or

(dis)similarity between two data points. The default distance in the feature space

may not be optimal, especially when the data forms a lower dimensional manifold

in the feature vector space. With a large amount of U , it is possible to detect such

manifold structure and its associated metric. The graph-based methods above are

based on this principle. We review some other methods next.

The simplest example in text classification might be Latent Semantic Indexing

(LSI, a.k.a. Latent Semantic Analysis LSA, Principal Component Analysis PCA,

or sometimes Singular Value Decomposition SVD). This technique defines a lin-

ear subspace, such that the variance of the data, when projected to the subspace,

is maximumly preserved. LSI is widely used in text classification, where the orig-

inal space for X is usually tens of thousands dimensional, while people believe

meaningful text documents reside in a much lower dimensional space. Zelikovitz

and Hirsh (2001) and Cristianini et al. (2001b) both use U , in this case unlabeled

documents, to augment the term-by-document matrix of L. LSI is performed on

the augmented matrix. This representation induces a new distance metric. By the

property of LSI, words that co-occur very often in the same documents are merged

into a single dimension of the new space. In the extreme this allows two docu-

ments with no common words to be ‘close’ to each other, via chains of co-occur

word pairs in other documents.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is an impor-

tant improvement over LSI. Each word in a document is generated by a ‘topic’ (a
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multinomial, i.e. unigram). Different words in the document may be generated by

different topics. Each document in turn has a fixed topic proportion (a multino-

mial on a higher level). However there is no link between the topic proportions in

different documents.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one step further. It

assumes the topic proportion of each document is drawn from a Dirichlet distribu-

tion. With variational approximation, each document is represented by a posterior

Dirichlet over the topics. This is a much lower dimensional representation.

Some algorithms derive a metric entirely from the density of U . These are mo-

tivated by unsupervised clustering and based on the intuition that data points in the

same high density ‘clump’ should be close in the new metric. For instance, if U
is generated from a single Gaussian, then the Mahalanobis distance induced by the

covariance matrix is such a metric. Tipping (1999) generalizes the Mahalanobis

distance by fitting U with a mixture of Gaussian, and define a Riemannian mani-

fold with metric at x being the weighted average of individual component inverse

covariance. The distance between x1 and x2 is computed along the straight line (in

Euclidean space) between the two points. Rattray (2000) further generalizes the

metric so that it only depends on the change in log probabilities of the density, not

on a particular Gaussian mixture assumption. And the distance is computed along

a curve that minimizes the distance. The new metric is invariate to linear transfor-

mation of the features, and connected regions of relatively homogeneous density

in U will be close to each other. Such metric is attractive, yet it depends on the

homogeneity of the initial Euclidean space. Their application in semi-supervised

learning needs further investigation.

We caution the reader that the metrics proposed above are based on unsuper-

vised techniques. They all identify a lower dimensional manifold within which the

data reside. However the data manifold may or may not correlate with a particular

classification task. For example, in LSI the new metric emphasizes words with

prominent count variances, but ignores words with small variances. If the classi-

fication task is subtle and depends on a few words with small counts, LSI might

wipe out the salient words all together. Therefore the success of these methods

is hard to guarantee without putting some restrictions on the kind of classification

tasks. It would be interesting to include L into the metric learning process.

In a separate line of work, Baxter (1997) proves that there is a unique optimal

metric for classification if we use 1-nearest-neighbor. The metric, named Canoni-

cal Distortion Measure (CDM), defines a distance d(x1, x2) as the expected loss if

we classify x1 with x2’s label. The distance measure proposed in (Yianilos, 1995)

can be viewed as a special case. Yianilos assume a Gaussian mixture model has

been learned from U , such that a class correspond to a component, but the corre-

spondence is unknown. In this case CDM d(x1, x2) = p(x1, x2from same component)
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and can be computed analytically. Now that a metric has been learned from U , we

can find within L the 1-nearest-neighbor of a new data point x, and classify x with

the nearest neighbor’s label. It will be interesting to compare this scheme with EM

based semi-supervised learning, where L is used to label mixture components.

Weston et al. (2004) propose the neighborhood mismatch kernel and the bagged

mismatch kernel. More precisely both are kernel transformation that modifies an

input kernel. In the neighborhood method, one defines the neighborhood of a point

as points close enough according to certain similarity measure (note this is not

the measure induced by the input kernel). The output kernel between point i, j is

the average of pairwise kernel entries between i’s neighbors and j’s neighbors. In

bagged method, if a clustering algorithm thinks they tend to be in the same cluster

(note again this is a different measure than the input kernel), the corresponding

entry in the input kernel is boosted.

11.8.5 Inferring Label Sampling Mechanisms

Most semi-supervised learning methods assume L and U are both i.i.d. from the

underlying distribution. However as (Rosset et al., 2005) points out that is not

always the case. For example y can be the binary label whether a customer is

satisfied, obtained through a survey. It is conceivable survey participation (and

thus labeled data) depends on the satisfaction y.

Let si be the binary missing indicator for yi. The authors model p(s|x, y)
with a parametric family. The goal is to estimate p(s|x, y) which is the label

sampling mechanism. This is done by computing the expectation of an arbi-

trary function g(x) in two ways: on L ∪ U as 1/n
∑n

i=1 g(xi), and on L only as

1/n
∑

i∈L g(xi)/p(si = 1|xi, yi). By equating the two p(s|x, y) can be estimated.

The intuition is that the expectation on L requires weighting the labeled samples

inversely proportional to the labeling probability, to compensate for ignoring the

unlabeled data.



116 CHAPTER 11. LITERATURE REVIEW



Chapter 12

Discussions

We have presented a series of semi-supervised learning algorithms, based on a

graph representation of the data. Experiments show that they are able to take ad-

vantage of the unlabeled data to improve classification. Contributions of the thesis

include:

• We proposed a harmonic function and Gaussian field formulations for semi-

supervised problems. This is not the first graph-based semi-supervised method.

