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Abstract

Background: With the rapid accumulation of proteomic and genomic datasets in terms of genome-scale features

and interaction networks through high-throughput experimental techniques, the process of manual predicting

functional properties of the proteins has become increasingly cumbersome, and computational methods to

automate this annotation task are urgently needed. Most of the approaches in predicting functional properties of

proteins require to either identify a reliable set of labeled proteins with similar attribute features to unannotated

proteins, or to learn from a fully-labeled protein interaction network with a large amount of labeled data. However,

acquiring such labels can be very difficult in practice, especially for multi-label protein function prediction problems.

Learning with only a few labeled data can lead to poor performance as limited supervision knowledge can be

obtained from similar proteins or from connections between them. To effectively annotate proteins even in the

paucity of labeled data, it is important to take advantage of all data sources that are available in this problem setting,

including interaction networks, attribute feature information, correlations of functional labels, and unlabeled data.

Results: In this paper, we show that the underlying nature of predicting functional properties of proteins using various

data sources of relational data is a typical collective classification (CC) problem in machine learning. The protein

functional prediction task with limited annotation is then cast into a semi-supervised multi-label collective classification

(SMCC) framework. As such, we propose a novel generative model based SMCC algorithm, called GM-SMCC, to

effectively compute the label probability distributions of unannotated protein instances and predict their functional

properties. To further boost the predicting performance, we extend the method in an ensemble manner, called EGM-

SMCC, by utilizing multiple heterogeneous networks with various latent linkages constructed to explicitly model the

relationships among the nodes for effectively propagate the supervision knowledge from labeled to unlabeled nodes.

Conclusion: Experimental results on a yeast gene dataset predicting the functions and localization of proteins

demonstrate the effectiveness of the proposed method. In the comparison, we find that the performances of the

proposed algorithms are better than the other compared algorithms.

Background
Advances in biotechnology have enabled high-throughput

experiments to generate a wide variety of genomic and

proteomic data sources, including genome sequences, pro-

tein structure, and protein-protein interaction (PPI)

networks.

Each data source provides a comprehensive view of the

underlying mechanisms, and is represented as a set of fea-

tures in a feature space or viewed as a graph structure

where each individual is considered as a node. In the field

of functional genomics, the process of manual annotation

has become increasingly cumbersome with the rapid accu-

mulation of the proteomic and genomic datasets. Compu-

tational methods to automate this task are urgently

needed. Therefore, various computational methods have

been proposed to automatically infer the functional

* Correspondence: yeyunming@hit.edu.cn
1Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen

Graduate School, Harbin Institute of Technology, Shenzhen, China

Full list of author information is available at the end of the article

Wu et al. BMC Genomics 2014, 15(Suppl 9):S17

http://www.biomedcentral.com/1471-2164/15/S9/S17

© 2014 Wu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:yeyunming@hit.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


properties of proteins using various data sources available

(see [1] for a review).

Previous research in protein (or gene) function predic-

tion can be partition into two classes of methods (feature-

based approaches and graph-based approaches) according

to the terms of input data and methodology. Feature-

based machine learning algorithms require the instances

to have a fixed set of attribute values from a feature space.

The approaches involve extraction of features to encode

the desired properties of a protein, and construction of a

machine learning model for functional properties predic-

tion. Some of the popularly used features are characteris-

tics from amino acid sequence, textual repositories like

MEDLINE, and more biologically meaningful features

such as motifs derived from motif analysis of protein

sequences, the isoelectric point and post-translational

modifications. Via these constructed attribute features, a

predictive model is learnt by training a classifier using

annotated proteins, and then utilize this model to predict

the functions of the proteins [2-5].

On the other hand, graph-based approaches use the net-

work structure information to exploit proteins (or genes)

sharing similar functional properties. Protein interaction

networks are becoming increasingly rich and useful in

delineating the biological characteristics of proteins. A

review of computational approaches that are being used to

measure protein interactions can be found in [6]. For

instance, the Pearson’s correlation coefficient is used to

measure pairwise similarity between gene expression pro-

files. Specifically, the protein-protein interaction data can

be modeled as a graph by considering individual proteins

as the nodes, and the existence of an interaction between

a pair of proteins as a link, graph-based or kernel-based

classification algorithms are then used for protein data

classification tasks based upon the protein interaction net-

work [7-10].

Although many efforts have been made for automati-

cally predicting functional properties of the proteins, this

task still poses several significant challenges. First of all,

existing feature-based methods and graph-based methods

cannot guarantee good accuracy when there is only lim-

ited number of labeled data available. Most of the exist-

ing feature-based methods and graph-based methods

require sufficiently large amount of labeled examples or a

fully-labeled graph for training. However, acquiring such

labels can be very expensive and time-consuming in

practical applications. The performance of functional

prediction might be degraded when the requirement of

sufficient labeled data is not met. Furthermore, proteins

are generally involved in more than one biological pro-

cess, and thus they are annotated with multiple functions.

Thus, it increases the difficulties of functional prediction.

A promising idea to tackle these challenges (label defi-

ciency and multiple function prediction problems) is to

take advantage of multiple data sources and multiple

functions of proteins for enhancing the prediction perfor-

mance. To this end, we propose effective approaches that

utilize all data sources that are available in this problem

setting, including interaction networks, protein attribute

features, label correlations, and unlabeled data for enhan-

cing the performance of predicting functional properties

of the proteins.

In this paper, we first show that the learning task

underlying the protein function prediction using various

data sources of relational data matches well with the col-

lective classification [11-13] framework. Then, we pro-

pose a new generative model based semi-supervised

multi-label collective classification algorithm, called GM-

SMCC, for predicting proteins with multiple functions

utilizing both labeled and unlabeled data in the learning

process. To further boost the learning performance, we

extend our proposed GM-SMCC method in an ensemble

manner by constructing multiple latent networks. This

approach, called ensemble of GM-SMCC model (EGM-

SMCC), constructs various kinds of latent networks with

various latent linkages to explicitly model the relation-

ships among the node. We show how to effectively inte-

grate these latent networks in an ensemble framework to

improve the performance of protein function prediction.

We study the KDD Cup 2001 tasks of predicting func-

tional properties (protein localization and their biologi-

cal functions) of the protein corresponding to a given

yeast gene. Experimental results show that the proposed

algorithms (GM-SMCC and EGM-SMCC) can lead to

performance superior to other compared feature-based

approaches, graph-based approaches, and collective clas-

sification algorithms. In summary, the main contribu-

tions of this paper are listed as the following:

1. This article is the first one to examine the CC

algorithm for protein function prediction using

semi-supervised learning and multi-label learning

techniques to leverage the unlabeled portion of the

data and label correlation information in the par-

tially-labeled PPI network, which only has limited

number of annotations.

