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ABSTRACT

We consider the transductive learning problem when the labels
belong to a continuous space. Through the use of spectral graph
wavelets, we explore the benefits of multiresolution analysis on
a graph constructed from the labeled and unlabeled data. The
spectral graph wavelets behave like discrete multiscale differ-
ential operators on graphs, and thus can sparsely approximate
piecewise smooth signals. Therefore, rather than enforce a prior
belief that the labels are globally smooth with respect to the in-
trinsic structure of the graph, we enforce sparse priors on the
spectral graph wavelet coefficients. One issue that arises when
the proportion of data with labels is low is that the fine scale
wavelets that are useful in sparsely representing discontinuities
are largely masked, making it difficult to recover the high fre-
quency components of the label sequence. We discuss this chal-
lenge, and propose one method to use the structured sparsity of
the wavelet coefficients to aid label reconstruction.

Keywords— Sparse approximation, spectral graph theory,
structured sparsity, transductive regression, wavelets

1. INTRODUCTION

1.1. The Transductive Learning Problem

The goal of semi-supervised learning is to learn a mapping
from a set of data points X = {x1,z3,...,2y} to the cor-
responding labels Y = {y1,y2,...,yn}. The pairs (x;,y;)
are sampled in an independent and identically distributed (iid)
fashion according to a joint distribution p(z,y) over the sam-
ple space X x Y. Y may be equal to {—1,1} in the case
of binary classification, {1,2,...,c} in the general classifica-
tion problem, or a continuous space such as R in a regres-
sion problem. The data X = {z,za,...,2zx} is split into
the labeled data X; = {x1,x2,...,x;} and the unlabeled data
Xu = {141, 2142, ..., xn}. In addition to X, the labels as-
sociated with the labeled data, Y; = {y1,v2,..., ¥y}, are pro-
vided. Usually, [ << N; i.e., a small portion of the data is
labeled. The transductive learning problem is to predict the
labels Y, associated with the unlabeled data. The primary moti-
vation for semi-supervised learning is that in many applications,
unlabeled data is “cheap,” but labeled data may be “expensive,’
either in monetary cost or time required to assemble the labels.

References [1, 2] survey approaches to semi-supervised learn-
ing problems, as well as common applications.

1.2. Enforcing Global Smoothness

The main idea behind semi-supervised learning is that the unla-
beled data provides information about p(z), which may in turn
provide information about p(y | z). To make this latter in-
ference (i.e., for the unlabeled data to be useful), the problem
must satisfy some structural properties. Three such properties
targeted by different methods are (i) the smoothness assump-
tion that if two data points are connected by a path of high
density (i.e., p(x) is high along the path), then the labels for
the two points are similar; (ii) the cluster assumption that the
data are clustered, and points within the same cluster likely have
the same label; and (iii) the manifold assumption that the high-
dimensional data X lie on a low-dimensional manifold [2].

Accordingly, a number of semi-supervised learning meth-
ods (e.g., [3, 4, 5]) proceed by representing the data X by a
weighted, undirected graph G = {V, &, w}, which consists of
a set of vertices V, a set of edges &£, and a weight matrix w
whose entries w,, , represent a non-negative weight if there is an
edge connecting vertices v and v, and are zero otherwise.! They
then force the labels to be smooth with respect to the intrinsic
structure of this graph by, for example, solving a regularization
problem of the form:

min  S(f) st fi=Y,

F=[f15ful

where S(f) penalizes local variation of the labels between con-
nected points on the graph. For example, [3, 5] consider:

D wau[f(0) = FW)]* = fLS. (1)

(u,v)€E

S(f) =

1.3. Beyond Global Smoothness

In this paper, we are specifically interested in regression prob-
lems (Y is continuous) where the labels may not be globally
smooth with respect to the underlying graph structure, but rather

I The wide range of methods to construct graph weights includes those based
on the Euclidean distances between data points and those based on the k-nearest
neighbor graph.



piecewise smooth signals with discontinuities or large local
variations. While simple methods based on global smoothness,
such as the interpolated regularization algorithm of [5], do sur-
prisingly well empirically on label functions with large local
variations, our goal is to explore the benefits of multiresolution
analysis on the graph. Reference [6] takes a similar approach by
defining multiscale wavelets on trees. We extend the multires-
olution approach to arbitrary graphs without restrictions on the
underlying structure by leveraging spectral graph wavelets.