The first one was graph mincut. However our formulation is a continuous

relaxation to the discrete labels, resulting in a more benign problem. Sev-

eral variations of the formulation were proposed independently by different

groups shortly after.

• We addressed the problem of graph construction, by setting up parametric

edge weights and performing edge hyperparameter learning. Since the graph

is the input to all graph-based semi-supervised algorithms, it is important that

we construct graphs that best suit the task.

• We combined an active learning scheme that reduces expected error instead

of ambiguity, with graph-based semi-supervised learning. We believe that

active learning and semi-supervised learning will be used together for prac-

tical problems, because limited human annotation resources should be spent

wisely.

• We defined optimal semi-supervised kernels by spectral transformation of

the graph Laplacian. Such optimal kernels can be found with convex opti-

mization. We can use the kernels with any kernel machine, e.g. support vec-

tor machines, for semi-supervised learning. The kernel machines in general

can handle noisy labeled data, which is an improvement over the harmonic

function solution.

117
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• We kernelized conditional random fields. CRFs were traditionally feature

based. We derived the dual problem and presented an algorithm for fast

sparse kernel CRF training. With kernel CRFs, it is possible to use a semi-

supervised kernel on instances for semi-supervised learning on sequences

and other structures.

• We proposed to solve large-scale problems with harmonic mixtures. Har-

monic mixtures reduce computation cost significantly by grouping unlabeled

data into soft clusters, then carrying out semi-supervised learning on the

coarser data representation. Harmonic mixtures also handle new data points

naturally, making the semi-supervised learning method inductive.

Semi-supervised learning is a relatively new research area. There are many

open questions and research opportunities:

• The graph is the single most important quantity for graph-based semi-supervised

learning. Parameterizing graph edge weights, and learning weight hyperpa-

rameters, should be the first step of any graph-based semi-supervised learn-

ing methods. Current methods in Chapter 7 are not efficient enough. Can we

find better ways to learn the graph structure and parameters?

• Real problems can have millions of unlabeled data points. Anecdotal sto-

ries and experiments in Appendix F indicate that conjugate gradient with a

suitable pre-conditioner is one of the fastest algorithms in solving harmonic

functions. Harmonic mixture works along an orthogonal direction by reduc-

ing the problem size. How large a dataset can we process if we combine

conjugate gradient and harmonic mixture? What can we do to handle even

larger datasets?

• Semi-supervised learning on structured data, e.g. sequences and trees, is

largely unexplored. We have proposed the use of kernel conditional ran-

dom fields plus semi-supervised kernels. Much more work is needed in this

direction.

• In this thesis we focused on classification problems. The spirit of combining

some human effort with large amount of data should be applicable to other

problems. Examples include: regression with both labeled and unlabeled

data; ranking with ordered pairs and unlabeled data; clustering with cluster

membership knowledge. What can we do beyond classification?

• Because labeled data is scarce, semi-supervised learning methods depend

more heavily on their assumptions (see e.g. Table 1.1). Can we develop

novel semi-supervised learning algorithms with new assumptions?
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• Applications of semi-supervised learning are emerging rapidly. These in-

clude text categorization, natural language processing, bioinformatics, im-

age processing, and computer vision. Many others are sure to come. Appli-

cations are attractive because they solve important practical problems, and

provide fertile test bed for new ideas in machine learning. What problems

can we apply semi-supervised learning? What applications were too hard

but are now feasible with semi-supervised learning?

• The theory of semi-supervised learning is almost absent in both the ma-

chine learning literature and the statistics literature. Is graph-based semi-

supervised learning consistent? How many labeled and unlabeled points are

needed to learn a concept with confidence?

We expect advances in research will address these questions. We hope semi-

supervised learning become a fruitful area for both machine learning theory and

practical applications.
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Appendix A

The Harmonic Function after

Knowing One More Label

Construct the graph as usual. We use f to denote the harmonic function. The

random walk solution is fu = −∆−1
uu∆ulfl = ∆−1

uuWulfl. There are u unlabeled

nodes. We ask the question: what is the solution if we add a node with value f0 to

the graph, and connect the new node to unlabeled node i with weight w0? The new

node is a “dongle” attached to node i. Besides the usage here, dongle nodes can

be useful for handling noisy labels where one would put the observed labels on the

dongles, and infer the hidden true labels for the nodes attached to dongles. Note

that when w0 →∞, we effectively assign label f0 to node i.

Since the dongle is a labeled node in the augmented graph,

f+
u = ∆+

uu
−1
W+

ulf
+
l = (D+

uu −Wuu)−1W+
ulf

+
l

= (w0ee
⊤ +Duu −Wuu)−1(w0f0e+Wulfl)

= (w0ee
⊤ + ∆uu)−1(w0f0e+Wulfl)

where e is a column vector of length u with 1 in position i and 0 elsewhere. Note

that we can use the matrix inversion lemma here, to obtain

(w0ee
⊤ + ∆uu)−1 = ∆−1

uu −
∆−1

uu (
√
w0e)(

√
w0e)

⊤∆−1
uu

1 + (
√
w0e)⊤∆−1

uu (
√
w0e)

= G− 1

1 + w0Gii
w0G|iG

where we use the shorthand G = ∆−1
uu (the Green’s function); Gii is the i-th row,

i-th column element in G; G|i is a square matrix with G’s i-th column and 0 else-
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where. Some calculation gives

f+
u = fu +

w0f0 − w0fi

1 + w0Gii
G·i

where fi is the unlabeled node’s original solution, andG·i is the i-th column vector

in G. If we want to pin down the unlabeled node to value f0, we can let w0 → ∞
to obtain

f+
u = fu +

f0 − fi

Gii
G·i



Appendix B

The Inverse of a Matrix with One

Row/Column Removed

Let A be an n×n non-singular matrix. Given A−1, we would like a fast algorithm

to compute A−1
¬i , where A¬i is the (n− 1)× (n− 1) matrix obtained by removing

the i-th row and column from A.