2. The proposed GM-SMCC algorithm is able to uti-

lize various data sources for protein function predic-

tion, where the instance features and interactions, as

well as the label correlations can be naturally and

explicitly exploited to predict a set of functional

labels for an unannotated protein.

3. The proposed EGM-SMCC algorithm is a multi-

network learning method which integrates multiple

constructed latent graphs for protein function pre-

diction using an ensemble framework. Via the multi-

ple latent graphs constructed, the supervised

knowledge can be propagated from labeled to
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unlabeled nodes effectively to boost the prediction

performance.

Prediction task formalization
The protein functional properties prediction task has

been widely explored in the literature. An extensive

review on this task is found in [1]. The approaches of

protein function prediction can be categorized into two

categories, feature-based methods and graph-based

methods, in terms of input data and methodology.

Feature-based methods. For these methods, each pro-

tein is characterized as a feature vector xi =< f1, ..., fd >

with a fixed set of feature values. The feature vectors of

the data then taken as input to machine learning algo-

rithms to infer annotation rules for predicting unanno-

tated proteins [14]. Learning algorithms that have been

used include SVM [3], neural networks [15], random for-

est [16], and cotraining [14], to name a few. Typically,

feature extraction is involved to extract desired features

to represent information of proteins. Then a feature

selection is used in the learning process to select the

most useful features to train a classifier. A protein usually

performs multiple functions. As such, several approaches

handle the prediction problem using the multi-label

learning framework. For instance, Barutcuoglu et al. [17]

learn SVM classification model for predicting functions

in the Gene Ontology using a hierarchical multi-label

structure. Pandey et al. [18] incorporate function correla-

tion for predicting protein functions using a weighted

multi-label kNN classifier. Schietgat et al. [19] predict

gene function using hierarchical multi-label decision tree

ensembles.

Graph-based methods. These methods study protein

function in the context of a network. The recent avail-

ability of protein interaction networks has spurred on

the development of computational methods for analyz-

ing such data in order to elucidate the relationships

between protein interactions and functional properties.

Sharan et al. [9] categorize the methods into two

groups: direct annotation schemes, which infer the

function of a protein based on its connections in the

network; and module-assisted schemes which first

identify modules of related proteins and then annotate

each module based on the known functions of its

members. Examples of direct annotation algorithms

include neighborhood counting [8], graph theoretic

methods [20], and Markov random field [21]. On the

other hand, the model-assisted methods differ mainly

in their module (or cluster) detection techniques.

Examples of model detection methods include hier-

archical clustering-based methods [22] and graph clus-

tering-based methods [23]. Graph-based approaches

using multi-label learning framework for prediction

have also been studied [24-26].

Although a broad variety of interesting approaches

have been developed, most of the methods mainly study

the scenario where sufficient labeled data are available

in the dataset. In this case, the supervision knowledge

can be effectively used in the feature-based models and

graph-based methods to achieve good learning perfor-

mance. However, such labels are difficult and time-con-

suming to obtain. In sparse-labeled networks, one has

only limited number of labeled nodes, say fewer than

10%, 5% or even 1%. The performance of prediction

might be degraded due to the lack of annotated proteins

[27]. It is thus natural to consider using various data

sources of the protein data (including labeled and unla-

beled) to improve the prediction performance.

Collective classification. The task of protein function

prediction can be cast into the collective classification

problem of building a predictive model from networked

data. Generally, networked data can be represented by

nodes (instances) interconnected with each other by

edges reflecting the relation or dependence between the

nodes. Information on the nodes is provided as a set of

attribute features (e.g., words present in the web page).

The class membership of an instance may influence the

class membership of a related instance.

Conventional supervised learning methods assume

that the instances to be classified are independent of

each other, while collective classification jointly classifies

interrelated instances by exploiting the interrelations

among the instances [28,29]. For example, consider the

task of predicting the topics of hyperlinked web pages.

Conventional supervised learning approaches only use

the attribute features derived from the content of the

pages to classify each page. In contrast, collective classi-

fication methods use the link structure to construct

additional relational features based on the labels of

neighboring pages. We can count the number of differ-

ent labels of the neighboring pages that are linked to

each page as the relational features. Collective classifica-

tion methods would then explicitly use the attribute fea-

tures and the relational features together for

classification.

Formally, the collective classification task is described

as follows: Let G = (V, E, X, Y, C) be a graph dataset. V

is a set of nodes {v1, . . . , vN }. E is the adjacency matrix

where E(i, j) = 1 if node vi and node vj are connected

and E(i, j) = 0 otherwise. X ⊂ Rd consists of d dimen-

sional vector instances. Each xi ∈ X is an attribute vec-

tor for a node vi ∈ V . C = {c1, c2, ..., cK} is the set of K

possible labels. Y contains the set of label set Yi corre-

sponding to instance xi for i = 1, . . . , N . Each Yi =

[Yi,1, . . . , Yi,l, . . . , Yi,K ] ∈ {0, 1}k such that Yi,l = 1

means that xi is associated with l and Yi,l = 0 otherwise.

We assume that we have n′ label data {(xi, Yi)}
n′

i=1 and n′′

unlabeled data {(xi)}
n′+n′′

i=n′+1 with N = n′ + n′′. The task is to
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construct a function to predict the class label of unla-

beled nodes using the labeled nodes in the graph.

When there are only limited number of labeled nodes

in the task of predicting functional properties of pro-

teins, i.e. n′ ≪ n′′, most of the proteins may not connect

to labeled ones, which makes the task very challenging.

As such, it is natural to consider some sort of semi-

supervised learning. In the setting of semi-supervised

learning, one utilizes both labeled and unlabeled data

together to improve the performance [30].

Methods
In this section, we present the (GM-SMCC) algorithm

to address the task of predicting functional properties of

proteins. Our approach is to model the problem as a

generative model process to learn a probabilistic inter-

pretation of the data for the estimation of the condi-

tional distribution p(c|x) of the data, where c is a

functional class and x is a protein instance.

GM-SMCC

Given the dataset X = {x1, ...,xi,..., xN} with the attribute

features W = {w1,... ,wj ,...,wM}, we set up a generative

model for the attribute features of the protein instances

in X (including labeled and unlabeled data) and estimat-

ing the conditional distribution P(c|x) by using the

pLSA model originally developed for latent topic analy-

sis. Unlike other topic model based on latent topics, we

adopt protein functional class ck as latent variables in

the pLSA model and fixing p(ck|xi) for the annotated

proteins in the learning process. The model is given as

P
(

xi, wj

)

= P (xi)

K
∑

k=1

P
(

wj|ck

)

P (ck|xi)

where P(ck|xi) and P(wj |ck) are the probabilities that a

protein instance xi is associated with functional class ck
and the probability that attribute feature wj occurs in a

protein with class ck, respectively. For efficient optimiza-

tion, we utilize the log-likelihood. The likelihood func-

tion is transformed into:

L =

N
∑

i=1

M
∑

j=1

n
(

xi, wj

)

log

K
∑

k=1

P
(

wj|ck

)

P (ck|xi) (1)

where n(xi,wj) is the frequency of wj occurring in xi,

and N,M are the number of proteins and attribute fea-

tures, respectively.

