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Semi-Supervised Maximum Margin
Clustering with Pairwise Constraints
Hong Zeng, Member, IEEE, and Yiu-Ming Cheung, Senior Member, IEEE

Abstract—The pairwise constraints specifying whether a pair of samples should be grouped together or not have been successfully

incorporated into the conventional clustering methods such as k-means and spectral clustering for the performance enhancement.

Nevertheless, the issue of pairwise constraints has not been well studied in the recently proposed maximum margin clustering (MMC),

which extends the maximum margin framework in supervised learning for clustering and often shows a promising performance. This

paper therefore proposes a pairwise constrained MMC algorithm. Based on the maximum margin idea in MMC, we propose a set of

effective loss functions for discouraging the violation of given pairwise constraints. For the resulting optimization problem, we show that

the original nonconvex problem in our approach can be decomposed into a sequence of convex quadratic program problems via

constrained concave-convex procedure (CCCP). Subsequently, we present an efficient subgradient projection optimization method to

solve each convex problem in the CCCP sequence. Experiments on a number of real-world data sets show that the proposed

constrained MMC algorithm is scalable and outperforms the existing constrained MMC approach as well as the typical semi-supervised

clustering counterparts.

Index Terms—Semi-supervised clustering, pairwise constraints, maximummargin clustering, constrained concave-convex procedure.

Ç

1 INTRODUCTION

TRADITIONALLY, unsupervised clustering algorithms have
been widely used to discover the structure of grouping

in the data. Recently, there is an emerging interest in
incorporating limited supervision information into cluster-
ing algorithms to obtain user desired and more accurate
partition. In this paper, we focus on the semi-supervised
clustering (also called constrained clustering interchange-
ably), where the pairwise constraint provides the super-
vision information: a must-link (ML) constraint specifies that
the pair of instances should be assigned to the same cluster,
and a cannot-link (CL) constraint specifies that the pair of
instances should be placed into the different clusters. From
the practical viewpoint, the utilization of pairwise con-
straints is often a natural choice. In some application
domains, the pairwise constraints can be collected auto-
matically along with the unlabeled data. For example, the
protein co-occurring information in the Database of Inter-
acting Proteins (DIP) data set, can be used as the must-link
constraints when performing gene clustering [1]. Further-
more, it is relatively easier for a user, who is even not an
expert in a domain, to make a judgment whether two
objects are similar or not than to provide them with the
exact class labels.

Existing semi-supervised clustering can be generally
classified into two lines. In the first line, the constraints are
used to learn a Mahalanobis distance measure [3], [4], [5].
Then, a traditional clustering algorithm, e.g., K-means, is
performed under this new distance measure. Although the
improvement over completely unsupervised clustering has
often been achieved, it is generally known that such a
method requires a large number of pairwise constraints to
obtain a reliable estimation of parameters in a distance
metric [6]. In the second line, there are two ways to directly
enforce the constraints in a specific clustering algorithm.
One way is to strictly require that any of the constraints
should not be violated during the clustering process [7]. The
other way is in a more appropriate manner. It augments the
traditional clustering objective functions with the penalty
terms for violating the constraints [6], [8], [9], [10], [1], [11],
which is more robust against “noisy” pairwise constraints.
In the literature, the constrained K-means [6], [8], [12],
constrained Gaussian mixtures [9], [10], and constrained
spectral clustering [1], [11] have all been developed along
this line [2].

Along the second line, this paper is interested in
incorporating the pairwise constraints into the recently
proposed maximum margin clustering (MMC) [13], [14], [15],
[16], [17]. MMC utilizes the maximum margin principle
adopted in the supervised learning and tries to find the
hyperplanes that partition the data into different clusters
with the largest margins between them over all the possible
labelings. Recent studies [13], [14], [15], [16], [17] have
shown the promising performance of MMC. Nevertheless,
the accuracy of the clustering results by MMC may not be
satisfactory sometimes due to the nature of its unsupervised
learning. In [18], a preliminary study on constrained MMC
shows that incorporating the pairwise constraints can
improve the performance of the basic MMC. Despite the
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success in its application domain, the loss function for

violating the cannot-link constraints in [18] may not be able

to discourage the violation of given constraints robustly,

especially for the data sets whose samples from different

categories are heavily overlapped, e.g., the images with

similar appearance but belong to different ground-truth

classes, the documents with many words in common but

talk about different topics, and so on. Further, it is generally

known that the must-link constraints are less informative in

forming the partitioning boundary [19] than the cannot-link

ones. Hence, the improvement by Hu et al. [18] may not be

effective in such a case.
To this end, we propose a new semi-supervised max-

imum margin clustering algorithm in this paper. The main

contributions of our work are two-fold: 1) We introduce a

new set of loss functions, featuring the robust performance

of penalizing the violation of given pairwise constraints

under the maximum margin principle. 2) For the resulting

optimization problem, although it is nonconvex, we show

that the optimization can be carried out iteratively by

solving a sequence of convex quadratic problems via the

constrained concave-convex procedure (CCCP). Subsequently,

we present a simple, effective, and fast iterative procedure

for solving each convex problem in the CCCP sequence,

which alternates between a subgradient descent step and a

projection step. Experimental results show that the pro-

posed constrained MMC algorithm is efficient, scalable, and

outperforms the existing constrained MMC in [18] as well

as some typical semi-supervised clustering counterparts.
The remainder of the paper is organized as follows: In

Section 2, we briefly review the maximum margin cluster-

ing, and the preliminary constrained MMC algorithm

developed in [18], as well as the other related work. The

proposed constrained MMC is presented in Section 3.

Experimental results are given in Section 4. Finally, we

draw a conclusion in Section 5.