Let B = perm(A, i) be the matrix created by moving the i-th row in front of

the 1st row, and the i-th column in front of the 1st column of A. Then

A−1
¬i = (perm(A, i)¬1)

−1 = (B¬1)
−1

Also note B−1 = perm(A−1, i). So we only need to consider the special case of

removing the first row/column of a matrix. Write B out as B =

[
b11 B1∗

B∗1 B¬1

]
,

where B1∗ = (b12 . . . b1n) and B∗1 = (b21 . . . bn1)
⊤. We will transform B into a

block diagonal form in two steps. First, letB′ =

[
1 0
B∗1 B¬1

]
= B+uv⊤ where

u = (−1, 0, . . . , 0)⊤ and v = (b11 − 1, B1∗)
⊤. We are interested in (B′)−1 which

will be used in the next step. By the matrix inversion lemma (Sherman-Morrison-

Woodbury formula),

(B′)−1 = (B + uv⊤)−1 = B−1 − B−1uv⊤B−1

1 + v⊤B−1u

Next let B′′ =

[
1 0
0 B¬1

]
= B′ + wu⊤ where w = (0, B∗1)

⊤. Applying the

matrix inversion lemma again,

(B′′)−1 = (B′ + wu⊤)−1 = (B′)−1 − (B′)−1wu⊤(B′)−1

1 + u⊤(B′)−1w
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But since B′′ is block diagonal, we know (B′′)−1 =

[
1 0
0 (B¬1)

−1

]
. Therefore

(B¬1)
−1 = ((B′′)−1)¬1.



Appendix C

Laplace Approximation for

Gaussian Processes

This derivation largely follows (Herbrich, 2002) (B.7). The Gaussian process

model, restricted to the labeled and unlabeled data, is

f ∼ N
(
µ, ∆̃−1

)
(C.1)

We will use G = ∆̃−1 to denote the covariance matrix (i.e. the Gram matrix). Let

y ∈ {−1,+1} be the observed discrete class labels. The hidden variable f and

labels y are connected via a sigmoid noise model

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
=

1

1 + e−2γfiyi
(C.2)

where γ is a hyperparameter which controls the steepness of the sigmoid. Given

the prior and the noise model, we are interested in the posterior p(fL, fU |yL). By

Bayes theorem,

p(fL, fU |yL) =

∏l
i=1 P (yi|fi)p(fL, fU )

P (yL)
(C.3)

Because of the noise model, the posterior is not Gaussian and has no closed form

solution. We use the Laplace approximation.

First, we find the mode of the posterior (6.7):

(f̂L, f̂U ) = arg maxfL,fU

∏l
i=1 P (yi|fi)p(fL, fU )

P (yL)
(C.4)

= arg maxfL,fU

l∑

i=1

lnP (yi|fi) + ln p(fL, fU ) (C.5)

= arg maxfL,fU
Q1 +Q2 (C.6)
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Note fU only appears in Q2, and we can maximize f̂U independently given f̂L. Q2

is the log likelihood of the Gaussian (C.1). Therefore given f̂L, fU follows the

conditional distribution of Gaussian:

p(fU |f̂L) = N
(
GULG

−1
LLf̂L, GUU −GULG

−1
LLGLU

)
(C.7)

Moreover, the mode is the conditional mean

f̂U = GULG
−1
LLf̂L (C.8)

It’s easy to see (C.8) has the same form as the solution for Gaussian Fields (4.11):

Recall G = ∆̃−1. From partitioned matrix inversion theorem,

∆̃UU = S−1
A

∆̃UL = −S−1
A GULG

−1
LL

where SA = GUU − GUL(GLL)−1GLU is the Schur complement of GLL. This

gives us

−(∆̃UU )−1∆̃UL = SAS
−1
A GULG

−1
LL = GULG

−1
LL

Thus we have

f̂U = −∆̃−1
UU∆̃ULf̂L (C.9)

= ∆̃−1
UUWULf̂L (C.10)

which has the same form as the harmonic energy minimizing function in (Zhu et al.,

2003a). In fact the latter is the limiting case when σ2 → ∞ and there is no noise

model.

Substitute (C.8) back to Q2, using partitioned inverse of a matrix, it can be

shown that (not surprisingly)

Q2 = −1

2
f⊤
LG

−1
LLfL + c (C.11)

Now go back to Q1. The noise model can be written as

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
(C.12)

=

(
eγfi

eγfi + e−γfi

) yi+1

2
(

1− eγfi

eγfi + e−γfi

) 1−yi
2

(C.13)

= π(fi)
yi+1

2 (1− π(fi))
1−yi

2 (C.14)
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therefore

Q1 =
l∑

i=1

lnP (yi|fi) (C.15)

=
l∑

i=1

yi + 1

2
lnπ(fi) +

1− yi

2
ln(1− π(fi)) (C.16)

= γ(yL − 1)⊤fL −
l∑

i=1

ln(1 + e−2γfi) (C.17)

Put it together,

f̂L = arg maxQ1 +Q2 (C.18)

= arg maxγ(yL − 1)⊤fL −
l∑

i=1

ln(1 + e−2γfi)− 1

2
f⊤
LG

−1
LLfL (C.19)

To find the mode, we take the derivative,

∂(Q1 +Q2)

∂fL
= γ(yL − 1) + 2γ(1− π(fL))−G−1

LLfL (C.20)

Because of the term π(fL) it is not possible to find the root directly. We solve it

with Newton-Raphson algorithm,

f
(t+1)
L ← f

(t)
L − H−1∂(Q1 +Q2)

∂fL

∣∣∣∣
fL

(t)

(C.21)

where H is the Hessian matrix,

H =

[
∂2(Q1 +Q2)

∂fi∂fj

∣∣∣∣
fL

]
(C.22)

Note d
dfi
π(fi) = 2γπ(fi)(1− π(fi)), we can write H as

H = −G−1
LL − P (C.23)

where P is a diagonal matrix with elements Pii = 4γ2π(fi)(1− π(fi)).