We exploit the knowledge of network topological

structure of the data for better estimation of the condi-

tional probability P(c|x) based on the assumption that

nearby nodes tend to have similar labels. The basic

assumption is that if two nodes xi and xs are connected

in the network, these nearby nodes tend to share similar

class labels, i.e., the distance of their conditional distri-

bution P(c|xi) and P(c|xs) should be similar to each

other. Here, we consider the Kullback-Leibler (KL)

divergence to measure the distance of two distributions.

Suppose the distribution of P(ck|xi) with respect to dif-

ferent classes is represented as a vector zi = [P(c1|xi), · ·

·, P(cK|xi)]
T . Then the KLdivergence between zi and zs

is defined as

D (zi||zs) =

K
∑

k=1

P (ck|xi) log
P (ck|xi)

P (ck|xs)

KL-divergence is not symmetric, and thus we use the

following symmetric KL-divergence

D (zi, zs) =
1

2

(

D(zi||zs)) + D(D(zs||zi))
)

to measure the distance of two distributions. Here,D

(zi; zs) is always nonnegative.

As discussed above, our idea is to smooth the distri-

bution P(c|x) over the network. If two proteins are con-

nected with interactions, then their conditional

distributions P(c|xi) and P(c|xs) should be close to each

other. Such local smoothness in terms of the network

topology is explicitly incorporated into the generative

model through a network regularizer

R =
N
∑

i,s=1

(D (zi, zs)) Eis (2)

where E is the adjacency matrix to represent the net-

work topology, Ei,s = 1 if vi and vs are connected, and Ei,

s = 0 otherwise.

In protein functional properties prediction, proteins

generally involve multiple biological processes and have

multiple functions. Thus, it is crucial to take the label

correlations into account to better predict their func-

tional classes. Here, we further generalized the genera-

tive model to support this general setting. Recall that

the network regularizer R is used to smooth label prob-

ability distribution over the intrinsic network structure.

One hopes that the resulting distribution is able to be

smoothed with respect to the class label correlations. A

natural assumption here could be that if two class labels

ck and cl are related, then the distribution P(ck|xi) and P

(cl|xi) with respect to different instances should be also

similar to each other.

In particular, we construct a label-to-label affinity

graph with K vertices where each vertex corresponds to

one class label. For each pairwise vertices, we put edges

between them and compute their weighting. There are

many choices to define the weight matrix F = [Fkl] on

the affinity graph. Specifically, we use the commonly

used dot-product as follows
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Fkl = YT
k Yl,

where Yk = [Y1,k, · · ·, YN,k]
T is the label distribution

over the instances, such that Yi,k is nonzero if xi belongs

to class ck and the remaining elements are zero. Here,

Yk is normalized to 1. The dot product of two vectors is

equivalent to their cosine similarity.

Suppose the vector representation of P(ck|xi) with respect

to different instances is rk = [P(ck|x1), · · ·, P(ck|xN)]
T .

we define the KL-divergence between rk and rl for

pairwise class labels as follows

D (rk||rl) =

N
∑

i=1

P (ck|xi) log
P (ck|xi)

P (cl|xi)

D (rk, rl) =
1

2

(

D(rk||rl)) + D(D(rl||rk))
)

By using the label affinity matrix F and the symmetric

KL-divergence defined above, we defined the label regu-

larizer

H =

K
∑

k,l=1

(D (rk, rl))Fk,l (3)

to smooth the distribution P (c|x).

Incorporating the smoothness terms (2) and (3) into

the objective function in (1), we have the following new

objective function

O = L − αR − βH

=

N
∑

i=1

M
∑

j=1

n
(

xi, wj

)

log

K
∑

k=1

P
(

wj|ck

)

P (ck|xi)

−
α

2

N
∑

i,s=1

K
∑

k=1

(

P (ck|xi) log
P (ck|xi)

P (ck|xs)
+ P (ck|xs) log

P (ck|xs)

P (ck|xi)

)

Eis

−
β

2

N
∑

i=1

K
∑

k,l=1

(

P (ck|xi) log
P (ck|xi)

P (cl|xi)
+ P (cl|xi) log

P (cl|xi)

P (ck|xi)

)

Fkl

where a and b are the regularization parameters.

When a = 0 and b = 0, maximizing O is equivalent to

performing learning using the original pLSA model.

For the annotated proteins, their probability distribu-

tions P (c|x) are fixed in the learning process. Specifi-

cally, the probability assignments are defined as a

uniform distribution based on the known functional

class labels as follows

P (ck|xi) =

{

1/lx if xiis labeled ck

0 otherwise
(5)

where lx is the number of functional classes for an

annotated protein xi.

For the unannotated proteins, we maximize the log-

likelihood function O to compute their probabilistic

distributions. The resulting probability distribution P (c|

xi) with respect to a given instance xi indicates the

importance of a set of functions to the protein. One

hopes that the P (cl|xi) of the relevant labels are close to

each other, and their values should be larger than those

of the irrelevant labels. Hence, to make prediction of xi,

we first rank the labels according to P (ck |xi). Then we

separate the set of labels into relevant and irrelevant

label subsets according to the largest change observed

across the sorted P (ck |xi). That is, we seek the largest

change between two successive P (ck |xi) and P (ck+1|xi)

in terms of their sorted orders. Their median value, say

t = (P(ck |xi) + P (ck+1|xi))/2, is used as splitting thresh-

old to separate the class labels into relevant set and irre-

levant set, where the the relevant set consists of the

labels with probabilities larger than the threshold t, and

the irrelevant set contains the remaining labels.

Model fitting with the EM algorithm

Our proposed approach, GM-SMCC, utilizes the genera-

tive model with both network and label regularization

for protein function prediction, and parameter estima-

tion is different from original PLSA [31] or previous

work utilizing PLSA with manifold learning for unsuper-

vised data clustering [32]. Next, we introduce the EM

algorithm used in the proposed GM-SMCC approach

for finding maximum likelihood parameter estimates.

In the proposed generative model, we have N K + M

K parameters {P (wj |ck ), P (ck |xi)} where the class

labels ck are considered as the latent variables. For con-

venience, we denote these parameters as Θ. We use the

EM algorithm which alternates between an expectation

step (E-step) and a maximization step (M-step) to esti-

mate the parameters in the proposed GM-SMCC model.

