
Page 1/18

Semi-supervised Method for Image Texture
Classi�cation of Pituitary Tumors via CycleGAN and
Optimized Feature Extraction
Hong ZHU  (  zhuhong@xzhmu.edu.cn )

https://orcid.org/0000-0002-1676-940X
Qianhao FANG 

Xuzhou Medical University https://orcid.org/0000-0002-2767-1539
Yihe HUANG 

Xuzhou Medical University
Kai XU 

Xuzhou Medical College A�liated Hospital

Research article

Keywords: pituitary tumors, CycleGAN, DenseNet, ResNet, Auto-Encoder, CRNN

Posted Date: August 12th, 2020

DOI: https://doi.org/10.21203/rs.2.18161/v3

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published on September 9th, 2020. See the published
version at https://doi.org/10.1186/s12911-020-01230-x.

https://doi.org/10.21203/rs.2.18161/v3
mailto:zhuhong@xzhmu.edu.cn
https://orcid.org/0000-0002-1676-940X
https://orcid.org/0000-0002-2767-1539
https://doi.org/10.21203/rs.2.18161/v3
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12911-020-01230-x


Page 2/18

Abstract
Background: Accurately determining the softness level of pituitary tumors preoperatively by using their
image textures can provide a basis for surgical options and prognosis. Existing methods for this problem
require manual intervention, which could hinder the e�ciency and accuracy considerably. Methods: we
present an automatic method for diagnosing the texture of pituitary tumors using unbalanced sequence
image data. Firstly, for the small sample problem in our pituitary tumor MRI image dataset where T1 and
T2 sequence data are unbalanced (due to data missing) and under-sampled, our method uses a
CycleGAN(Cycle-Consistent Adversarial Networks) model for domain conversion to obtain fully sampled
MRI spatial sequence. Then, it uses a DenseNet(Densely Connected Convolutional Networks)-
ResNet(Deep Residual Networks) based Autoencoder framework to optimize the feature extraction
process for pituitary tumor image data. Finally, to take advantage of sequence data, it uses a
CRNN(Convolutional Recurrent Neural Network) model to classify pituitary tumors based on their
predicted softness levels. Results: Experiments show that our method is the best in terms of e�ciency
and accuracy(91.78%) compared to other methods. Conclusions: We propose a semi-supervised method
for grading pituitary tumor texture. This method can accurately determine the softness level of pituitary
tumors, which provides convenience for surgical selection and prognosis, and improves the diagnostic
e�ciency of pituitary tumors.

Background
Pituitary tumor is one of the most common diseases in the nervous system [1]. It is the third largest tumor
type in brain and is extremely harmful to the human body [2]. Many critical questions, such as whether a
surgical procedure is needed, what kind of procedure is most suitable, and what is the expected
postoperative effect, are all closely related to the softness of pituitary tumor [3]. It is important to
accurately judge the softness level of pituitary tumor preoperatively in a non-invasive manner. This has
been a problem for a long time and is still plaguing the clinic. However, due to the closure nature of the
cranial cavity, it is often di�cult to accurately determine the softness of pituitary tumor before surgery [4].
With the technological advancements in medical imaging, MR, CT and other imaging modality can now
provide rich anatomical information non-invasively. It has been shown that such information can be used
to improve the treatment planning for 30% to 50% cancer patients, resulting in more accurate treatments
for them. Thus, it is extremely valuable to mine deep quantitative information (such as the softness level)
from pituitary tumor image data, which is not perceivable by the naked eyes of clinician.