2. SPECTRAL GRAPH WAVELETS

In this section, we review some basic definitions from spec-
tral graph theory [7] and the construction of the spectral graph
wavelets introduced in [8]. We again start with a model of the
data X as an undirected, weighted graph G = {£,V,w} with
|V| = N, and assume that the graph is connected. The non-
normalized Laplacian is defined as £ := D — w, where the
off-diagonal elements of the degree matrix D are zeros, and the
diagonal element of D corresponding to the degree of each ver-
tex is the sum of the weights of all the edges incident to it.

We denote the complete set of orthonormal eigenvectors
of £ and their associated real eigenvalues by x, and A\, for
¢ =0,...,N — 1. Without loss of generality, we assume the
eigenvalues of the Laplacian of the connected graph to be or-
deredas 0 = \p < A1 < Aa... < An_1 = Amax- The graph
Fourier transform f of a function f € R™ on the vertices of
G is defined by f(0) == (x¢s, f) = SN, xi(n) f(n), and the
inverse transform is given by f(n) = Eé\f:_ol F(Oxe(n).

The spectral graph wavelet transform [8] is generated by
wavelet operators that are operator-valued functions of the
Laplacian. The transform is determined by the choice of a
kernel function g : R™ — R™, which is analogous to the
Fourier transform of a wavelet in the classical setting. This ker-
nel g behaves as a band-pass filter, satisfying g(0) = 0 and
lim, . g(z) = 0. The wavelet operator T, = g(L) is de-
fined through its action on a given function f as 7/’;” ) =
g(A¢)f(£). The wavelet operator at scale ¢ is then defined by
Ty = g(tL).

To form the spectral graph wavelets, we localize the wavelet
operators at different scales by applying them to the impulse
on a single vertex. That is, ¥, := T;(Sn, or, equivalently,

Yin(m) = Ee o Y g(tAe) x5 (n)xe(m). The wavelet coeffi-
cients of a function f are computed by taking the inner products
with the wavelets:

N-1
g(tX) F(0)xe(n).
£=0

Wf(tv n) = <¢t,n7 f>

The spectral graph wavelet transform also includes a second
class of waveforms called scaling functions, which are analo-
gous to the low-pass residual scaling functions from classical
wavelet analysis. Introduced to stably represent the low fre-
quency content of signals defined on the vertices, they are con-
structed in a manner analogous to the wavelets, with the scaling

function at vertex n defined by ¢,, := T},9,, = h(L)d,. The
scaling function generator i : RT™ — R acts as a low-pass filter,
satisfying h(0) > 0 and lim,_, h(x) = 0.

To summarize, given a fixed set of wavelet scales {t;}7_,
and the wavelet and scaling generators g and h, the spectral
graph wavelet transform is a linear map W : RN — RN(/+1)

defined by W f = ((Thf)T,(Tglf)T, a(Tgt‘]f)T)T

3. REGULARIZATION

3.1. Promoting Sparsity

An important property of the spectral graph wavelets is that their
localization at small scales is guaranteed by simple constraints
on the kernel g. This property ensures that the graph wavelets
behave like discrete multiscale differential operators on graphs,
and thus can sparsely approximate piecewise smooth signals.
The scaling coefficients, on the other hand, are not expected to
be sparse, as they represent the smoothed signal. Therefore,
one method to determine the labels for the unlabeled data is to
incorporate the sparse prior on the wavelet coefficients into the
following regularization problem, which is a weighted version
of lasso or basis pursuit denoising:

o) §||f MW* a3 + Ala” 1. )

oz=[o¢ ;
In (2), f € R¥ is a column vector with the labels y; at all
locations where these labels are available, and zeros elsewhere;
M € RV*N is a matrix that has 1s on all diagonal elements cor-
responding to the locations of the labels, and zeros elsewhere;
W* e RVXNWU+D) g the adjoint of the wavelet transform;
a® € RN represents the scaling coefficients; and a” € RV’
represents the wavelet coefficients. The reconstructed labels are
given by W* .., where a, minimizes (2).