2 RELATED WORK

Given n data points X ¼ fxig
n
i¼1 ðxi 2 IRdÞ, we group the

data into C clusters and obtain a labeling vector y ¼

ðy1; . . . ; ynÞ 2 Yn, where Y ¼ f1; . . . ; Cg and C is the number

of clusters. First, a joint feature representation �ðx; yÞ for

each ðx; yÞ 2 X � Y is defined by

�ðx; yÞ ¼
x � Iðy ¼ 1Þ

� � �
x � Iðy ¼ CÞ

2
4

3
5;

where Ið�Þ is the indicator function (1 for “true” and 0

otherwise). MMC aims to find the maximum margin

hyperplanes that can partition the data into different

clusters over all possible labelings [13], [14], [15], [16],

[17]. Suppose the hyperplanes are parameterized by a

weight vector W 2 IRðd�CÞ�1, the multiclass MMC is then

presented as the following optimization problem [16],

which is based on the multiclass SVM formulation in [20]

min
W;��

�

2
kWk2 þ

1

n

Xn

i¼1

�i

s:t: 8i; 8si; zi 2 Y;

max
yi2Y

WT�ðxi; yiÞ �WT�ðxi; ziÞ

þ I
�
max
yi2Y

WT�ðxi; yiÞ ¼ WT�ðxi; ziÞ
�
� 1� �i;

� q �
Xn

i¼1

WT�ðxi; siÞ �
Xn

i¼1

WT�ðxi; ziÞ � q;

�i � 0;

ð1Þ

where � is a positive regularization constant, k � k is the l2
norm, and T denotes the transpose operation. The value

WT�ðx; yÞ is the score for sample x associated with the

cluster y. The first inequity in (1) essentially requires that

the score for assigning a sample to some cluster to which it

is most likely to belong should be greater than the scores for

assigning it to any other clusters by at least a margin of

ð1� �iÞ, where �iði ¼ 1; . . . ; nÞ is a slack variable. In this

manner, the samples are enforced to be far away from these

hyperplanes. That is, such a clustering scheme favors a low-

density separation. The second inequity in (1) is a cluster

balance constraint introduced to avoid the “trivially”

optimal solutions because a large margin value can be

always achieved by eliminating classes [21]. The constant

q � 0 controls the cluster imbalance. Ultimately, MMC

learns a hypothesis: h : X ! Y via solving W and �� in (1),

and finally the cluster label for xi is obtained by ŷ�i ¼

hðxiÞ ¼ argmaxy2YcW
T
�ðxi; yÞ.

Now a set of pairwise constraints fðxj1;xj2; ljÞg
L
j¼1 is

given,where lj ¼ 1 indicates that thepair of samples ðxj1;xj2Þ
must link, while lj ¼ �1 means that the pair of samples
ðxj1;xj2Þ cannot link. A preliminary work on constrained
MMC has been proposed in [18]. It is based on the work [22]
that incorporates the pairwise constraints for classification.
The objective function of [18] is presented below

min
W;��;��;��

1

2
kWk2 þ

�1
nC

X

i;zi

�izi

þ
�2

LmC

X

zj;j:lj¼1

�jzj þ
�3
Lc

X

j:lj¼�1

�j

s:t: 8i; 8zi 2 Y:

max
yi2Y

WT�ðxi; yiÞ �WT�ðxi; ziÞ � 1� �izi ;

�izi � 0;

8j; 8zj 2 Y; lj ¼ 1 ðMLÞ:

�jzj �
��WT�ðxj1; zjÞ �WT�ðxj2; zjÞ

��;
8j; 8zj 2 Y; lj ¼ �1 ðCLÞ:

�j � WT
�
�ðxj1; zjÞ þ �ðxj2; zjÞ

�

�
1

C

XC

s¼1

WT
�
�ðxj1; sÞ þ �ðxj2; sÞ

�
;

ð2Þ

where Lm and Lc are the numbers of must-link constraints
and cannot-link constraints, respectively. �1; �2, and �3 are
positive constants that balance the l2 norm regularizer and
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the loss functions. For must-link constraints, it tries to find a
solution that leads to a small difference between the scores
for the pair of instances associated with the same cluster.
The cannot-link constraints in (2) essentially require that
none of the clusters should declare the ownership for the
cannot-link pair of samples. Specifically, it minimizes

P
j �j

so as to discourage the unwanted case, where the sum of
scores for (xj1;xj2; 8lj ¼ �1) associated with some cluster is
significantly greater than the average level for all the
clusters. The balance constraints are not imposed in (2)
because the cannot-link constraints are able to prevent the
“trivially” optimal solutions [18].

In (2), it can be seen that the variable �j:lj¼�1 should be
determined by such a cluster that has the largest score for
possessing both instances in the cannot-link pair among all
the clusters, i.e.,

�j:lj¼�1 ¼ max
zj2Y

WT
�
�ðxj1; zjÞ þ �ðxj2; ; zjÞ

�

�
1

C

XC

s¼1

WT
�
�ðxj1; sÞ þ �ðxj2; sÞ

�
:

ð3Þ

In fact, �j:lj¼�1 is just the value of the loss function for

violating the cannot-link constraint ðxj1;xj2; lj ¼ �1Þ.Wenow

investigate its robustness in two cases shown in Fig. 1, i.e., a

relatively easy one and amore difficult one. For the relatively

easy case in Fig. 1a, where the samples from different

categories are slightly overlapped (i.e., the current premature

solution W satisfies maxyi2YW
T�ðxi; yiÞ �WT�ðxi; ziÞ � 1

for most samples) and W has determined that the cluster 1

superiorly owns the cannot-link pair of samples, the loss then

will be a large positive value according to (3), which can

therefore penalize such a violation of the given constraint.

Nevertheless, the cannot-link constraints usually attempt to

guide the partitioning in the more difficult scenarios where

the samples from different classes are seriously overlapped.

As shown in Fig. 1b, a cannot-link constraint has been

provided in the severely overlapping region, in which xj1

and xj2 belong to different ground-truth categories but are

very similar. Moreover, in Fig. 1b, none of the three clusters

have the absolute superior ownership of advantage over the

others for xj1 nor xj2. In other words, the current premature

solution W heavily violates the margin requirement speci-

fied in the first inequity of (2), i.e.,maxyi2YW
T�ðxi; yiÞ is close

to WT�ðxi; ziÞ; 8zi 2 Y for samples in this region. Subse-

quently, such the largest score, i.e., maxzj2YW
T ½�ðxj1;

zjÞ þ �ðxj2; zjÞ�, may be just slightly greater than the average

one: 1
C

PC
s¼1 W

T ½�ðxj1; sÞ þ �ðxj2; sÞ�, resulting in �j:lj¼�1 in

(3) very close to 0 as if a cannot-link constraint were not been

violated. That is, in such a difficult case, even if the current

solution W has failed to place the samples from the cannot-

link constraint into two well-separated clusters, the loss for

such a violation will be instead close to zero, being unable to

effectively discourage the premature solution. Hence, we

will present a new set of loss functions for pairwise

constraints to overcome this possible drawback.
Our work can be considered as an extension to the

works in [22], [23]. They address the semi-supervised

classification problems where a small number of labels for

the training set together with some additional pairwise

constraints are known. Promising performance has been
reported in both papers [22], [23]. Nevertheless, the

unlabeled samples, which may provide useful information

for the semi-supervised learning, are completely ignored.