Once Newton-Raphson converges we compute f̂U from f̂L with (C.8). Classifi-

cation can be done with sgn(f̂U ) noting this is the Bayesian classification rule with

Gaussian distribution and sigmoid noise model.
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To compute the covariance matrix of the Laplace approximation, note by defi-

nition the inverse covariance matrix of the Laplace approximation is

Σ−1 =

[
∂2 − ln p(f |y)

∂fi∂fj

∣∣∣∣
f̂L,f̂U

]
(C.24)

From (6.7) it is straightforward to confirm

Σ−1 =

[
P 0

0 0

]
+G−1 =

[
P 0

0 0

]
+ ∆̃ (C.25)

Therefore the covariance matrix is

Σ =

([
P 0

0 0

]
+ ∆̃

)−1

(C.26)

where P is evaluated at the mode f̂L.



Appendix D

Hyperparameter Learning by

Evidence Maximization

This derivation largely follows (Williams & Barber, 1998). We want to find the

MAP hyperparameters Θ which maximize the posterior

p(Θ|yL) ∝ p(yL|Θ)p(Θ)

The prior p(Θ) is usually chosen to be simple, and so we focus on the term

p(yL|Θ), known as the evidence. The definition

p(yL|Θ) =

∫
p(yL|fL)p(fL|Θ) dfL

is hard to compute analytically. However notice

p(yL|Θ) =
p(yL|fL)p(fL|Θ)

p(fL|yL,Θ)
,∀fL (D.1)

Since it holds for all fL, it holds for the mode of the Laplace approximation f̂L:

p(yL|Θ) =
p(yL|f̂L)p(f̂L|Θ)

p(f̂L|yL,Θ)

The terms on the numerator are straightforward to compute; the denominator is

tricky. However we can use the Laplace approximation, i.e. the probability density

at the mode: p(f̂L|yL,Θ) ≈ N (f̂L|f̂L,ΣLL). Recall

Σ =

([
P 0

0 0

]
+

[
GLL GLU

GUL GUU

]−1
)−1

(D.2)
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By applying Schur complement in block matrix decomposition twice, we find

ΣLL = (P +G−1
LL)−1 (D.3)

Therefore the evidence is

p(yL|Θ) ≈ p(yL|f̂L)p(f̂L|Θ)

N (f̂L|f̂L,ΣLL)
(D.4)

=
p(yL|f̂L)p(f̂L|Θ)

(2π)−
n
2 |ΣLL|−

1
2

(D.5)

=
p(yL|f̂L)p(f̂L|Θ)

(2π)−
n
2 |(P +G−1

LL)−1|− 1
2

(D.6)

Switching to log domain, we have

log p(yL|Θ) ≈ Ψ(f̂L) +
n

2
log 2π +

1

2
log |ΣLL| (D.7)

= Ψ(f̂L) +
n

2
log 2π − 1

2
log |P +G−1

LL| (D.8)

where Ψ(fL) = log p(yL|fL) + log p(fL|Θ). Since f ∼ N
(
µ, ∆̃−1

)
= N (µ,G),

we have fL ∼ N (µL, GLL). Therefore

Ψ(f̂L) = log p(yL|f̂L) + log p(f̂L|Θ) (D.9)

= −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−n
2

log 2π − 1

2
log |GLL| −

1

2
(f̂L − µL)⊤G−1

LL(f̂L − µL)(D.10)

Put it together,

log p(yL|Θ) ≈ −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−1

2
log |GLL| −

1

2
(f̂L − µL)⊤G−1

LL(f̂L − µL)− 1

2
log |P +G−1

LL|

= −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−1

2
(f̂L − µL)⊤G−1

LL(f̂L − µL)− 1

2
log |GLLP + I| (D.11)
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This gives us a way to (approximately) compute the evidence.

To find the MAP estimate of Θ (which can have multiple local maxima), we use

gradient methods. This involves the derivatives of the evidence ∂ log p(yL|Θ)/∂θ,

where θ is the hyperparameter β, σ, γ or the ones controlling W .

We start from

∂

∂θ
π(f̂i) =

∂

∂θ

1

1 + e−2γf̂i

(D.12)

= 2π(f̂i)(1− π(f̂i))(f̂i
∂γ

∂θ
+ γ

∂f̂i

∂θ
) (D.13)

To compute ∂ f̂L/∂θ, note the Laplace approximation mode f̂L satisfies

∂Ψ(fL)

∂fL

∣∣∣∣
f̂L

= γ(yL + 1− 2π(f̂L))−G−1
LL(f̂L − µL) = 0 (D.14)

which means

f̂L = γGLL(yL + 1− 2π(f̂L)) + µL (D.15)

Taking derivatives on both sides,

∂ f̂L
∂θ

=
∂

∂θ
γGLL(yL + 1− 2π(f̂L)) (D.16)

=
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 2γGLL

∂π(f̂L)

∂θ
(D.17)

=
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 1

γ
GLLP f̂L

∂γ

∂θ
−GLLP

∂ f̂L
∂θ

(D.18)

which gives

∂ f̂L
∂θ

= (I +GLLP )−1

[
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 1

γ
GLLP f̂L

∂γ

∂θ

]
(D.19)



132 APPENDIX D. EVIDENCE MAXIMIZATION

Now it is straightforward to compute the gradient with (D.11):

∂

∂θ
log p(yL|Θ)

≈ ∂

∂θ

[
−

L∑

i=1

log(1 + exp(−2γf̂iyi))−
1

2
(f̂L − µL)⊤G−1

LL(f̂L − µL)− 1

2
log |GLLP + I|

]