Intuitively, from a sparse approximation theory point of view,
we can view problem (2) as trying to represent the signal f as
a sparse linear superposition of atoms from the “masked dic-
tionary” comprising the columns of M W*. Unfortunately, the
support of many of the high frequency wavelets (that is, those
wavelets associated with small ¢;’s) is contained within ver-
tices of the graph associated with unlabeled data. Therefore,
the associated columns of M W™ are vectors of zeros, and these
wavelets are not useful in synthesizing the signal. Empirical
results confirm this intuition, and the wavelet coefficients asso-
ciated with the high frequency wavelets are usually set to zero
in (2). As aresult, the above method tends to work best on prob-
lem instances that are also well-suited to existing regularization
methods (i.e., where the label functions are globally smooth).

3.2. Using Structured Sparsity to Recover High Frequency
Components

By design, wavelets whose support overlaps a discontinuity will
have high coefficients. Therefore, a discontinuity in the label
values induces a block of high wavelet coefficients at all scales
at vertices close to the discontinuity. Based on this structured



sparsity, one way to more accurately recover the high frequency
components of the signal is to enforce sparsity across spatial lo-
cations, but persistence across scales at the same location. By
persistence, we mean that if a wavelet coefficient at one scale
at a fixed location is non-zero (active), then the wavelet coef-
ficients at the other scales at that same location are also likely
to be non-zero. The weighted mixed norm ||-|| -, ¢ discussed in
[9, 10] provides the mathematical tool required to do this. Let
r = {@k1}ke1,2... K; le1,2,...,. be a doubly-indexed sequence
of coefficients comprising K groups of L coefficients per group.

Then the weighted mixed norm of = with weights 7 is given by
1
1\ ¢

zrl” . 3

K (L
lzll7ip,q = Z Z Tkl
k=1 \i=1

To promote sparsity across the K groups and persistence within
each group of L coefficients, we can take ¢ < 2and p > 21in (3).
Thus, to better recover the higher frequency components of the
masked signal, we propose to solve the regularization problem

D) st ||[f — MW*a|3 <e (4

min |
a=[a®; al]

TipP,1

If 7 is a vector of ones, then [|”]|,.,0 ;1 = Zgﬂ”aa””pp,
where o’ € R” represents the wavelet coefficients at location
n and all scales {¢; }]J:r The parameter p” > 2 corresponds to
different priors on the distributions of the wavelet coefficients
across all scales at the same vertex. Problem (4) can be solved
by proximal splitting methods (see, e.g., [11]).

4. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the reconstruction issues dis-
cussed in the previous section with two simple toy exam-
ples. In Example 1, we consider one dimensional data: X =
{1,2,...,1024}, y; equals 1 if 400 < x; < 600 and O oth-
erwise, and 154 (15%) of the data points are selected at ran-
dom to be the labeled set. We construct the weighted graph
based on the thresholded Gaussian kernel weighting function:

_[ru—zy

2
Wy,py =€ 202 : if ||z, — 2| < k and w,,, = 0 otherwise.
We let 0 = 2.0 and k = 3.1. We consider a spectral graph
wavelet transform W with J = 4 wavelet scales in addition to
the scaling functions. All wavelet design parameters are set to
the defaults of the spectral graph wavelet toolbox.?

Figure 1(a) shows the spectral graph wavelet coefficients,
WY, of the full set of target labels Y (assuming they were all
known). The key takeaway is that the wavelet coefficients are
sparse, with the active coefficients located around the disconti-
nuities in the label sequence. Figure 1(b) shows the wavelet and
scaling coefficients recovered by the weighted lasso regulariza-
tion (2) with A\ = 0.1. This method tends to only recover large
scale wavelet coefficients, as the finer scale wavelets are largely
masked by the matrix M.> Figure 1(c) shows the wavelet and

2 Available at http://wiki.epfl.ch/sgwt
3Note that the more localized, finer scale wavelets are actually indexed by
higher scale numbers. In this example, the finest scale wavelets are at scale 4.
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Fig. 1. Example 1. (a) The spectral graph wavelet coefficients
of the unmasked labels Y. (b) The optimal coefficients and re-
constructed labels from the weighted lasso (2). (c) The optimal
coefficients and reconstructed labels from the mixed norm reg-
ularization problem (4) with p? = oco.