Moreover, Nguyen and Caruana [23] directly utilizes a

solver, which is designed for convex programming, to a
nonconvex optimization problem. Besides, the most re-

cently proposed MMC [16] also has a similar deficiency in

optimizing the problem of (1). It directly solves a non-

convex problem using the cutting plane method [24] which

is also designed for solving convex problems. Conse-
quently, the optimality and convergence of the algorithms

in [23], [16] may not be guaranteed. By contrast, we utilize

CCCP to decompose the original nonconvex problem into a

series of convex quadratic program problems, and then

find solutions to such convex subproblems with a convex

solver. In this way, the proposed algorithm can be
guaranteed to converge to a local optimal solution. Hence,

the proposed optimization method is more theoretically

sound than the methods in [23], [16].
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Fig. 1. The premature clustering results in two cases of different
overlapping levels. The circles, squares, and triangles represent the
samples from different categories. The ellipses denote the clusters
determined by a premature solution W. The dashed line denotes the
cannot-link pairwise constraint ðxj1;xj2; lj ¼ �1Þ. (a) In this case, the
loss for violating the cannot-link constraint in [18] will be a large positive
value, providing effective penalization to W which results in the cannot-
link pair of samples being partitioned into the same group, i.e., Cluster 1.
(b) In this case, the loss for violating the cannot-link constraint in [18] will
be close to zero, which is unable to effectively discourage the premature
solution that fails to satisfy the given cannot-link constraint. (a) The
slightly overlapping case. (b) The severely overlapping case.



3 THE PROPOSED PAIRWISE CONSTRAINED

MAXIMUM MARGIN CLUSTERING

In order to estimate the weight vector W robustly, we will

exploit the “margin” idea adopted in MMC to deal with the

pairwise constraints.
Hereinafter, we will use the shorthand �ðxi;xj; zi; zjÞ 	

�ðxi; ziÞ þ �ðxj; zjÞ. We define the score that a pair of

instances are assigned to the same cluster by the value:

WT�ðxi;xj; zi; zjÞ, where zi ¼ zj and zi; zj 2 Y. Similarly,

the score that a pair of instances are assigned to different

clusters is defined by the value: WT�ðxi;xj; zi; zjÞ, where

zi 6¼ zj and zi; zj 2 Y. The main idea of our approach is that

the score for the most possible assigning scheme satisfying

the specified pairwise constraint should be always greater

than that for any assigning scheme which violates the

constraint by at least a margin.
Specifically, given a must-link constraint (xj1;xj2; lj ¼ 1),

we require that the largest score for assigning (xj1;xj2) into

the same cluster should be greater than that for assigning

them into two different clusters by at least 1. Furthermore,

we also allow the margin to be violated by �j (�j � 0) at

most for better estimation of W. Namely, the following

constraint is imposed on the vector W

max
zj1¼zj2

WT�ðxj1;xj2; zj1; zj2Þ �WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; sj1; sj2 2 Y; sj1 6¼ sj2; �j � 0;
ð4Þ

and ðzM�
j1 ; zM�

j2 Þ ¼ argmaxzj1¼zj2W
T�ðxj1;xj; zj1; zj2Þ serves

as the most desired assigning scheme conforming to the

must-link constraint.
Analogously, given a cannot-link constraint (xj1;xj2; lj ¼

�1), we require that the largest score for assigning (xj1;xj2)

into two different clusters should be greater than that for

assigning them into the same cluster by at least (1� �j)

max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ �WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; sj1; sj2 2 Y; sj1 ¼ sj2; �j � 0;
ð5Þ

and ðzC�j1 ; z
C�
j2 Þ ¼ argmaxzj1 6¼zj2W

T�ðxj1;xj2; zj1; zj2Þ serves as
the most desired assigning scheme complying with the
cannot-link constraint. Our main idea for handling the given
pairwise constraints is summarized in Fig. 2.

Ultimately, we obtain the following optimization pro-
blem for the constrained maximum margin clustering

min
W;��;��

�

2
kWk2 þ

1

L

XL

j¼1

�j þ
�

UC

X

i2U

XC

zi¼1

�izi

s:t:

8j; 8sj1; sj2 2 Y; sj1 6¼ sj2; lj ¼ 1 ðMLÞ:

max
zj1¼zj2

WT�ðxj1;xj2; zj1; zj2Þ �WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; �j � 0;

8j; 8sj1; sj2 2 Y; sj1 ¼ sj2; lj ¼ �1 ðCLÞ:

max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ �WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; �j � 0;

8i 2 U; 8zi 2 Y;

max
yi2Y

WT�ðxi; yiÞ �WT�ðxi; ziÞ � 1� �izi ; �izi � 0;

ð6Þ

where U denotes the set of indices for the unconstrained
instances that do not involve in the constraint set, U is the
size of U, Lþ U ¼ n, and � � 0 is a balancing constant.

For the cannot-link constraint in the optimization problem
(6), the value of slack variable �j:lj¼�1 should be determined
by assigning (xj1;xj2) to some cluster that incurs the
strongest margin violation, i.e.,

�j:lj¼�1 ¼ max

�
max
sj1¼sj2

�
1�

�
max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ

�WT�ðxj1;xj2; sj1; sj2Þ

	

; 0




¼ max
sj1¼sj2

�
1�

�
max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ

�WT�ðxj1;xj2; sj1; sj2Þ

	


þ

¼

�
1�

�
max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ

� max
sj1¼sj2

WT�ðxj1;xj2; sj1; sj2Þ

	


þ

;

ð7Þ

where f�gþ ¼ maxf�; 0g. Actually, �j:lj¼�1 is the value of the
loss function for W violating the cannot-link constraint
ðxj1;xj2; lj ¼ �1Þ. For the case shown in Fig. 1b, although
the samples xj1 and xj2 in the constraint are very similar
and the current premature solution W makes the largest
score for assigning them into the same cluster, i.e.,

max
sj1¼sj2

WT�ðxj1;xj2; sj1; sj2Þ;

very close to that for assigning them into two different
clusters, i.e.,
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Fig. 2. The most desired clusters and undesired ones for the pairwise
constraints. The triangle and square denote the samples from different
categories. The solid line and the dashed line between the samples
represent the must-link constraint and the cannot-link constraint,
respectively. The most desired clusters conforming to the given
constraints are marked by the ellipses with the thick lines, whereas
the undesired clusters violating the given constraints are marked by the
ellipses with the thin lines. (a) The must-link constraint. (b) The cannot-
link constraint.



max
zj1 6¼zj2

WT�ðxj1;xj2; zj1; zj2Þ;

the value of the loss function in (7), i.e., �j:lj¼�1, will be

steadily driven toward 1. In other words, when W has led

to a partition that violates the cannot-link constraints

provided in the severely overlapping region, the lossP
j �j:lj¼�1 in (6) will increase dramatically, and the

premature W will be therefore heavily penalized. As a

result, it is expected that such a soft margin loss formulation

for the cannot-link constraints is more robust than [18, (3)] in

such a case.