At present, the most commonly used method for evaluating the image texture of pituitary tumor is image
omics, which is de�ned as the conversion of visual image information into deep features for quantitative
research. The advantage of such a method is its interpretability, which is based on domain knowledge [5].
Aerts et al [6] extracted 440 CT features for prognosis, and found that imaging histology can re�ect tumor
phenotype, internal heterogeneity, and the prognostic radiological features of intra-tumoral heterogeneity
are related to potential gene expression patterns, which could effectively assess the prognosis of
patients. Zhang et al [7] adopted an approach that combines machine learning techniques with imaging
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omics. They extracted 970 medical image features, and used six kinds of machine learning
phenomenological feature selection methods and nine classi�cation methods to obtain 54 different
combinations. They showed that the random forest method (RF) has the best performance in the
prognosis analysis of nasopharyngeal carcinoma images. However, since image omics requires accurate
extraction of lesions, it is not very e�cient. Moreover, the number of deep features that can be extracted
by image omics could be as many as thousands, which need to be selected manually. Thus, it is a
challenging task to select the best set of features, as it depends largely on the experience of the
technician. In general, feature extraction is a computation-intensive and time-consuming process, and
thus better solution is needed.

In recent years, arti�cial intelligence has gained a lot of popularity which propelled a new way for medical
imaging processing. The combination of deep learning and medical imaging. It has shown that such an
approach is capable of automatically extracting a large number of deep features from large medical
image datasets, and yields much improved solutions. For example, Wang et al [8] combined medical
imaging with in-depth learning to develop a new generation of image reconstruction theory technology,
which enhanced the ability of image analysis and image reconstruction. Xu et al[9] proposed a new
network cxnet-m1 to detect abnormal chest X-ray images, which improved the e�ciency and accuracy of
diagnosis. Wei et al [10] proposed a method called Locality-constrained Sparse Autoencoder (LSAE)
which introduces the concept of locality into Autoencoder and can encode similar inputs by similar
features. Their method achieves a classi�cation accuracy of 72.7% for CALTECH-101 dataset. Xu et al
[11] presented a new Stacked Sparse Autoencoder (SSAE) framework for the diagnosis of high resolution
histopathological images of breast cancer. They used a dataset with 500 histopathological images
(2200x2200) and 3500 manually segmented cell nucleuses, and showed that their method improves the
F value by 84.49% and yields an AVEP of 78.83%.

Despite the aforementioned progresses, deep-learning-based approaches are also facing a number of
challenges, such as data unbalancing in small sample, limited reliably labeled data, inaccurate feature
extraction, etc. In the case of pituitary tumor, the dataset we collected is unbalanced, e.g., only T1
sequences but lacking of T2 sequences. In addition, more accurate features of pituitary tumor image data
are needed for texture classi�cation. In this paper, we proposed a semi-supervised pituitary tumor image
classi�cation method based on CycleGAN and optimized feature extraction. Our method �rst uses
CycleGAN to make up the missing T2 sequences, and then adopts a DenseNet-ResNet based
Autoencoder-decoder framework to extract pituitary tumor features and optimize adaptively. Finally, the
optimized features are inputted to CRNN. It needs only sequence-level label, instead of frame-level label,
to complete the training for subtype classi�cation of pituitary tumors.

Methods
Due to technical limitations, the Methods section is only available as a download in the supplementary
section.
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Results
3.1 EXPERIMENT ANALYSIS

3.1.1 CYCLEGAN-BASED MULTI-SEQUENCE DATA AMPLIFICATION

We use the image data of 374 patients for CycleGAN training, including 280 T1 MRI spatial sequences
and 94 T2 MRI spatial sequences. We train a total of 120 times, in which the loss of the generator and the
discriminator is shown in Figure 9. When the number of training reaches 90 epochs, the loss of the
discriminator reaches its minimum and becomes stable.

We use 152 patient datawith labels(including 112 T1 MRI spatial sequences and 40 T2 MRI spatial
sequences) to augment the data using the trained cyclegan model. As a result, there is a multi-sequence
of 24 slices (12 T1 slices and 12 T2 slices) for each patient.The result (after 120 times of training) is
shown in Figure 10.

Figure 10 shows the original MR image in two domains and the MR image reconstructed after two
conversions by the domain converter. Visually, the difference between a real MR image and a transformed
MR image is very small.