E-step:

The E-step is the same as in the pLSA model. The pos-

terior probabilities for the latent variables P (ck|xi, wj) is

computed as follows

P
(

ck|xi, wj

)

=
P

(

wj|ck

)

P (ck|xi)
∑K

l=1 P
(

wj|cl

)

P (cl|xi)
(6)

M-step:

The M-step re-estimation for {P (wj |ck )} is the same as

that in the pLSA model as follows

P
(

wj|ck

)

=

∑N
i=1 n

(

xi, wj

)

P
(

ck|xi, wj

)

∑M
m=1

∑N
i=1 n (xi, wm) P (ck|xi, wm)

(7)

In the M-step, parameters are updated based on the

expected complete data log-likelihood which depends on
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the posterior probabilities computed in the E-step [31].

The expected complete data log-likelihood of (4) is

given by

Q (�) = Q1 (�) + Q2 (�)

=

N
∑

i=1

M
∑

j=1

n
(

xi, yj

)

K
∑

k=1

P
(

ck|xi, wj

)

log
[

P
(

wj|ck

)

P (ck|xi)
]

− α

N
∑

i,s=1

K
∑

k,l=1

D (Pi (ck) , Ps (ck)) Eis

− β

N
∑

i,s=1

K
∑

k,l=1

D (Pi (ck) , Pi (cl)) Fkl

using the posterior probabilities computed in the

E-step.

We need to maximizeQ (�) with respect to the para-

meter Θ subject to the constraints
∑K

k=1 P (ck|xi) = 1 and
∑M

j=1 P
(

wj|ck

)

= 1. Therefore, we augment Q (�) by the

appropriate Lagrange multipliers ri to obtain

Q′ = Q (�) +

N
∑

i=1

ρi

(

1 −

K
∑

k=1

P (ck|xi)

)

(8)

Maximization of Q′ with respect to P (ck |xi) leads to

the following set of equations:

∑M
j=1 n

(

xi, wj

)

P
(

ck|xi, wj

)

P (ck|xi)
− ρi

(9)

−
α

2

N
∑

s=1

(

log
P (ck|xi)

P (ck|xs)
+ 1 −

P (ck|xs)

P (ck|xi)

)

Eis

−
β

2

K
∑

l=1

(

log
P (ck|xi)

P (cl|xi)
+ 1 −

P (cl|xi)

P (ck|xi)

)

Fkl = 0

where 1 ≤ i ≤ N, 1 ≤ k ≤ K.

We expect that if the attribute features of two proteins

xi and xs are close (i.e., Eis is large), then the distribution

P (ck |xi) and P (ck |xs) are similar to each other, i.e., P

(ck |xi) will be close to P (ck |xs). We have

(

P (ck|xi)

P (ck|xs)

)Eis

≈ 1

Similarly, if two functions ck and cl are close (i.e., Fkl
is large), then the distribution P (ck |xi) and P (cl|xi)

are similar to each other, i.e., P (ck |xi) will be close to

P (cl|xi).

(

P (ck|xi)

P (cl|xi)

)Fkl

≈ 1

We have,

By using the approximation

log (x) ≈ 1 −
1

x
, x → 1,

(9) can be written as

∑M
j=1 n

(

xi, wj

)

P
(

ck|xi, wj

)

P (ck|xi)

−ρi −
1

P (ck|xi)
(αA1 + βA2) = 0

(10)

where 1 ≤ i ≤ N, 1 ≤ k ≤ K,

A1 =

N
∑

s=1

(P (ck|xi) − P (ck|xs))Eis

= P (ck|xi)

N
∑

s=1

Eis −

N
∑

s=1

P (ck|xs)Eis

and

A2 =

K
∑

l=1

(P (ck|xi) − P (cl|xi))Fkl

= P (ck|xi)

K
∑

l=1

Fkl −

K
∑

l=1

P (cl|xi)Fkl

To obtain the M-step re-estimation for P (c|x), we con-

struct six N K-by-N K matrices: Z, Ω, D, B, U, and R.

First, we construct a K-by-K block diagonal matrix

D = [Di,j] based on the adjacency matrix E, where the

(i, j)th block of D is a N -by-N matrix Di,j = [di,j,s,t]s,

t=1,...,N . All the entries of D are equal to 0 except the

diagonal entries di,i.s.s =
∑

s

Eis

Next, we construct another K-by-K block diagonal

matrix B = [Bi,j] where its (i, j)th block is also a N -by-

N matrix Bi,j = [bi,j,s,t]s,t=1,...,N . The entries of B are

equal to 0 when i ≠ j; otherwise, if i = j, then we have

bi,j,s,t = Est.

Then, we construct a N -by-N block diagonal matrix

U = [Ui,j] based on the label correlation matrix F ,

where the (i, j)th block of U is a K-by-K matrix Ui,i =

[ui,i,s,t]s,t=1,...,K . All non-diagonal entries of U are equal

to 0 and the diagonal entries ui,i.s.s =
∑

s

Fsl.

The matrix R = [Ri,j] is another N -by-N block matrix

where its (i, j)th block is a K-by-K matrix Ri,j = [ri,j,s,t]s,

t=1,...,N . Indeed, each Ri,j, for i, j = 1, ..., K, is a diago-

nal matrix ri,j,s,s = Fij .

The matrix Z is a K-by-1 block vector, where its k-th

entry Zk is a N dimensional vector defined as follows

Zk =

⎡

⎢

⎣

∑M
j=1 n

(

x1, wj

)

P
(

ck|x1, wj

)

· · ·
∑M

j=1 n
(

xN, wj

)

P
(

ck|xN, wj

)

⎤

⎥

⎦
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The matrix Ω is a K-by-K block matrix where its (i, j)th

block is a N -by-N diagonal matrix. All the non-diagonal

entries of Ω are equal to 0 and the diagonal entries

�i,i,s,s = ρi =
∑K

k=1

∑M

j=1
n

(

xs, wj

)

P
(

ck|xs, wj

)

Let y denotes a K-by-1 block matrix where

Yk = [P (ck|x1) , · · · , P (ck|xN)]T

The system of equations in (9) is approximated using

(10) and can be solved using the following matrix form:

Z − �y − α (D − B) y − β (U − R) y = 0 (11)

Thus, the M-step re-estimation for P (c|x) is

y = (� + α (D − B) + β (U − R))
−1
Z (12)

The E-step (6) and M-steps (7) and (12) are alternated

until the objective function (4) converges.

In the initialization step of the EM algorithm, the

values of P (wi|ck ) and P (ck |xi) are initialized based on

the class priors according to the annotated proteins. We

assume that each feature wj is conditionally independent

to each other given the label ck . Concretely, P (wj|ck) are

initialized as P
(

wj|ck

)

=
n

(

wj, ck

)

∑

in (wi, ck)
, where n(wj , ck) is

the frequency of wj and ck co-occuring. The label distri-

bution P (ck |xi) for unannotated proteins are initialized

as P (ck|xi) =

∑

in (ck, xi)
∑

lni (cl, xi)
, where n(ck , xi) = 1 if xi is asso-

ciated with ck and 0 otherwise. In each iteration of the

EM algorithm, the probability assignments of P (c|x) for

labeled data are reset according to the known functional

class labels as in Eq. (5).