= −
L∑

i=1

exp(−2γf̂iyi)(−2yi)

1 + exp(−2γf̂iyi)
(f̂i
∂γ

∂θ
+ γ

∂f̂i

∂θ
)

−1

2

[
2(G−1

LL(f̂L − µL))⊤
∂ f̂L
∂θ

+ (f̂L − µL)⊤
∂G−1

LL

∂θ
(f̂L − µL)

]

−1

2
tr

(
(GLLP + I)−1∂GLLP

∂θ

)
(D.20)

where we used the fact

∂ log |A|
∂θ

= tr

(
A−1∂A

∂θ

)
(D.21)

For example, if θ = γ, the gradient can be computed by noting ∂γGLL

∂γ = GLL,

∂γ
∂γ = 1,

∂G−1
LL

∂γ = 0, and ∂GLLP
∂γ = GLL

∂P
∂γ where ∂Pii

∂γ = 8γπ(f̂i)(1 − π(f̂i)) +

4γ2(1− 2π(f̂i))
∂π(f̂i)

∂γ .

For θ = β, we have ∂γGLL

∂β = γ(−1/β)GLL, ∂γ
∂β = 0,

∂G−1
LL

∂β = G−1
LL/β, and

∂GLLP
∂β = −GLLP/β+GLL

∂P
∂β where ∂Pii

∂β = 8γ3π(f̂i)(1−π(f̂i))(1−2π(f̂i))
∂f̂i

∂β .

For θ = σ, the computation is more intensive because the complex depen-

dency between G and σ. We start from ∂GLL

∂σ =
[

∂G
∂σ

]
LL

. Using the fact ∂A−1

∂θ =

−A−1 ∂A
∂θ A

−1 and G = ∆̃−1, we get ∂G
∂σ = β/σ3G2. Note the computation in-

volves the multiplication of the full matrix G and is thus more demanding. Once
∂GLL

∂σ is computed the rest is easy.

If we parameterize the weights W in Gaussian Fields with radial basis func-

tions (for simplicity we assume a single length scale parameter α for all dimen-

sions. Extension to multiple length scales is simple),

wij = exp

(
−
d2

ij

α2

)
(D.22)

where dij is the Euclidean distance between xi, xj in the original feature space, we

can similarly learn the hyperparameter α. Note
∂wij

∂α = wij
d2

ij

α3 , ∂∆
∂α = ∂D

∂α − ∂W
∂α ,

∂∆̃
∂α = β ∂∆

∂α . The rest is the same as for σ above.
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Similarly with a tanh()-weighted weight function wij = (tanh(α1(dij −
α2)) + 1)/2, we have

∂wij

∂α1
= (1− tanh2(α1(dij −α2)))(dij −α2)/2 and

∂wij

∂α2
=

−(1− tanh2(α1(dij − α2)))α1/2, and the rest follows.
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Appendix E

Mean Field Approximation for

Kernel CRF Training

In the basic kernel CRF model, each clique c is associated with |y||c| parameters

αc
j(yc). Even if we only consider vertex cliques, there would be hundreds of thou-

sands of parameters for a typical protein dataset. This seriously affects the training

efficiency.

To solve the problem, we adopt the notion of “import vector machines” by Zhu

and Hastie (2001). That is, we use a subset of the training examples instead of all

of them. The subset is constructed by greedily selecting training examples one at a

time to minimize the loss function:

arg minkR(fA∪{k}, λ)−R(fA, λ) (E.1)

where

fA(x,y) =
∑

j∈A

αj(y)K(xj ,x) (E.2)

and A is the current active import vector set.

(E.1) is hard to compute: we need to update all the parameters for fA∪{k}.

Even if we keep old parameters in fA fixed, we still need to use expensive forward-

backward algorithm to train the new parameters αk(y) and compute the loss. Fol-

lowing McCallum (2003), we make a set of speed up approximations.

Approximation 1: Mean field approximation. With the old fA we have an

old distribution P (y|x) = 1/Z exp(
∑

c f
c
A(x,y)) over a label sequence y. We

approximate P (y|x) by the mean field

Po(y|x) =
∏

i

Po(yi|xi) (E.3)
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i.e. the mean field approximation is the independent product of marginal distribu-

tions at each position i. It can be computed with the Forward-Backward algorithm

on P (y|x).

Approximation 2: Consider only the vertex kernel. In conjunction with the

mean field approximation, we only consider the vertex kernelK(xi, xj) and ignore

edge or other higher order kernels. The loss function becomes

R(fA, λ) = −
∑

i∈T

logPo(yi|xi) +
λ

2

∑

i,j∈A

∑

y

αi(y)αj(y)K(xi, xj) (E.4)

where T = {1, . . . ,M} is the set of training positions on which to evaluate the

loss function. Once we add a candidate import vector xk to the active set, the new

model is

Pn(yi|xi) =
Po(yi|xi) exp(αk(yi)K(xi, xk))∑

y Po(y|xi) exp(αk(y)K(xi, xk))
(E.5)

The new loss function is

R(fA∪{k}, λ) = −
∑

i∈T

logPn(yi|xi) +
λ

2

∑

i,j∈A∪{k}

∑

y

αi(y)αj(y)K(xi, xj)

(E.6)

And (E.1) can be written as

R(fA∪{k}, λ)−R(fA, λ) = −
∑

i∈T

αk(yi)K(xi, xk) (E.7)

+
∑

i∈T

log
∑

y

Po(y|xi) exp(αk(y)K(xi, xk))

+λ
∑

j∈A

∑

y

αj(y)αk(y)K(xj , xk) +
λ

2

∑

y

α2
k(y)K(xk, xk)

This change of loss is a convex function of the |y| parameters αk(y). We can find

the best parameters with Newton’s method. The first order derivatives are

∂R(fA∪{k}, λ)−R(fA, λ)

∂αk(y)
= −

∑

i∈T

K(xi, xk)δ(yi, y) (E.8)

+
∑

i∈T

Pn(y|xi)K(xi, xk) (E.9)

+λ
∑

j∈A∪{k}

αj(y)K(xj , xk) (E.10)
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And the second order derivatives are

∂2R(fA∪{k}, λ)−R(fA, λ)

∂αk(y)∂αk(y′)
=

∑

i∈T

[
Pn(y|xi)K

2(xi, xk)δ(y, y
′)− Pn(y|xi)K

2(xi, xk)Pn(y′|xi)
]

+λK(xk, xk)δ(y, y
′) (E.11)

Approximation 1 and 2 allow us to estimate the change in loss function inde-

pendently for each position in T . This avoids the need of dynamic programming.