3.1.2 SEMI-SUPERVISED PITUITARY TUMOR TEXTURE IMAGE CLASSIFICATION BASED ON ADAPTIVELY
OPTIMIZATED FEATURE EXTRACTION

After being ampli�ed by CycleGAN, the dataset was then fed to the Auto-Encoder for feature extraction
using unsupervised learning. Supervised learning is conducted during the CRNN texture classi�cation
stage.

To ensure reliable comparisons, all the models were trained 100 steps in the feature extraction stage. The
training process of multi-sequences is shown in Figure 11, and the curve of the single-modal baseline is
similar.

It can be seen from the �gure that when the model is trained 100 steps, the loss curve reaches its lowest
point, which is 0.01, and feature extraction network almost achieves the optimal solution.

The architecture of the experiment can be divided into three models, namely the multi-sequence model,
the T1 domain model and the T2 domain model. The multi-sequence (medical image classi�cation)
model is compared to two single-modal baseline models:

(1) T1 domain model: We only consider the MRI spatial sequence of T1 domain of all patients, including
the MRI spatial sequence generated from another domain converter.

(2) T2 domain model: We only consider the MRI spatial sequence of T2 domain of all patients, including
the MRI spatial sequence generated from another domain converter.
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(3) Multi-sequence model: We use the trained domain converter to construct an MRI multi-sequence in
both T1 and T2 domains, including the MRI spatial sequence generated by the domain converters.

In the texture classi�cation stage, there are many neural network model parameters in the experiment, but
a small number of trained samples. This could potentially cause over-�tting. To avoid this issue, we use
Dropout and EarlyStopping methods during the training process. The Droupout ratio is set to be 0.5, that
is, for all the neural network units in model, they are temporarily discarded from the network with a
probability of 50%. We set the patience value of earlyStopping to be 2 and the monitor to be 'val_loss'.
That is, if the value of 'val_loss' does not decrease relative to the previous epoch during model training,
the model is stopped after 2 epochs. The T1 domain, T2 domain, and multi-sequence model training
process are shown in the following �gures: See �gures 12-14.

As can be seen from Figure 12-14, we performed 6 replicate experiments on the T1 domain, T2 domain
and the multi-sequence domain. In our experiment, we randomly divide the dataset into training dataset
(70%), test dataset (15%), and veri�cation dataset (15%). We repeated this process 6 times, and recorded
the average and variance of 6 classi�cation accuracy rates. Table 1 shows the details of classi�cation,
and Table 2 shows precision, recall and F1-score of class�cation:

TABLE 1 PITUITARY TUMOR CLASSIFICATION ACCURACY

  Multi-sequence(%) T1 domain(%) T2 domain(%)

Train

Verification

Test

98.8±1.24

92.82±1.23

91.78±1.44

97.55±1.40

91.70±1.61

89.24±3.11

97.41±1.37

91.15±1.13

88.98±4.23

TABLE 2 PRECISION, RECALL AND F1-SCORE OF PITUITARY TUMOR CLASSIFICATION

  Precision(%) Recall(%) F1-score(%)

T1 domain 

T2 domain 

Multi-sequence

86.81±3.67

87.07±3.71

89.89±4.02

93.33±5.96

94.44±5.02

95.55±5.44

89.80±2.64

90.41±2.15

92.46±1.74

TABLE 3 COMPARISONS OF CLASSIFICATION RESULTS OF DIFFERENT METHODS
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Feature extraction Texture classification Accuracy(%) Time(s)

—— VGG 69 113

——

——

ResNet

DenseNet

78.25

81.25

105

97

——

ResNet+ ResNet

DenseNet+DenseNet

CRNN

CRNN

CRNN

73.7

88.76

90.33

67

43

43

DenseNet+ResNet

DenseNet+ResNet

CRNN

RNN

91.78

89.12

42

42

As can be seen from the above table, our proposed DenseNet+ResNet+CRNN architecture signi�cantly
outperforms all other methods in terms of running time and classi�cation accuracy. Our method has the
fastest convergence rate and thus shortest running time. From the perspective of classi�cation accuracy,
we can see that adding an Auto-Encoder-based feature extractor before CRNN can considerably improve
the performance. In summary, the comparative experiment suggests that our CycleGAN-based
classi�cation model and the adaptively optimized feature extraction has great potential of yielding
accurate texture classi�cation results for pituitary tumors.