EGM-SMCC algorithm

The power of the network regularizer in Eq. (4) of our

proposed GM-SMCC model lies in the fact that the lin-

kages of the network generally exhibit predictable rela-

tionships between class labels of linked proteins.

Suppose we have an unannotated protein, and we have

a good understanding of the relationship between the

functions of this protein and the functional properties of

its labeled neighbors, then we should be able to make a

good prediction of the protein functional properties

based on the linkage information.

In the proposed GM-SMCC model, we use the auto-

correlation in the protein interaction network which

may provide some inconsistent linkages between the

proteins not sharing similar functional properties. In the

studies of functional genomics, if more information is

available, one can derive more effective networks for

capturing useful relationships between the proteins to

propagate the supervision knowledge from labeled nodes

to unlabeled nodes.

In the real-world, protein data are associated with var-

ious data sources. For example, the proteins are asso-

ciated with attribute features; those proteins with similar

feature values may also be similar in their associated

functions. Also, the proteins are associated with a set of

functional labels, which can be represented by label fea-

tures that are useful for evaluating the pairwise similar-

ity of protein instances. These latent linkages are already

embedded in the data. We can exploit this knowledge to

construct the latent graphs for more effective label

prediction.

In this paper, in addition to the PPI network, we

introduce two types of latent linkages to construct latent

graphs. Based on the latent graphs we constructed, we

extend our proposed generative model in an ensemble

manner to further boost the prediction performance.

Given the adjacency matrices
{

E(i)
}q

i=1
of q latent

graphs, the proposed ensemble algorithm, namely EGM-

SMCC, is described in Algorithm 1. In the EGM-SMCC

algorithm, we learn an individual GM-SMCC model on

each of the constructed latent graph, and then combine

the learned models to obtain a more reliable prediction

than that of the model on a single latent graph.

Algorithm 1 EGM-SMCC

Input:
{

E(i)
}q

i=1
, X, Y , the parameters a and b

Output: y

Procedure:

1: for i = 1 to q do

2: Learn a GM-SMCC model using the constructed

latent graph E(i). In the GM-SMCC model, compute the

network regularizer R in Eq. (2) according to E(i);

3: Use EM algorithm to optimize the GM-SMCC

model to compute the label probability distribution y(i);

4: end for

5: Combine the results of q learned models y(i), y(i),..., y(q)

into an ensemble prediction as y =
1

q

q
∑

i=1

y(i)

The basic idea of constructing latent graphs is to link

together the protein nodes, such that nodes which are

closer in the graphs will tend to have the same func-

tional labels, and the nodes which are disconnected will

tend to have different functional labels. Via the latent

linkages in the latent graphs we constructed, knowledge

from labeled nodes can be propagated to unlabeled

nodes more effectively, such as the example in Figure 1.

Next, we introduce three type of latent linkages to con-

struct latent graphs that can be easily computed from

the data. For each individual latent graph, we compute a

weight Eij for each entry of its adjacency matrix where

Ei,j is large indicates two nodes are close together, and

vice versa.
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PPI latent graph: In our ensemble model, we con-

sider the PPI network as a latent graph, and construct

the adjacency matrix E(1) of the PPI latent graph as

follows

E
(1)

ij = E
(

i, j
)

where E(i, j) = 1 if node vi and node vj are connected

in the PPI network, and E(i, j) = 0 otherwise.

Random walk latent graph: When the underlying

autocorrelation of original PPI network is small, i.e.,

some connected nodes may not share the same class

label, the learning method based on the original PPI

network might be affected.

It is observed that proteins that interact with level-2

neighbors (indirect neighbors in the PPI network) also

have a great likelihood of sharing similar characteristics

[8]. To this end, we use the idea of even-step random

walk with restart (ERWR) [33] to compute the weights

of the latent linkages. Intuitively, we assume that lin-

kages to directed neighbors with the same function class

with the target protein of interest typically have triangle

structures (see Figure 1(b)). These neighbors (v2 and v3)

are able to obtain high scores using ERWR because they

are well-connected in the PPI network. On the other

hand, ERWR can avoid the immediate neighbors (e.g., v1
and v2) with inconsistent linkages that negatively influ-

ence the predictions because they are sparsely-con-

nected. ERWR can also exploit the indirect neighbor

data by adding linkages to level-2 neighbors (e.g., v4)

that are well-connected to level-1 neighbors.

Given the adjacency matrix E of the PPI network, we

compute P = EE and normalize its entries with respect

to each column to obtain a normalized transition prob-

ability matrix P . The ERWR random walker iteratively

visits neighborhood nodes with transition probability

given in P . Also at each step, it has probability a (e.g.,

a = 0.1) to return to the start node. We define the adja-

cency matrix E(2) of the random walk latent graph as

follows

E
(2)

ij = R
(

i, j
)

where R =
∑T

t=1 α(1 − α)tpt is the steady-state prob-

ability matrix after T steps.

Prediction similarity latent graph: We also consider

the values of class labels of the annotated proteins as

input features to build a classifier that predicts all unla-

beled proteins. Specifically, we use SVM classifier with

probability outputs implemented in the LIBSVM library

[34] to compute Yi =
[

P (c1|xi) , P (c2|xi) , . . . , P
(

cq|xi

)]T

such that P (cj |xi) is the confidence of a protein xi
belongs to the class cj . The adjacency matrix E(3) of

latent graph based on the prediction confidences is

defined as follows

E
(3)

ij = YT
i Yj

Here, Yi and Yj are normalized to unit length, thus the

dot product of the two vectors is equivalent to their

cosine similarity.

In the prediction similarity latent graph, there are

many entries being close to zero. It may not be neces-

sary to consider these entries. Therefore, we use a kNN

construction scheme for graph. We connect two nodes

vi and vj if vj is among the k-nearest neighbors of vi or

if vj is among the k-nearest neighbors of vi [35]. It is

obvious that the number of edges is O(N ) and the

graph is symmetric. We define a sparse adjacency matrix

for kNN graph as follows

Ê
(3)

i,j =

{

1, if vi ∈ Nk

(

j
)

or vj ∈ Nk (i)

0, otherwise.

where Nk(i) is the set of k nearest neighbors of vi. In

practice, we find that k does not need tuning. We use k

= 10 nearest neighbors for each data set.

Experiments

In this section, we discuss the extensive experimental

results to compare the performance of our proposed

methods with the other baselines: SVM, wvRN+RL,

ICA, semi-ICA, and ICML, and show that the proposed

methods are able to achieve better performance against

these baselines.