3.1 The Constrained Concave-Convex Procedure
for the Optimization

The objective function in (6) is convex, but the three sets of

margin constraints are not convex. Nevertheless, these

constraints are just the difference of convex functions.

Therefore, the constrained concave-convex procedure can be

utilized. It is an effective technique proposed recently to

solve problems with concave-convex objective function

under concave-convex constraints in the following form

[25], [26], [27]

min
x

f0ðxÞ � g0ðxÞ

s:t: fiðxÞ � giðxÞ � ci; i ¼ 1; . . . ; p;
ð8Þ

where fi; giði ¼ 0; . . . ; pÞ are convex and differentiable

functions, and ci 2 IR. Given an initial guess on x0, in the

ðtþ 1Þth iteration, CCCP first replaces giðxÞ in (8) with its

tangent at xt, and then solves the resulting convex problem

for xtþ1:

min
x

f0ðxÞ �
�
g0ðxtÞ þ rrg0ðxtÞ

T ðx� xtÞ
�

s:t: fiðxÞ �
�
giðxtÞ þ rrgiðxtÞ

T ðx� xtÞ
�
� ci;

i ¼ 1; . . . ; p;

ð9Þ

where rrgiðxtÞði ¼ 0; . . . ; pÞ is the gradient of gið:Þ at xt. It

can be shown that the objective (9) in each CCCP iteration

decreases monotonically [26]. Furthermore, [26, Theorem 1]

has shown that a saddle point in the Lagrange function

corresponding to (8) is also a saddle point in the Lagrange

function corresponding to (9) with the same set of dual

variables upon the fact that the linearization of the

nonconvex parts is tight at the saddle point of (9). Thereby,

when CCCP converges, it actually arrives at a local

minimum of (8) [26].
For our problem, note that fmaxyi2YW

T�ðxi; yiÞg in the

third set of margin constraints of (6) is convex, but it is a

nonsmooth function ofW. Therefore, we need to replace the

gradient with the subgradient when computing the tangent

[27]. The subgradient of it atWðtÞ (i.e., the current estimation

of W in the tth iteration of CCCP) is calculated as

rr max
yi2Y

WT�ðxi; yiÞ

� 	����
W¼WðtÞ

¼ �ðxi; y
ðtÞ
i Þ; ð10Þ

where

y
ðtÞ
i ¼ argmax

y2Y
WðtÞT�ðxi; yÞ: ð11Þ

Then, we can obtain the tangent of fmaxyi2YW
T�ðxi; yiÞg,

i.e., its first-order Taylor expansion at WðtÞ

max
yi2Y

WðtÞT�ðxi; yiÞ þ �ðxi; y
ðtÞ
i ÞT ðW�WðtÞÞ

¼ WT�ðxi; y
ðtÞ
i Þ:

ð12Þ

In a similar way, we can obtain the tangent of maxzj1¼zj2

WT�ðxj1;xj2; zj1; zj2Þ; 8lj ¼ 1 ðMLÞ at WðtÞ

WT� xj1;xj2; z
MðtÞ
j1 ; z

MðtÞ
j2

� �
; ð13Þ

as well as the tangent of maxzj1 6¼zj2W
T�ðxj1;xj2; zj1; zj2Þ;

8lj ¼ �1 ðCLÞ at WðtÞ

WT� xj1;xj2; z
CðtÞ
j1 ; z

CðtÞ
j2

� �
; ð14Þ

where

z
MðtÞ
j1 ; z

MðtÞ
j2

� �
¼ arg max

zj1¼zj2:lj¼1
WðtÞT�ðxj1;xj2; zj1; zj2Þ; ð15Þ

z
CðtÞ
j1 ; z

CðtÞ
j2

� �
¼ arg max

zj1 6¼zj2:lj¼�1
WðtÞT�ðxj1;xj2; zj1; zj2Þ: ð16Þ

Following the CCCP, maxyi2YW
T�ðxi; yiÞ, maxzj1¼zj2

WT�ðxj1;xj2; zj1; zj2Þ and maxzj1 6¼zj2W
T�ðxj1;xj2; zj1; zj2Þ in

(6) are replaced with their tangents at WðtÞ, we then obtain
the following convex optimization problem for each
iteration of CCCP

min
W;��;��

�

2
kWk2 þ

1

L

XL

j¼1

�j þ
�

UC

X

i2U

XC

zi¼1

�izi

s:t:

8j; 8sj1; sj2 2 Y; sj1 6¼ sj2; lj ¼ 1 ðMLÞ:

WT� xj1;xj2; z
MðtÞ
j1 ; z

MðtÞ
j2

� �
�WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; �j � 0;

8j; 8sj1; sj2 2 Y; sj1 ¼ sj2; lj ¼ �1 ðCLÞ:

WT� xj1;xj2; z
CðtÞ
j1 ; z

CðtÞ
j2

� �
�WT�ðxj1;xj2; sj1; sj2Þ

� 1� �j; �j � 0;

8i 2 U; 8zi 2 Y :

WT� xi; y
ðtÞ
i

� �
�WT�ðxi; ziÞ � 1� �izi ; �izi � 0:

ð17Þ

Starting with an initial guess of Wð0Þ, we then solve (17) for
Wðtþ1Þ, and the iteration continues until convergence.