In order to verify the clinical statistical signi�cance of the experiment, we paired the method proposed in
this article with the other methods in Table 3. We use Wilcoxon signed rank test to perform statistical test
on paired samples, and the speci�c data are shown in Table 4.

TTABLE 4 STATISTICS OF WILCOXON SIGNED RANK TEST BASED ON PAIRED SAMPLES

Feature extraction Texture classification Z P

—— VGG -2.201 0.028

——

——

ResNet

DenseNet

-2.201

-2.201

0.028

0.028

——

ResNet+ ResNet

DenseNet+DenseNet

CRNN

CRNN

CRNN

-2.201

-2.201

-2.023

0.028

0.028

0.043

DenseNet+ResNet

DenseNet+ResNet

RNN

CRNN

-2.201

——

0.028

——

It can be seen from Table 4 that the P values obtained by statistics on various models are all less than
0.05, which is statistically signi�cant. Results have clinical signi�cance.
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In order to re�ect this contrast more clearly, we have drawn a forest plot, as shown in Figure 15.

As can be seen from the forest plot, our proposed method is more effective compared with other
methods.

Discussion
In this study, several experiments were designed to validate our method. Particularly, We �rst carried out a
comprehensive evaluation of the image data generated by CycleGAN, and found that the generated
images were great. Subsequently, we list the training curves of feature extraction part to judge extraction
effect. Finally, we repeated the experiment six times, calculated the test accuracy, and compared it with
other models, and found that our method is the best in terms of accuracy and e�ciency. These
experiments demonstrate that our method has advantages in grading pituitary tumors. Despite the
achievements reported in this paper, several improvements remain possible: On the one hand, the data
samples used in the experiment are still insu�cient, and it is easy to produce the phenomenon of
overfitting. On the other hand, although the loss of feature extraction model training is low and
convergence is achieved, the accuracy is still not high enough. Future research in the domain shall
address these issues, possibly collecting new data and improving the part of feature extraction.

Conclusion
In this paper, we proposed a deep neural network model for determining the softness level of pituitary
tumors, which has the potential to assist clinical diagnosis. Our method �rst uses CycleGAN to amplify
the pituitary tumor dataset to generate multi-sequence samples, which enhances the diversity of pituitary
tumor samples and thus helps resolve the under-sampling issue. Then, our method uses an Auto-Encoder
architecture, based on ResNet encoding and decoding, to extract the pituitary tumor features, which can
improve the classi�cation e�ciency of the network to some extent. Finally, the extracted pituitary tumor
features are fed to CRNN for classi�cation/grading of the softness level of pituitary tumors. Experiments
on a real medical dataset show that our method achieves signi�cantly improved results than some
existing popular methods. The experimental results also suggest that our adaptively optimized feature
extraction method can better identify deep texture features of pituitary tumor image, and can thus
improve the classi�cation accuracy of pituitary tumors.
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Figure 1

CycleGAN based Deep Neural Network Model for domain conversion
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Figure 2

Discriminator architecture

Figure 3
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Generator architecture

Figure 4

ResNet encoder network architecture

Figure 5

ResNet decoder network architecture

Figure 6

Feature extraction model based on Auto-Encoder
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Figure 7

CRNN classi�er network architecture

Figure 8

Multi-sequence pituitary tumor grading model
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Figure 9

Discriminator loss and generator loss

Figure 10

Visualization of training results
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Figure 11

Multi-sequence feature extraction model

Figure 12

T1 domain image classi�cation model training
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Figure 13

T2 domain image classi�cation model training
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Figure 14

Multi-sequence image classi�cation model training
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