Yeast dataset and baselines

We conduct experiments to predict properties of the pro-

teins corresponding to a given yeast gene from KDD Cup

2001 [36]. In particular, we formulated two prediction

Figure 1 An example of latent graphs used in the proposed

EGM-SMCC model. (a) PPI latent graph, i,e., the original interaction

network, where the ground-truth label of the center node v1 is “+”,

but it is difficult to predict the label (+ or -) for node v1 since it has

the same number of positive and negative neighboring nodes; (b)

even-step random walk latent graph, the directed neighbors with

the same label ("+”) to v1 have triangle edges (red lines), hence they

are reachable from v1 using even-step random walks. On the other

hand, the indirected neighbors (from the + nodes) in network are

linked by creating edges (dash line) using even-step random walks;

(c) prediction similarity latent graph using kNN graph construction.

In the kNN graph, a node pair share an indirected edge if the two

nodes are k-nearest neighbors. In the example, we set k = 3.

Wu et al. BMC Genomics 2014, 15(Suppl 9):S17

http://www.biomedcentral.com/1471-2164/15/S9/S17

Page 8 of 14



problems based on the properties of the proteins. Pro-

blem (1) is to predict the localization of the proteins

encoded by the genes. It is a binary problem, i.e., a pro-

tein is localized (or not localized) to the corresponding

organelle. Problem (2) is to predict the functions of the

proteins, which a multi-label problem, i.e., a protein can

have more than one function. There are totally 14 func-

tional classes in the dataset.

The dataset for these two problems consisted 1,243 pro-

tein instances and 1,806 interactions among the pair of pro-

teins interact with one another. The protein features

include the attributes refer to the chromosome on which

the genes appears, to whether the gene is essential for survi-

val, observable characteristics of the phenotype, structural

category of the protein, the existence of characteristic motifs

in the amino acid sequence of the protein, and whether the

protein forms larger proteins with others [36,14].

We evaluate the performance of problem (1) by classi-

fication accuracy, and problem (2) by three multi-label

learning evaluation metrics, i.e., Coverage, RankingLoss,

and MacroF1 [37]. These criteria are defined as follows

Coverage evaluates how far we need, on the average,

to go down the list of labels in order to cover all the

true labels of an instance:

Coverage
(

f
)

=
1

N

N
∑

i=1

max
ck∈Yi

ranks (xi, ck) − 1.

where ranks(xi, ck ) denotes the ranks of class label ck
de-rived from a confidence function s(xi, ck ) which indi-

cates the confidence for the class label ck to be a proper

label of xi.

Ranking loss evaluates the average fraction of label

pairsthat are reversely ordered for the instance:

Ranking Loss
(

f
)

=
1

N

N
∑

i=1

1

|Yi|
∣

∣Ȳi

∣

∣

· |Ri| ,

where

Ri =
{

(c1, c2) |h (xi, c1) ≤ h (xi, c2) , (c1, c2) ∈ Yi × Ȳi

}

, and

Ȳ denotes the complementary set of Yi.

MacroF1 is the harmonic mean between precision and

recall, where the average is calculated per label and then

averaged across all labels. It is defined as

MacroF1 =
1

K

K
∑

k=1

2 × pk × rk

pk + rk

where pk and rk are the precision and recall of the k-th

label.

To validate the performance of our proposed algo-

rithms, we compare our approach with four baseline

methods:

1. SVM [34]. This baseline is a feature-based

method only using the attribute features of the pro-

teins for learning without considering using any net-

work information.

2. wvRN+RL [38]. This algorithm is a relational-only

method using only the PPI network for prediction.

wvRN+RL computes a new label distribution for an

unlabeled node by averaging the current estimated dis-

tributions of its linked neighbors. This process is

repeated until reaching the maximum iteration number.

3. ICA [28]. This denotes a collective classification

algorithm which uses both attribute features and rela-

tional features to train a base classifier for prediction.

The relational features are constructed based on the

labels of neighbors. ICA uses an iterative process

whereby the relational features are recomputed in each

iteration until a fixed number of iterations is reached.

Prior work has found logistic regression (LR) to be

superior to other classifiers such as naive bayes and

kNN, as base classifier for ICA. Therefore, we use LR

as the local classifier for ICA in the experiments.

4. semi-ICA [39]. This method extends ICA to

leverage the unlabeled data using semi-supervised

learning. There are four semi-ICA variants

(KNOWN-EM, ALL-EM, KNOWN-ONEPASS,

ALL-ONEPASS) for semi-ICA, we run all four var-

iants and choose the best one as the result of semi-

ICA.

5. ICML [13]. This method extends ICA to handle

multi-label learning by constructing additional label

correlation features to exploit the dependencies among

the labels as additional input features to learn base

classifier. The ICML algorithm is also based on an

iterative framework similar to ICA.

It is generally more difficult to determine the classifier

parameter values when the number of labeled data avail-

able is smaller (which is the focus of this study). For the

SVM classifier, we use the LibSVM [34] with linear ker-

nel as base classifier, and simply set the penalty para-

meter C = 1.0 for the SVM as default. The maximum

number of iterations for ICA, semi-ICA are set to 10,

and we use logistic regression as their base classifier as

in [39,13]. While the wvRN+RL uses 1000 iterations.

The parameters a and b for our proposed method are

set to 3 and 0.1. The parameter selection issue is dis-

cussed in the later section.

Results on protein localization prediction

We first consider problem (1) of KDD Cup 2001, i.e.,

the protein localization prediction problem. We set a ≠

0 and b = 0 in our proposed method, and compare

GM-SMCC with the learning algorithms: SVM, wvRN
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+RN, ICA and semi-ICA. The performance is measured

in terms of classification accuracy.

We compare the performance of the comparison algo-

rithms by varying the number of labeled data ranging

from 3% to 10% with an interval of 1%. For each

labeled/unlabeled data split, we execute an algorithm for

10 runs by randomly selecting data split, and report the

performance (mean and standard deviation) over 10

runs for the algorithms. Figure 2 shows the experimen-

tal results. As we can see from the figure, the overall

picture taken from the experiments is clearly in favor of

our proposed GM-SMCC. The performance of GM-

SMCC consistently outperforms the other algorithms

across different percentages of labeled data. On average,

the accuracy over different percentages for GM-SMCC,

semi-ICA, ICA, SVM and wvRN+RL are 0.845, 0.801,

0.788, 0.788 and 0.666. GM-SMCC performs best fol-

lowed by semi-ICA. The 3rd best methods are ICA and

SVM. Their performances are comparable. The rela-

tional-only method wvRN+RL performs the worst.

We note that a smaller number of label data is the

most interesting case for our algorithm because it is not

reliable for prediction due to the inadequacy of super-

vised knowledge in the labeled dataset. Thus it is more

desired that other data sources can be utilized together

to improve the prediction performance. A closer exami-

nation of the results in Figure 2 show that the smaller the

percentage of the labeled data is involved, the larger

improvement GM-SMCC achieves. GM-SMCC achieves

the largest improvement against 2nd best method when

there are only 3% of labeled data (GM-SMCC: 0.82 ver-

sus semi-ICA: 0.75). We also conduct pairwise t-test at

0.05 significance level to assess the statistical significance

of the differences in performance of GM-SMCC and the

other test algorithms using 3% of labeled data. The

performance of GM-SMCC is significant better than

those of the other baseline methods. This result illus-

trates the advantages of our methods when there are an

extremely small number of labeled data. This is consis-

tent with our earlier assertions that our approach can

work even in the paucity of annotated proteins by explor-

ing various data sources, including interaction networks,

attribute features, and unlabeled data.