Although the time complexity to evaluate each candidate xk is still linear in |T |,
we save by a (potentially large) constant factor. Further more, they allow a more

dramatic approximation as shown next.

Approximation 3: Sparse evaluation of likelihood. A typical protein database

has around 500 sequences, with hundreds of amino acid residuals per sequence.

Therefore M , the total number of training positions, can easily be around 100,000.

Normally T = {1, . . . ,M}, i.e. we need to sum over all training positions to

evaluate the log-likelihood. However we can speed up by reducing T . There are

several possibilities:

1. Focus on errors: T = {i|yi 6= arg maxyPo(y|xi)}

2. Focus on low confidence: T = {i|Po(yi|xi) < p0}

3. Skip positions: T = {ai|ai ≤M ; a, i ∈ N}

4. Random sample: T = {i|i ∼ uniform(1,M)}

5. Error/confidence guided sample: errors / low confidence positions have higher

probability to be sampled.

We need to scale the log likelihood term to maintain the balance between it and the

regularization term:

R(fA, λ) = −M|T |
∑

i∈T

logPo(yi|xi) +
λ

2

∑

i,j∈A

∑

y

αi(y)αj(y)K(xi, xj) (E.12)

and scale the derivatives accordingly.

Other approximations: We may want to add more than one candidate import

vector to A at a time. However we need to eliminate redundant vectors, possibly

by the kernel distance. We may not want to fully train fA∪{k} once we selected k.
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Appendix F

An Empirical Comparison of

Iterative Algorithms

The single most significant bottleneck in computing the harmonic function is to

invert a u × u matrix, as in fu = −∆−1
uu∆ulfl. Done naively the cost is close

to O(n3), which is prohibitive for practical problems. For example Matlab inv()
function can only handle n in the range of several thousand. Clearly, we need to

find ways to avoid the expensive inversion. One can go several directions:

1. One can approximate the inversion of a matrix by its top few eigenvalues

and eigenvectors. If a n×n invertible matrixA has spectrum decomposition

A =
∑n

i=1 λiφiφ
⊤
i , then A−1 =

∑n
i=1 1/λiφiφ

⊤
i ≈

∑m
i=1 1/λiφiφ

⊤
i . The

topm < n eigenvectors φi with the smallest eigenvalues λi is less expensive

to compute than inverting the matrix. This has been used in non-parametric

transforms of graph kernels for semi-supervised learning in Chapter 8. A

similar approximation is used in (Joachims, 2003). We will not pursue it

further here.

2. One can reduced the problem size. Instead of using all of the unlabeled

data, we can use a subset (or clusters) to construct the graph. The harmonic

solution on the remaining data can be approximated with a computationally

cheap method. The backbone graph in Chapter 10 is an example.

3. One can use iterative methods. The hope is that each iteration is O(n) and

convergence can be reached in relatively few iterations. There is a rich set of

iterative methods applicable. We will compare the simple ‘label propagation’

algorithm, loopy belief propagation and conjugate gradient next.
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F.1 Label Propagation

The original label propagation algorithm was proposed in (Zhu & Ghahramani,

2002a). A slightly modified version is presented here. Let P = D−1W be the

transition matrix. Let fl be the vector for labeled set (for multiclass problems it

can be an l × c matrix). The label propagation algorithm consists of two steps:

1.

(
f

(t+1)
l

f
(t+1)
u

)
= P

(
f

(t)
l

f
(t)
u

)

2. Clamp the labeled data f
(t+1)
l = fl

It can be shown fu converges to the harmonic solution regardless of initialization.

Each iteration needs a matrix-vector multiplication, which can be O(n) for sparse

graphs. However the convergence may be slow.

F.2 Conjugate Gradient

The harmonic function is the solution to the linear system

∆uufu = −∆ulfl (F.1)

Standard conjugate gradient methods have been shown to perform well (Argyriou,

2004). In particular, the use of Jacobi preconditioner was shown to improve con-

vergence. The Jacobi preconditioner is simply the diagonal of ∆uu, and the pre-

conditioned linear system is

diag(∆uu)−1∆uufu = −diag(∆uu)−1∆ulfl (F.2)

We note this is exactly

(I − Puu)fu = −Pulfl (F.3)

i.e. the alternative definition of harmonic function fu = −(I−Puu)−1Pulfl, where

P = D−1W is the transition matrix.

F.3 Loopy belief propagation on Gaussian fields

The harmonic solution

fu = −∆−1
uu∆ulfl (F.4)

computes the mean of the marginals on unlabeled nodes u. ∆ is the graph Lapla-

cian. The computation involves inverting a u× u matrix and is expensive for large
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datasets. We hope to use loopy belief propagation instead, as each iteration isO(n)
if the graph is sparse, and loopy BP has a reputation of converging fast (Weiss &

Freeman, 2001) (Sudderth et al., 2003). It has been proved that if loopy BP con-

verges, the mean values are correct (i.e. the harmonic solution).