Good initialization for Wð0Þ is critical because the
original problem in (6) is nonconvex, and the CCCP only
finds a local optima. We therefore provide a heuristic
method for the initialization. Since MMC computes C scores
for each sample using W, such a C-dimensional score
vector might be viewed as an embedding coordinate in the
C dimensional space. In this space, it is expected that the
cannot-link pairs of samples should be as far as possible,
while the must-link pairs should be as close as possible. To
this end, we try to find a projection matrix A 2 IRd�C to
map the data into such space by solving
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max
A

1

Lc

X

j:lj¼�1

��ATxj1 �ATxj2

��2 ¼ Trace
�
ATScA



;

s:t:

1

Lm

X

j:lj¼1

��ATxj1 �ATxj2

��2 ¼ Trace
�
ATSmA



¼ 1;

ð18Þ

provided that the samples have been centered, where

Sc ¼
1

Lc

X

j:lj¼�1

ðxj1 � xj2Þðxj1 � xj2Þ
T ; ð19Þ

Sm ¼
1

Lm

X

j:lj¼1

ðxj1 � xj2Þðxj1 � xj2Þ
T : ð20Þ

By Lagrange method, A can be easily solved, i.e., the

columns of optimal A should be the C eigenvectors

corresponding to the C largest eigenvalues of ðSmÞ
�1
Sc.

Ultimately, the columns of A are concatenated as the initial

guess of Wð0Þ.
The CCCP algorithm for solving (6) is summarized in

Algorithm 1. We stop the algorithm when the relative

difference between objective values of the quadratic

program (17) is less than 	1 in two successive iterations,

which means the current objective value is only larger than

ð1� 	1Þ of the objective value in the last iteration. In this

paper, 	1 is set at 0.01. In order to further reduce the local

minima, we set � at 0 in the first three iterations, i.e., the

margin violation for the unconstrained samples is ignored

in the first three CCCP iterations. In other words, we try to

find a good initial model with the more reliable supervisory

information (i.e., the pairwise constraints) alone before

using the unconstrained data. In fact, such an “annealing-

like” heuristic has also been taken in [28], [29]. Next, we will

describe how to optimize the problem (17) by the sub-

gradient projection procedure.

Algorithm 1. The complete algorithm for pairwise con-

strained MMC using the CCCP

input: fxigi2U ; fðxj1;xj2; ljÞg
L
j¼1; �; �0, number of clusters C

Solve (18) for A, concatenate its columns to form Wð0Þ;

repeat

if t ¼ 0; 1; 2 then

� ¼ 0;

else

� ¼ �0;

end

Find y
ðtÞ
i by (11), 8i 2 U;

Find (z
MðtÞ
j1 ; z

MðtÞ
j2 ) by (15), 8j; lj ¼ 1 (ML);

Find (z
CðtÞ
j1 ; z

CðtÞ
j2 ) by (16), 8j; lj ¼ �1 (CL);

Solve (17) for Wðtþ1Þ by Algorithm 2;

until stopping criterion is satisfied (suppose it stops in the T -th

iteration);

output: cW ¼ WðT Þ and the cluster index for each point

ŷ�i ¼ argmaxy2YcW
T
�ðxi; yÞ; i ¼ 1; . . . ; n.

3.2 The Subgradient Projection Method for
Quadratic Program

The constrained optimization problem in (17) is a standard
convex quadratic program. However, the first inequity and
the second inequity in (17) impose all the possible
combinations of two clusters for each pairwise constraint.
Furthermore, the third inequity in (17) will introduce a
constraint for every possible candidate cluster label on each
unconstrained sample. The number of constraints therefore
scales exponentially. In general, the off-the-shelf packages
for convex programming are unable to tackle this optimiza-
tion. Under such circumstances, we convert the constrained
optimization in (17) into an equivalent unconstrained one
because it is generally easier to implement the uncon-
strained optimization than the constrained one. First, the
slack variables in (17) are resolved analogously to those in
SVM [30], for example,

�j:lj¼1 ¼ max

�
max
sj1 6¼sj2

n
1�

h
WT�

�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�

�WT�ðxj1;xj2; sj1; sj2Þ
io

; 0




¼ max
sj1 6¼sj2

n
1�

h
WT�

�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�

�WT�ðxj1;xj2; sj1; sj2Þ
io

þ

¼

�
1�

�
WT�

�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�

� max
sj1 6¼sj2

WT�ðxj1;xj2; sj1; sj2Þ

	


þ

:

Similarly, we can obtain

�j:lj¼�1 ¼

�
1�

�
WT�

�
xj1;xj2; z

CðtÞ
j1 ; z

CðtÞ
j2

�

� max
sj1¼sj2

WT�ðxj1;xj2; sj1; sj2Þ

	


þ

;

�izi ¼
�
1�

�
WT�

�
xi; y

ðtÞ
i



�WT�ðxi; ziÞ

��
þ
:

Then, (17) can be transformed to the following simple
convex quadratic optimization problem without constraints

min
W

fðWÞ ¼
�

2
kWk2

þ
1

L

X

j:lj¼1

�
1�

�
WT�

�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�

� max
sj1 6¼sj2

WT�ðxj1;xj2; sj1; sj2Þ

	


þ

þ
1

L

X

j:lj¼�1

�
1�

�
WT�

�
xj1;xj2; z

CðtÞ
j1 ; z

CðtÞ
j2

�

� max
sj1¼sj2

WT�ðxj1;xj2; sj1; sj2Þ

	


þ

þ
�

UC

X

i2U

X

zi

�
1�

�
WT�

�
xi; y

ðtÞ
i



�WT�ðxi; ziÞ

��
þ
:

ð21Þ

We employ an efficient subgradient projection optimization
method for solving the convex problem (21), which has
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been widely adopted for its efficiency and effectiveness,
e.g., see [31], [32], [23]. First, we need to present the
following theorem:

Theorem 1. The optimal solution of (17) is in the set

B ¼ W : kWk � 
 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ �

�

r( )
: ð22Þ

Proof. See Appendix 1, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2011.68. tu

Starting with a random vector W0 satisfying kW0k � 
,
we then take the following simple update rule for
optimizing (21)

Wrþ1
2
¼ Wr � �rrrr; ð23Þ

Wrþ1 ¼ �
h
Wrþ1

2

i
; ð24Þ

where rrr ¼
@fðWÞ
@W jWr

is a subgradient of fðWÞ evaluated at
Wr. �r ¼ 1=�r is the step size in the rth iteration. The
operator �½�� projects a vector onto the set B, i.e.,
�½�� ¼ argmin�2Bk���k22. The convergence of the itera-
tive method of this form to the optimal solution is
guaranteed [33] provided that the gradient step size is
sufficiently small.