In this study, three types of latent graphs are utilized

(see the EGM-SMCC section). It is thus interesting to

investigate the performance of GM-SMCC using a single

latent graph, and the performance of EGM-SMCC uti-

lizing multiple latent graphs. We test the performance

of GM-SMCC and EGM-SMCC on the KDD Cup 2001

dataset with different label ratio from 3% to 10%. The

experimental results are given in Table 1, where GM-

SMCC-1, GM-SMCC-2 and GM-SMCC-3 denote the

single-graph model using the PPI latent graph (E(1)), the

random walk latent graph (E(2)) and the prediction simi-

larity latent graph (E(3)), respectively. While GM-SMCC-

mean denotes the single-graph model using a latent

graph constructed by averaging the weighing values of

E(1), E(2) and E(3).

We report the average accuracy and standard devia-

tion of the comparison methods over 10 runs. The

numbers in boldface (on each row of the tables) indicate

the best results for each label ratio over the methods.

From Table 1, we observe that EGM-SMCC using mul-

tiple latent graphs is able to achieve better performance

against the GM-SMCC method using a single latent

graph. A reasonable explanation for this finding is that

the different latent graphs have complementary relation-

ship for prediction. These latent graphs are derived

from different sources. When complementary models

learned from these latent graphs are combined in an

ensemble, correct decisions are amplified by the aggre-

gation process. The performance of an ensemble learner

is highly dependent on two factors: one is the accuracy

of each component learner; the other is the diversity

among these components. Examining the results in

Table 1 shows that the overall performances of the GM-

SMCC models generated from different graphs are rea-

sonably well. This result indicates that each latent graph

provides prediction knowledge from a specific aspect,

and their combination leads to a more robust prediction.

Results on protein function prediction

We also conduct experiments for problem (2) of KDD

Cup 2001, i.e., the multi-label protein function predic-

tion problem. We set a and b to be non-zero by consid-

ering the network information and label correlation

simultaneously. We compare the proposed algorithms

with baseline classifiers: SVM, wvRN+RN, ICA, semi-

ICA and ICML. SVM, wvRN+RN, ICA and semi-ICA

Figure 2 Classification accuracy on problem (1) of KDD Cup

2001 dataset.
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are single-label classifiers. For these methods, we

decompose the multi-label problem into a set of K bin-

ary classification problems using one-against-all strategy,

and train independent classifier for each single-label

problem. This approach is known as the binary rele-

vance (BR) method [40]. The predictions for all K binary

classification problems are combined to make the final

prediction.

We compare the performance of our proposed GM-

SMCC approach and other baseline algorithms with vary-

ing percentages of labeled data from 3% to 10%. For each

percentage, we execute each algorithm 10 times by ran-

domly selecting the label/unlabel data split from the

dataset. Then we report average results as well as stan-

dard deviation of each compared algorithms over 10

runs. The result is shown in Figure 3. In order to keep

consistency with the Coverage and RankingLoss evalua-

tion metrics, we use 1-MacroF1 instead of MacroF1.

Thus, the smaller the value of the metric, the better the

performance of the algorithm. We see from Figure 3 that

GM-SMCC (the black line) has the best performance

(lies under the other curves) across all evaluation metrics

and label ratios. Semi-ICA is the second best method. In

the comparison, SVM performs poor in terms of Cover-

age. On the other hand, wvRN+RL, ICML and ICA per-

form poor in terms of MacroF1. Recent studies [41] have

shown that one multi-label learning algorithm rarely out-

performs another algorithm on all criteria because the

evaluation measures used in the experiments assess the

learning performance from different aspects. In the

experiments, we find that GM-SMCC consistently out-

performs other algorithms across all label ratios. On

average, ICAM achieves Coverage improvement of 0.35

(GM-SMCC:3.90 versus semiICA:4.25), RankingLoss

improvement of 0.01 (GM-SMCC:0.104 versus semi-

ICA:0.114), and 1-MacroF1 improvement of 0.068 (GM-

SMCC:0.640 versus semiICA:0.708) against the second

best method. This result indicates that the proposed

GM-SMCC algorithm is effective for the multi-label pro-

tein function prediction task.

Similar to the experiments for protein localization pre-

diction, we also conduct experiments to examine the

effect of the proposed EGM-SMCC method (integrating

multiple latent graphs) for enhancing the prediction per-

formance against the GM-SMCC method using a single

latent graph. GM-SMCC-1, GM-SMCC-2 and GM-

SMCC-3 denote the single-graph model using (E(1)), (E
(2)) and (E(3)), respectively. GM-SMCC-mean denotes

the single-graph model using a latent graph constructed

by averaging the weighing values of E(1), E(2) and E(3).

We compare GM-SMCC and EGM-SMCC with

respect to different percentages of labeled data from 3%

Table 1 Accuracy (mean±standard deviation) of GM-SMCC and EGM-SMCC against different label ratio on problem (1)

of KDD Cup 2001.

label ratio GM-SMCC-1 GM-SMCC-2 GM-SMCC-3 GM-SMCC-mean EGM-SMCC

3% 0.827 ± 0.031 0.805 ± 0.009 0.771 ± 0.008 0.789 ± 0.007 0.834 ± 0.020

4% 0.833 ± 0.021 0.813 ± 0.026 0.805 ± 0.016 0.800 ± 0.006 0.845 ± 0.027

5% 0.843 ± 0.008 0.802 ± 0.018 0.804 ± 0.024 0.803 ± 0.016 0.843 ± 0.012

6% 0.846 ± 0.004 0.807 ± 0.023 0.790 ± 0.017 0.818 ± 0.003 0.849 ± 0.013

7% 0.846 ± 0.002 0.827 ± 0.018 0.812 ± 0.019 0.845 ± 0.005 0.868 ± 0.013

8% 0.852 ± 0.002 0.813 ± 0.011 0.817 ± 0.030 0.845 ± 0.002 0.860 ± 0.008

9% 0.857 ± 0.020 0.831 ± 0.014 0.826 ± 0.022 0.853 ± 0.004 0.872 ± 0.011

10% 0.858 ± 0.017 0.831 ± 0.014 0.846 ± 0.012 0.855 ± 0.007 0.874 ± 0.006

Figure 3 The performance of the algorithms with varying percentages of labeled data on problem (2) of KDD Cup 2001. (a)Coverage;

(b)RankingLoss; (c)1-Macro-F1.
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to 10%. For brevity, we just report Coverage and Rankin-

gLoss. The results are given in Figure 4 and 5. The per-

centage of labeled data is illustrated on the horizontal

axis. According to the figures, we can see that

EGM-SMCC consistently outperforms the GM-SMCC

algorithms using a single latent graph because more

information are utilized. This result demonstrates the

effectiveness of our proposed EGM-SMCC method for

multi-label protein function prediction.