(c) ()

Fig. 2. Example 2. (a) The label values, which are piecewise
smooth with a discontinuity along xo = 1 — z;. (b)-(d) The
wavelet coefficients of the full label signal on the graph at scales
1, 2, and 3, respectively, are clustered around the discontinuity.

scaling coefficients recovered by the mixed norm regularization
(4) with pP = oo, T a vector of ones, and ¢ = 10~*. Note that
the oo, 1 mixed norm objective promotes a uniform distribution
of wavelet coefficients across all scales at the same location.
We repeated the experiment 50 times with different random la-
bel patterns each time. The average mean-square errors from
the weighted lasso, the mixed norm regularization problem, and
the global smoothness-promoting interpolated regularization al-
gorithm of [5] were 0.0079, 0.0062, and 0.0048, respectively.
In Example 2, we consider 500 vertices placed randomly in
the [0, 1] x [0, 1] square. The graph and wavelet constructions
are the same as Example 1, with ¢ = .074, k = .075, and
J = 3. 25 (5%) of the data points are selected randomly to be
the labeled set. The labels, shown in Figure 2(a), are given by

y x%l + .’Eiz if Tio < 1-— Zi1
i = . .
otherwise

—2.’131‘71

Here, x; 1 and z; » are the coordinates of x; in the square. Fig-
ures 2(b)-2(d) show the wavelet coefficients of Y at different
scales, and we see that they are once again clustered around the
discontinuities in the labels. We consider the same three recon-
struction methods as Example 1, except that we use A = 0.3
for the weighted lasso. We repeated the experiment 20 times
with different random graphs and label patterns each time. The
average mean-square errors were 0.325 for the weighted lasso,
0.317 for the mixed norm regularization problem, and 0.283 for
the interpolated regularization algorithm of [5].

5. DISCUSSION

In test problems on larger examples and standard databases,
the label prediction performance of the proposed method (4)
is competitive with methods based on global smoothness priors

(sometimes slightly better, sometimes slightly worse, depend-
ing on the data set, method of graph construction, parameter
selection, etc.). However, this is somewhat disappointing due
to the significant additional complexity of the proposed spec-
tral graph wavelet method. The core issue is that we do not yet
fully understand the best way to leverage the structured sparsity
of the spectral graph wavelet transform to fill in the high fre-
quency information that is masked out by the matrix M. Other
reconstruction options we continue to investigate include: 1)
incorporating persistence within groups of coefficients across
neighboring locations at the same scale (i.e., if a wavelet coef-
ficient at a given scale and location is active, the coefficients at
the same scale at neighboring locations in the underlying graph
should also be active); ii) making the group definitions depend
on the locations of the labeled data, so that the mixed norm
penalty specifically promotes persistence in the neighborhoods
most affected by the mask M ; and iii) incorporating different
penalization weights at different scales by adjusting 7 in (4).

6. REFERENCES

[1] X.Zhu, “Semi-supervised learning literature survey,” Technical
Report TR-1530, University of Wisconsin-Madison Department
of Computer Sciences, 2005.

[2] O. Chapelle, B. Scholkopf, and A. Zien, Eds., Semi-Supervised
Learning, MIT Press, 2006.

[3] X. Zhu and Z. Ghahramani, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in Proc. International
Conference on Machine Learning, Washington, D.C., 2003, pp.
912-919.

[4] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf,
“Learning with local and global consistency,” in Advances in
Neural Information Processing Systems, S. Thrun, L. Saul, and
B. Scholkopf, Eds. 2004, pp. 321-328, MIT Press.

[5] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-
supervised learning on large graphs,” Learning Theory, Lecture
Notes in Comptuer Science, pp. 624-638, 2004.

[6] M. Gavish, B. Nadler, and R. R. Coifman, “Multiscale wavelets
on trees, graphs and high dimensional data: Theory and applica-
tions to semi supervised learning,” in Proc. International Confer-
ence on Machine Learning, Haifa, Israel, 2010.

[7]1 FE. K. Chung, Spectral Graph Theory, Vol. 92 of the CBMS Re-
gional Conference Series in Mathematics, AMS Bokstore, 1997.

[8] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, pp. 129-150, March 2011.

[9] M. Kowalski, “Sparse regression using mixed norms,” Applied
and Computational Harmonic Analysis, vol. 27, pp. 303-324,
November 2009.

[10] M. Kowalski and B. Torrésani, “Sparsity and persistence: mixed
norms provide simple signal models with dependent coefficients,”
Signal, Image and Video Processing, vol. 3, pp. 251-264, 2009.

[11] P.L.Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Prob-
lems in Science and Engineering, H. H. Bauschke, R. Burachik,
P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, Eds.
2011, Springer-Verlag.