Specifically, according to [34], the subgradient of fðWÞ is
calculated as follows:

rrr ¼ �Wr þ
1

L

X

j2Mv

h
�
�
xj1;xj2; s

Mv

j1 ; sM
v

j2

�

� �
�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�i

þ
1

L

X

j2Cv

h
�
�
xj1;xj2; s

Cv

j1 ; s
Cv

j2

�

� �
�
xj1;xj2; z

CðtÞ
j1 ; z

CðtÞ
j2

�i

þ
�

UC

X

i;zi2UZ
v

h
�ðxi; ziÞ � �

�
xi; y

ðtÞ
i

�i
;

ð25Þ

where we define

Mv ¼
n
j : lj ¼ 1

���WT
r �

�
xj1;xj2; z

MðtÞ
j1 ; z

MðtÞ
j2

�

� max
sj1 6¼sj2

WT
r �ðxj1;xj2; sj1; sj2Þ < 1

o
;

Cv ¼
n
j : lj ¼ �1

���WT
r �

�
xj1;xj2; z

CðtÞ
j1 ; z

CðtÞ
j2

�

� max
sj1¼sj2

WT
r �ðxj1;xj2; sj1; sj2Þ < 1

o
;

UZv ¼
�
i 2 U; zi 2 Y

��WT
r �

�
xi; y

ðtÞ
i



�WT

r �ðxi; ziÞ < 1
�
;

and

�
sM

v

j1 ; sM
v

j2

�
¼ arg max

sj1 6¼sj2:lj¼1
WT

r �ðxj1;xj2; sj1; sj2Þ;

�
sC

v

j1 ; s
Cv

j2

�
¼ arg max

sj1¼sj2:lj¼�1
WT

r �ðxj1;xj2; sj1; sj2Þ:

Thereby, in the rth iteration, we first identify the sets Mv

and Cv for pairwise constraints, and the set UZv for
unconstrained samples, on which Wr violates the hard
margin. Then, the subgradient is calculated with these sets.
Consequently, Wr is updated along the gradient descent
direction.

To ensure that the weight vector Wrþ1
2
keeps in the

parameter space, in which the optimum resides, we need to

project the updated Wrþ1
2
back to the set B. Since B is an

origin-centered ball of radius 
, the projection of Wrþ1
2
onto

set B amounts to scaling Wrþ1
2
by minf1; 
=kWrþ1

2
kg. As

shown in [32], the projection step can effectively accelerate

the convergence in comparison with the standard subgra-

dient descent without the projection step.
The main steps of the iterative subgradient descent and

projection procedure are summarized in Algorithm 2. The
following convergence property of Algorithm 2 can be
obtained by taking a derivation similar to that in [32]. The
mathematical proof is therefore omitted here.

Algorithm 2. Solving (17) by subgradient projection

input: fðxi; y
ðtÞ
i Þgi2U ; fðz

MðtÞ
j1 ; z

MðtÞ
j2 ; lj ¼ 1ÞgLj¼1; fðz

CðtÞ
j1 ; z

CðtÞ
j2 ,

lj ¼ �1ÞgLj¼1; fðxj1;xj2; ljÞg
L
j¼1; �; �0, number of

clusters C

Initialize W0 (r ¼ 0) randomly subject to kW0k � 
;

repeat

Calculate rrr by (25);

�r ¼
1
�r ;

Wrþ1
2
¼ Wr � �rrrr;

Wrþ1 ¼ minf1; 
=kWrþ1
2
kg �Wrþ1

2
;

until stopping criterion is satisfied (suppose it stops in the R-th

iteration);

output WR

Theorem 2. Algorithm 2 converges to a �-accurate solution fW
for (17) (or equivalently (21)) after Oð �R2=��Þ iterations,
where fW satisfies fðfWÞ � minWfðWÞ þ �, and

�R ¼ 2max

�
max

fðxj1;xj2;ljÞg
L
j¼1;zj1;zj22Y

k�ðxj1;xj2; zj1; zj2Þk;

� �max
i2U

kxik



:

ð26Þ

In practice, we stop Algorithm 2 as soon as kWr �
Wrþ1k=maxfkWrk; kWrþ1kg � 	2. In our later experiments,
	2 is set at 0.01.

3.3 Time Complexity Analysis

This section analyzes the time complexity of the proposed
pairwise constrained MMC algorithm. To solve (17) using
Algorithm 2, the dominant computational cost is the
calculation of the subgradient whose complexity is OðndÞ.
Here, d denotes either the dimensionality of the sample in
original input space, or that of the coordinate for each
sample in the kernel PCA basis according to a kernel
function. Furthermore, from Theorem 2, it can be seen that
the number of iterations of Algorithm 2 is independent of n
and d. Hence, Algorithm 2 takes the time OðndÞ to converge.
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In the complete algorithm, i.e., Algorithm 1, the initializa-
tion by finding the projection matrix takes Oðd3Þ time. In
each iteration of Algorithm 1, it only involves the inner
product operation when finding y

ðtÞ
i , ðz

MðtÞ
j1 ; z

MðtÞ
j2 Þ and

ðz
CðtÞ
j1 ; z

CðtÞ
j2 Þ, which scales with time OðndÞ. Hence, the overall

complexity of the proposed pairwise constrained MMC in
Algorithm 1 is Oðd3 þ TndÞ, where T is the number of
iterations for the CCCP to converge. In our experiments, it
was found that T never exceeded 50.

4 EVALUATION

In this section, we evaluated the accuracy and efficiency of
our proposed algorithm on a couple of real-world data sets.
Moreover, the scalability of the proposed method was
investigated as well. In addition, we examined the general-
ization capability of the proposed approach, i.e., the
accuracy performance on the out-of-sample data points.
All the experiments were conducted with Matlab 7.0 on a
2.4 GHz Intel Core 2 PC running Windows XP with 3.25 G
main memory.

4.1 Evaluation Data Sets

The experiments were performed on the data sets from the
UCI repository1 (pendigit389, letterIJL, vehicle,

ionosphere, sonar, optdigit odd versus even,

statlogSegment, mfea-fac, magic), the MNIST hand-
written digit database2 (mnist0689), the USPS hand-
written digit database3 (uspst), the COIL image
database4 (COIL3), the brain-computer interface database5

(BCI), and the document database of the CLUTO toolkit6

(sports, ohscal). These data sets provide a good
representation of different characteristics: number of sam-
ples ranges from 216 to 19,020, dimensionalities from 10 to
1,024, and number of classes from 2 to 10. A summary of all
the data sets used in this paper is shown in Table 1.