Convergence study

The objective function O in Eq. (4) is optimized for

classification prediction. Here, we investigate how fast

the algorithm converges. Figures 6(a) and 6(b) show

the convergence curves of the proposed algorithm on

the problem (1) and (2) (at 5% label ratio), respectively.

The x-axis is the number of iteration number in the

process of optimizing the objective value O and the y-

axis is the value of successively computed objective

value ||O(t + 1) − O(t)||/||O(t)||. We see that the algo-

rithm converge within 10 iterations. The required

computational time for problems (1) and (2) are 10.5

seconds and 10.3 seconds using our MATLAB imple-

mentation, respectively.

Parameter sensitivity

In our proposed GM-SMCC method, the regularization

parameters a and b quantify the importance of the

network regularizer and label regularizer in the objec-

tive function (4). These parameters also determine the

learning setting. Our framework is formulated in sin-

gle-label collective classification learning by consider-

ing a ≠ 0 and b = 0, i.e., we solve single label learning

problem for the problem (1). On the other hand, our

framework is formulated in multi-label collective clas-

sification learning when a ≠ 0 and b ≠ 0, i.e., we con-

sider the label correlation in the learning process for

the problem (2).

We examine the parametric sensitivity of our GM-

SMCC approach with respect to parameter a by fixing

b = 0 and varying a on problem (1). Figure 7(a) illus-

trates the accuracy of GM-SMCC with different a values

from 0 to 30 on the protein localization prediction task

using 5% label ratio. When a = 0 the accuracy is low,

since no network information is used in this case. This

also provides evidence of the advantages of the network

regularization in the proposed method. When a

becomes large, the accuracy increases. The plateau in

the accuracy curve from 1 to 30 shows that the pro-

posed GM-SMCC achieves fairly stable performance

with different value of a. It implies that the method is

robust when a different value of a is selected. We find

that GM-SMCC presents good classification perfor-

mance when a = 3.

Next, we fix a = 3 and vary b from 0 to 0.4 on pro-

blem (2) using 5% label ratio. The result is given in Fig-

ure 7(b). We observe that when b = 0 or b = 0.4, the

performance is poor. It is evident that the smallest Cov-

erage is achieved at b = 0.1. Therefore, we set a = 3 and

b = 0.1 in all the comparisons.

Interaction relations

Our proposed method using the objective function in

Eq. (4) is capable characterizing the interaction relations

among the genes code for proteins, and these proteins

tend to localize in various parts of cells in order to per-

form crucial functions. We construct an extended graph

data set G′ =
(

X′, E′
)

for the KDD Cup 2001 data, where

E′ is the known interactions among the proteins and X′

Figure 4 The Coverage of EGM-SMCC and GM-SMCC with

various latent graphs: GM-SMCC-1 (PPI latent graph), GM-

SMCC-2 (random walk latent graph), GM-SMCC-3 (prediction

similarity graph), GM-SMCC-mean (a single graph model

averages the weighting values of E(1) , E(2) and E(3) ) with

respect to different percentages of labeled data (%) for the

problem (2) of KDD Cup 2001.

Figure 5 Same as Figure 4, but for RankingLoss evaluation

metric.

Figure 6 The convergence curves of the proposed method. (a)

Convergence curve on the problem (1); (b) convergence curve on

the problem (2).
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is the feature set of the proteins. Each x′
i /∈ X′ is an

extended feature vector for the i-th protein/gene by

integrating its attribute features, localization and func-

tional labels together as follows: x′
i =

(

xi, Y l
i , Y

f
i

)

, where

xi is the attribute vector, Y l
i =

[

Y l
i1, Y l

i2

]

∈ {0, 1}2 and

Y
f
i =

[

Y
f
i1, · · · , Y

f
iK

]

∈ {0, 1}K are the localization label

features and function label features with respect to ith

instance. Given a new instance x̂, the interaction

between x̂ and x′
i ∈ X′ is estimated by the cosine similar-

ity between their conditional probability vectors

obtained from the proposed method. The resulting simi-

larity ranges from 0 to 1, with 0 indicating two instances

are independent, and 1 indicating two instances are

highly interrelated. We apply the cosine similarity mea-

sure to evaluate the interaction relations of 5 randomly

selected genes (G238510, G234935, G235158, G237021,

G234980) to other genes in the KDD Cup 2001 dataset.

Table 2 shows the interesting interrelations discovered

by previous studies with respect to the evaluated genes.

In general, we can see that these interrelated genes tend

to have large similarity values. This shows the advan-

tages of using our proposed method to detect the inter-

actions. Biologists can use the method to identify related

genes and to further investigate their interactions.

Conclusion
In this paper, we first propose GM-SMCC, an effective

and novel semi-supervised multi-label collective classifi-

cation based method for predicting functional properties

of proteins. GM-SMCC is designed with the use of

pLSA generative model with a network regularizer and

label regularizer, which exploit the network linkages and

label correlations effectively to compute the label prob-

ability distribution for prediction. Then, we extend it in

an ensemble manner and develop the EGM-SMCC

approach to exploit various kinds of latent linkages in

constructing latent graphs to further improve the pre-

diction performance. Experimental results on two tasks

of KDD Cup 2001 (the localization prediction task and

the protein function prediction task) consistently

demonstrate the effectiveness of the proposed methods.

The performances of the proposed methods are shown

to be better than that of state-of-the-art algorithms,

including SVM, wvRN+RL, and three variants of ICA.

In future, we will extend our proposed method to han-

dle heterogeneous biological networks.
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Figure 7 The performance of the proposed method with

different parameter values on the KDD Cup 2001 dataset. (a)

The accuracy of different a values on problem (1); (b) the Coverage

of different b values on problem (2).

Table 2 Selected interrelated genes and their similarity

computed by the proposed GM-SMCC method.

GeneID GeneID Similarity

G238510 G239467 0.99706

G238510 G239178 0.95597

G238510 G235250 0.8347

G234935 G234445 0.9178

G234935 G239966 0.92039

G234935 G235763 0.95516

G234935 G235329 0.95938

G235158 G234735 0.98431

G235158 G234074 0.9788

G235158 G234177 0.90675

G235158 G235216 0.96184

G237021 G234486 0.85557

G237021 G234065 0.88554

G237021 G239804 0.96585

G237021 G239266 0.92513

G234980 G235439 0.98653

G234980 G235231 0.99427

G234980 G234914 0.99755

G234980 G235780 0.96058
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