The Gaussian field is defined as

p(y) ∝ exp(−1

2
y∆y⊤) (F.5)

And fu = Ep[yu]. Note the corresponding pairwise clique representation is

p(y) ∝
∏

i,j

ψij(yi, yj) (F.6)

=
∏

i,j

exp

(
−1

2
wij(yi − yj)

2

)
(F.7)

=
∏

i,j

exp

(
−1

2
(yiyj)

(
a b
c d

)(
yi

yj

))
(F.8)

where a = d = wij , b = c = −wij , and wij is the weight of edge ij. Notice in

this simple model we don’t have n nodes for hidden variables and another n for

observed ones; we only have n nodes with some of them observed. In other words,

there is no ’noise model’.

The standard belief propagation messages are

mij(yj) = α

∫

yi

ψij(yi, yj)
∏

k∈N(i)\j

mki(yi)dyi (F.9)

where mij is the message from i to j, N(i)\j is the neighbors of i except j, and

α a normalization factor. Initially the messages are arbitrary (e.g. uniform) except

for observed nodes yl = fl, whose messages to their neighbors are

mlj(yj) = αψij(yl, yj) (F.10)

After the messages converge, the marginals (belief) is computed as

b(yi) = α
∏

k∈N(i)

mki(yi) (F.11)

For Gaussian fields with scalar-valued nodes, each message mij can be param-

eterized similar to a Gaussian distribution by its mean µij and inverse variance

(precision) Pij = 1/σ2
ij parameters. That is,

mij(xj) ∝ exp

(
−1

2
(xj − µij)

2Pij

)
(F.12)
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We derive the belief propagation iterations for this special case next.

mij(yj)

= α

∫

yi

ψij(yi, yj)
∏

k∈N(i)\j

mki(yi)dyi

= α

∫

yi

exp

(
−1

2
(yiyj)

(
a b
c d

)(
yi

yj

)) ∏

k∈N(i)\j

mki(yi)dyi

= α2

∫

yi

exp


−1

2


(yiyj)

(
a b
c d

)(
yi

yj

)
+

∑

k∈N(i)\j

(xi − µki)
2Pki




 dyi

= α3 exp

(
−1

2
dy2

j

)

∫

yi

exp


−1

2




a+

∑

k∈N(i)\j

Pki


 y2

i + 2


byj −

∑

k∈N(i)\j

Pkiµki


 yi




 dyi

where we use the fact b = c. LetA = a+
∑

k∈N(i)\j Pki,B = byj−
∑

k∈N(i)\j Pkiµki,

mij(yj) (F.13)

= α3 exp

(
−1

2
dy2

j

)∫

yi

exp

[
−1

2

(
Ay2

i + 2Byi

)]
dyi

= α3 exp

(
−1

2
dy2

j

)∫

yi

exp

[
−1

2

(
(
√
Ayi +B/

√
A)2 −B2/A

)]
dyi

= α3 exp

[
−1

2

(
dy2

j −B2/A
)] ∫

yi

exp

[
−1

2

(
(
√
Ayi +B/

√
A)2
)]
dyi

Note the integral is Gaussian whose value depends on A, not B. However since A
is constant w.r.t. yj , the integral can be absorbed into the normalization factor,

mij(yj) (F.14)

= α4 exp

[
−1

2

(
dy2

j −B2/A
)]

= α4 exp

[
−1

2

(
dy2

j −
b2y2

j − 2b
∑

k∈N(i)\j Pkiµkiyj + (
∑

k∈N(i)\j Pkiµki)
2

a+
∑

k∈N(i)\j Pki

)]

= α5 exp

[
−1

2

((
d− b2

a+
∑

k∈N(i)\j Pki

)
y2

j + 2
b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
yj

)]
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Let C = d− b2

a+
∑

k∈N(i)\j Pki
, D =

b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
,

mij(yj) (F.15)

= α5 exp

[
−1

2

(
Cy2

j + 2Dyj

)]
(F.16)

= α5 exp

[
−1

2

((√
Cyj +D/

√
C
)2
−D2/C

)]
(F.17)

= α6 exp

[
−1

2

((√
Cyj +D/

√
C
)2
)]

(F.18)

= α6 exp

[
−1

2

(
(yj − (−D/C))2C

)]
(F.19)

Thus we see the message mij has the form of a Gaussian density with sufficient

statistics

Pij = C (F.20)

= d− b2

a+
∑

k∈N(i)\j Pki
(F.21)

µij = −D/C (F.22)

= −
b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
P−1

ij (F.23)

For our special case of a = d = wij , b = c = −wij , we get

Pij = wij −
w2

ij

wij +
∑

k∈N(i)\j Pki
(F.24)

µij = −D/C (F.25)

=
wij
∑

k∈N(i)\j Pkiµki

wij +
∑

k∈N(i)\j Pki
P−1

ij (F.26)

For observed nodes yl = fl, they ignore any messages sent to them, while sending

out the following messages to their neighbors j:

µlj = fl (F.27)

Plj = wlj (F.28)
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The belief at node i is

bi(yi) (F.29)

= α
∏

k∈N(i)

mki(yi) (F.30)

= α exp


−1

2



∑

k∈N(i)

(yi − µki)
2Pki




 (F.31)

= α2 exp


−1

2



∑

k∈N(i)

Pkiy
2
i − 2

∑

k∈N(i)

Pkiµkiyi




 (F.32)

= α3 exp


−1

2



(
yi −

∑
k∈N(i) Pkiµki∑

k∈N(i) Pki

)2

·



∑

k∈N(i)

Pki






 (F.33)

This is a Gaussian distribution with mean and inverse variance

µi =

∑
k∈N(i) Pkiµki∑

k∈N(i) Pki
(F.34)

Pi =
∑

k∈N(i)

Pki (F.35)

F.4 Empirical Results

We compare label propagation (LP), loopy belief propagation (loopy BP), conju-

gate gradient (CG) and preconditioned conjugate gradient (CG(p)) on eight tasks.