The data sets pendigit389 and letterIJL have been
used in [6]. Three confusing classes (“3, 8, 9”) and (“I, J, L”)
are chosen from the pendigit and letter databases, respec-
tively. Moreover, both pendigit389 and letterIJL

consist of 10 percent randomly sampled data points from
the whole data sets in UCI repository. The MNIST hand-
written digits database is relatively large for most algo-
rithms, we followed [18] and randomly selected 200 samples
from each of the corresponding classes (“0, 6, 8, 9”) to form
the mnist0689 data set. Fig. 3 shows some samples from
this data set. It can be seen that the samples from different
classes appear to be similar. Further, some samples are
overlapped and prone to be incorrectly classified, e.g., the
ninth digit “6” in the second row and the third digit “8” in
the third row. In the COIL3 data set, the data are gray images
for three classes of cars which look much alike (see Fig. 3),
indicating a severe overlap among the samples from the
three classes. The samples were scaled to ½0; 1� for these two
image data sets. The semi-supervised clustering on the
optdigit odd vs.even data set is an artificial task with two

classes (handwritten digits “1, 3, 5, 7, 9” versus “0, 2, 4, 6, 8”),
it simulates the scenario, where the user provides the
pairwise constraints for producing desired clusters. Both
the mfea-fac and uspst data sets contain the handwritten
digits “0-9” but with the different features, i.e., profile
correlations and pixels, respectively. These digit samples
share a large number of features, thus usually leading to a
difficult partitioning task. The sports data set contains the
articles about baseball, hockey, basketball, bicycling, boxing,
football, and golfing from the San Jose Mercury newspapers.
The ohscal data set was from the OHSUMED collection
[35]. It contains 11,162 documents from the following ten
categories: antibodies, carcinoma, DNA, in vitro, molecular
sequence data, pregnancy, prognosis, receptors, risk factors,
and tomography. It is generally known that the articles from
different subtopics have a lot of words in common.
Furthermore, for these two text data sets both in bag-of-
words representation, we selected the top 1,000 words by
information gain with class labels for the following experi-
ments. In a word, there is generally severe overlapping
among the samples from different classes in most of the data
sets used in this paper, which are thus quite appropriate for
evaluating the robustness of the semi-supervised clustering
algorithms.

4.2 Evaluation Metrics

To evaluate the effectiveness of clustering algorithms, we

used the clustering accuracy (ACC) and the normalized

mutual information (NMI) in this paper. Following the

strategy in [16], [18], we first take a set of labeled data,

remove the labels and run the clustering algorithms. Then,

we label each of the resulting clusters with the majority

class according to the original training labels. Finally, the

clustering accuracy is defined as the matching degree

between the obtained labels and the original true labels

ACC ¼

Pn
i¼1 Iðt̂i ¼ tiÞ

n
; ð27Þ
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TABLE 1
The Data Sets Used in Experiments



where t̂i is the label obtained by the above steps for xi, and

ti is the ground-truth label. The NMI is defined by Strehl

and Ghosh [36]

NMI ¼

PC
i¼1

P
j2C

0 ni;j logð
n�ni;j

ni ~nj
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PC

i¼1 ni log
ni

nÞð
P

j2C
0 ~nj log

~nj

n Þ
q ; ð28Þ

where n is the number of samples in the data set, ni denotes

the number of data contained in the cluster Cið1 � i � CÞ, ~nj

is the number of data belong to the jth class (j 2 C
0

, C
0

is the

set of ground truth classes), and ni;j denotes the number of

data that are in the intersection between the cluster Ci and

the jth class. The NMI ranges from 0 to 1. The larger the

value it is, the more similar the groupings by clustering and

those by the true class labels.
In the experiments, the execution time of the proposed

algorithm was also compared with that of the other

competing algorithms.

4.3 Competing Algorithms

Besides the proposed algorithm, we also implemented some

competing counterparts as well as the baseline methods

listed below for comparison.

1. Kmeans: This is the traditional K-means algorithm
without any pairwise constraints incorporated.

2. CPMMC: This is the latest unsupervised maximum
margin clustering algorithm proposed in [16].

3. DCA+Kmeans: The Discriminative Component
Analysis (DCA) [5] first learns a distance metric
based on the pairwise constraints. Then, K-means is
performed with this metric. It has been shown in [5]
that DCA can gain better performance than its
counterparts: Relevant Component Analysis (RCA)
[4], and Xing’s method [3].

4. MPCKmeans: This is the well-known semi-super-
vised clustering algorithm which alternates between
the metric learning step and the clustering step [6].

5. CPCMMC: This is the only existing work on semi-
supervised maximum margin clustering in the
literature [18].

The Kmeans and CPMMC served as the baselines. For our

method, we found that the performance was relatively

insensitive to the value of �0, thus it was set at 1 throughout

the experiments, and � was selected in a set of candidates

f0:01; 0:1; 1; 10; 100g, from which the best result was

reported. For the other algorithms with free parameters,
we also reported their best performance with their para-
meters chosen from a set of candidates. Moreover, Kmeans,
DCA+Kmeans, and MPCKmeans worked on the raw input
for all the data sets. For CPMMC, CPCMMC, and the
proposed method, all the data sets were preprocessed so
that all the features have zero mean. For the vehicle,

statlogSegment, mfea-fac, magic data sets whose
features are of very different scales, we further let all the
features have unit standard deviation. For the COIL3 data
set, its sample size is much smaller than its dimensionality.
To ease the computation, CPMMC, CPCMMC, and our
method worked on the data representation obtained by
Kernel PCA, where the linear kernel was used for
simplicity, and the reduced dimensionality was set at its
sample size. In the experiments, we let the number of
clusters be the true number of classes for all the algorithms,
although the selection of the number of clusters is a crucial
issue, which is, however, beyond the scope of this paper.

For each data set, we evaluated the performance with
different numbers of pairwise constraints. Each constraint
was generated by randomly selecting a pair of samples. If
the samples belong to the same class, a must-link constraint
was formed. Otherwise, a cannot-link constraint was
formed. For a fixed number of pairwise constraints, the
results were averaged over 20 realizations of different
pairwise constraints, which are shown in Figs. 4 and 5.
Since the learning of MPCKmeans cannot finish in reason-
able time or have memory overflow problem on the
mnist0689, COIL3, magic, sports, and ohscal data
sets which have either high dimensionalities or large
sample size, we do not include it for comparison on these
data sets.

4.4 Evaluation Results

4.4.1 Comparison of Effectiveness

Figs. 4 and 5 show that the proposed constrained MMC can
dramatically improve the performance of the baseline
Kmeans and CPMMC. Furthermore, it can be seen that the
proposed algorithm performs the best in most cases.
Actually, the pairwise constraints used are quite sparse.
For example, only 10 percent of the data from each class of
the small-size COIL3 data set can generate 211 constraints.
This number is more than 100 that is the largest number of
pairwise constraints provided for such a data set in the
experiment. Also, only 1 percent of the data from each class
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Fig. 3. Sample images from (a) mnist0689 and (b) COIL3 data sets.



of the large-size magic data set can produce 17,766 con-
straints. Again, this figure is much more than 1,000 that is
the largest number of pairwise constraints used on such a
data set. It implies that the proposed method indeed
propagates the pairwise constraints effectively. The plau-
sible reasons are two-fold. One is that either the violation of
margin requirements for the unconstrained samples or the
pairwise constraints will incur heavy penalties in our
approach, which enables to effectively find the most desired
cluster for the must-link constraint and two different clusters
for the cannot-link constraint, while ensuring that the
partitioning boundary of each cluster is as far as possible
from those of others. The other reason is that the proposed

method utilizes the pairwise constraints for initialization,
i.e., solving the projection matrix to initialize the Wð0Þ and
carrying out the “annealing-like” heuristic to seek a good
initial model. By contrast, the ACC/NMI curves for the
other semi-supervised clustering algorithms often show a
slow rise on some data sets with the increase of amounts of
pairwise constraints, or even fall behind those for the
baselines. Specifically, for the metric-based algorithms, i.e.,
MPCKmeans and DCA+Kmeans, the estimation of metric
parameters with few constraints is generally unreliable [6],
especially on the high-dimensional data sets (e.g.,
mnist0689, COIL3, mfea-fac, uspst, sports, ohscal).
To obtain an accurate estimation, a large number of pairwise
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Fig. 4. Comparison of clustering accuracy over the different number of pairwise constraints.



constraints are therefore needed. Although the CPCMMC

can improve the performance on some data sets, the

improvement is often inferior to that by the proposed

method. The reason is that there is severe overlapping in

most used data sets (c.f. Section 4.1), but the loss function for

violating the cannot-link constraints in CPCMMC [18] is less

able to effectively discourage the violation of constraints in

such scenarios.

4.4.2 Comparison of Efficiency

Fig. 6 presents the average and standard deviation of the

CPU time consumption for 20 trials of each semi-supervised

clustering algorithm, with different number of pairwise

constraints. It can be seen that the proposed method is

generally time efficient (about 1 minute on the magic data

set with 19,020 samples owning 200-1,000 pairwise con-

straints, and about 20 minutes on the ohscal data set with

11,162 samples possessing 600-1,000 constraints). Although

it is not always the fastest algorithm on all the data sets, it is

much more advantageous than its counterparts in terms of

the accuracy. It is also observed that the proposed method

worked stably on all the data sets we have tried so far, as

indicated by the small deviations of the execution time. By

contrast, the other counterparts often showed the large

variations of the CPU-time, especially on the large-size data

sets in Table 1, e.g., magic, sports, and ohscal.
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Fig. 5. Comparison of normalized mutual information over the different number of pairwise constraints.



4.4.3 Scalability of the Proposed Method

To demonstrate the scalability of the proposed algorithm,
we showed its average execution time (the initialization
time was ignored) as a function of the sample size on the
three large-size data sets over 10 trials in Fig. 7. The value
in the parentheses denotes the fixed number of pairwise
constraints provided for each data set. The dashed line

represents the linear growth OðnÞ. It can been seen that
the execution time of the proposed method on each data
set roughly shows a linear trend, which is consistent with
the time-complexity analysis in Section 3.3. That is,
without considering the initialization time, the time
complexity of the proposed method scales linearly with
the number of samples.

4.4.4 Generalization Performance

To examine the generalization ability of the proposed
algorithm on out-of-sample examples, we used the learned
models from the previous experiments to partition the
unseen testing samples into the clusters. Fig. 8 reports the
average clustering accuracy for out-of-sample examples on
pendigit389, letterIJL, optdigit odd vs.even,
and mnist0689 data sets, in which only a small subset
was used for training as described in the previous
experiments, and the sizes of the unseen testing subsets
are 2847, 2036, 3823, and 800, respectively. From Fig. 8, it
can be seen that the proposed method again outperforms
the counterpart constrained MMC [18] on the out-of-
sample examples for these data sets. Moreover, for both
our constrained MMC and the one in [18], the clustering
accuracy on out-of-sample examples is comparable with
that on the training subset. Thus, given a large data set,
we may first perform the proposed constrained MMC on a
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Fig. 6. Comparison of execution time for the semi-supervised clustering algorithms.

Fig. 7. Execution time of the proposed method over the sample size n.



small subset, and then use the learned model to cluster the
remaining points [18], from a practical viewpoint.

5 CONCLUSION

In this paper, we have proposed a pairwise constrained
maximum margin clustering algorithm. A set of loss
functions for violating the pairwise constraints is intro-
duced in a soft-margin formulation. In contrast to those
used in an existing semi-supervised maximum margin
clustering algorithm [18], the proposed loss functions can
provide more robust penalization to the violation for the
pairwise constraints. To optimize the resulting nonconvex
clustering problem, the CCCP has been utilized to decom-
pose it into a sequence of convex quadratic program
problems. Each of the convex problems in the CCCP
sequence is then solved by an efficient subgradient
projection procedure. Experimental results have shown
that the proposed constrained MMC algorithm effectively
improves the baseline MMC, and is competitive or even
better than the preliminary constrained MMC algorithm
[18], as well as some typical semi-supervised clustering
counterparts, both in accuracy and efficiency. Moreover, we
have shown that the execution time of the proposed method
scales linearly with the sample size n after its initialization.
In the experiments, the pairwise constraints are provided
beforehand. In the future work, we plan to actively identify
the most informative pairwise constraints for the maximum
margin clustering during the clustering process.
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