The tasks are small because we want to be able to compute the closed form solution

fu with matrix inversion. LP is coded in Matlab with sparse matrix. Loopy BP is

implemented in C. CG and CG(p) use Matlab cgs() function.

Figure F.1 compares the mean squared error
∑

i∈U

(
f (t)(i)− fu(i)

)2
with dif-

ferent methods at iteration t. We assume that with good implementation, the cost

per iteration for different methods is similar. For multiclass tasks, it shows the

binary sub-task of the first class vs. the rest. Note the y-axis is in log scale. We

observe that loopy BP always converges reasonably fast; CG(p) can catch up and

come closest to the closed form solution quickly, however sometimes it does not

converge (d,e,f); CG is always worse than CG(p); LP converges very slowly.

For classification purpose we do not need to wait for f
(t)
u to converge. Another

quantity of interest is when does f
(t)
u give the same classification as the closed

form solution fu. For the binary case this means f
(t)
u and fu are on the same side
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Figure F.1: Mean squared error to the harmonic solution with various iterative

methods: loopy belief propagation (loopy BP), conjugate gradient (CG), conjugate

gradient with Jacobi preconditioner (CG(p)), and label propagation (LP). Note the

log-scale y-axis.
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task nodes edges loopy BP CG CG(p) LP closed form

one vs. two 2200 17000 0.02 0.002 0.001 0.0008 2e+01

odd vs. even 4000 31626 0.03 0.003 0.0007 0.001 1e+02

baseball vs. hockey 1993 13930 0.02 0.001 0.002 0.0007 2e+01

pc vs. mac 1943 14288 0.02 0.002 0.002 0.0007 2e+01

religion vs. atheism 1427 10201 0.01 0.001 0.001 0.0005 7

ten digits 4000 31595 0.03 0.003 0.004 0.008 9e+01

isolet 7797 550297 5 0.0005 0.0003 1 2e+03

freefoodcam 5254 23098 0.02 0.0001 7e-05 0.008 1e+02

Table F.1: Average run time per iteration for loopy belief propagation (loopy BP),

conjugate gradient (CG), conjugate gradient with Jacobi preconditioner (CG(p)),

and label propagation (LP). Also listed is the run time for closed form solution.

Time is in seconds. Loopy BP is implemented in C, others in Matlab.

of 0.5, if labels are 0 and 1. We define classification agreement as the percentage of

unlabeled data whose f
(t)
u and fu have the same label. Note this is not classification

accuracy. Ideally agreement should reach 100% long before f
(t)
u converges. Figure

F.2 compares the agreement. Note x-axis is in log scale. All methods quickly

reach classification agreement with the closed form solution, except CG and CG(p)

sometimes do not converge; Task (f) has only 80% agreement.

Since loopy BP code is implemented in C and others in Matlab, their speed

may not be directly comparable. Nonetheless we list the average per-iteration run

time of different iterative methods in Table F.1. Also listed are the run time of the

closed form solution with Matlab inv().
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Figure F.2: Classification agreement to the closed form harmonic solution with

various iterative methods: loopy belief propagation (loopy BP), conjugate gradient

(CG), conjugate gradient with Jacobi preconditioner (CG(p)), and label propaga-

tion (LP). Note the log-scale x-axis.
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162 NOTATION

Notation

∆ combinatorial graph Laplacian

∆̃ smoothed Laplacian

α length scale hyperparameter for edge weights

β inverse temperature parameter for Gaussian random fields

γ steepness parameter for the Gaussian process noise model

η transition probability to the dongle node

θm component class membership P (y = 1|m) for mixture models

λ eigenvalues of the Laplacian

µ optimal spectrum transformation of the Laplacian

σ smoothing parameter for the graph Laplacian kernel

φ eigenvectors of the Laplacian

D diagonal degree matrix of a graph

E energy function on a graph

K kernel

L labeled data

L log likelihood of mixture models

O combined log likelihood and graph energy objective

P transition matrix of a graph

R responsibility of mixture components, Rim = P (m|i)
R risk, the estimated generalization error of the Bayes classifier

U unlabeled data

W weight matrix of a graph

f arbitrary real functions on the graph

gk the graph for semi-supervised learning

gs the graph encoding sequence structure in KCRFs

h harmonic function

l labeled data size

m length of a sequence

n total size of labeled and unlabeled data

r spectral transformation function to turn Laplacian into a kernel

u unlabeled data size

w edge weight in a graph

x Features of a data point

y Target value. In classification it is the (discrete) class label
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ǫNN graphs, 18

exp-weighted graphs, 19

tanh-weighted graphs, 18

kNN graphs, 18

active learning, 35

backbone graph, 85

bandwidth, 5

Baum-Welch algorithm, 69

bootstrapping, 3

class mass normalization, 25

clique, 70

co-training, 3

dongle, 26

edge, 5

eigen decomposition, 57

electric networks, 24

EM, 80

energy, 21

entropy minimization, 53

evidence maximization, 51

forward-backward algorithm, 69

fully connected graphs, 18

Gaussian process, 45

Gaussian random field, 21

graph, 5, 9

harmonic function, 22

harmonic mixtures, 83

hyperparameter, 5

hyperparameters, 51

inductive, 5

kernel alignment, 61

kernel conditional random fields, 70

label propagation, 6

labeled data, 5

Laplacian

combinatorial, 22

regularized, 46

mincut, 24

minimum spanning tree, 56

mixture model, 3, 80

order constraints, 62

QCQP, 60

random walk, 23

representer theorem, 71

self training, 3, 101

self-teaching, 3

semi-supervised learning, 2

sparse graphs, 18

spectral transformation, 59

supernode, 85

symmetrization, 10

transductive, 5

163



164 INDEX

transductive SVM, 3

transition matrix, 6

unlabeled data, 5


