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Abstract
Many graph based semi-supervised dimensionality
reduction algorithms utilize the projection matrix to
linearly map the data matrix from the original fea-
ture space to a lower dimensional representation.
But the dimensionality after reduction is inevitably
restricted to the number of classes, and the learned
non-orthogonal projection matrix usually fails to
preserve distances well and balance the weight on
different projection direction. This paper proposes
a novel dimensionality reduction method, called
the semi-supervised orthogonal graph embedding
with recursive projections (SOGE). We integrate
the manifold smoothness and label fitness as well
as the penalization of the linear mapping mismatch,
and learn the orthogonal projection on the Stiefel
manifold that empirically demonstrates better per-
formance. Moreover, we recursively update the
projection matrix in its orthocomplemented space
to continuously learn more projection vectors, so
as to better control the dimension of reduction.
Comprehensive experiment on several benchmarks
demonstrates the significant improvement over the
existing methods.

1 Introduction
Dimensionality reduction has always been a major research
topic in the domain of pattern recognition and machine learn-
ing. Over the past decades, many efficient and classical lin-
ear dimensionality reduction methods have been proposed,
such as principle component analysis (PCA) [Turk and Pent-
land, 2011], linear discriminant analysis (LDA) [Belhumeur
et al., 1997] and maximum margin criterion [Li et al., 2006].
Besides, some nonlinear methods such as locally linear em-
bedding [Roweis and Saul, 2000] and Laplacian eigenmaps
[Belkin and Niyogi, 2003] are also demonstrated to be suit-
able for practical applications, focusing on preserving the lo-
cal or global geometric structure of data.

Although supervised algorithms generally outperform un-
supervised algorithms, they require full labeled data, which
usually costs huge human labor for labeling. In the last
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decade, semi-supervised learning algorithms have been pro-
posed to utilize both unlabeled samples and limited number of
labeled samples. Among those semi-supervised dimensional-
ity reduction methods, the graph based algorithms, such as
LLGC [Zhou et al., 2004],GFHF [Zhu et al., 2003], LLPG
[Zhang et al., 2014] exploit data-driven graphs to project data
onto the embedded manifolds and thus have the advantage
in preserving the geometry structure of data. For classifi-
cation, a good subspace learned by graph based algorithms
should be both smooth and discriminative. Graph based
methods like LLGC and GFHF were proposed to simultane-
ously guarantee both the manifold smoothness and label fit-
ness of data, yet fail to predict labels of the “out-of-sample”
data that is not included in the training samples. In contrast,
later works such as [Belkin et al., 2006; Cai et al., 2007;
Liu et al., 2008; Huang et al., 2012; Yan et al., 2016;
Kim et al., 2016] extended some classical models and are able
to project the unseen data into lower dimensional subspace.

Despite the success of many graph based dimensionality
reduction methods in tackling the partially labeled problem,
they still have some limitations. Because it is difficult for
nonlinear semi-supervised learning methods to develop an
implicit function that can map the unseen data, most of the
proposed semi-supervised methods adopt linear functions for
data mapping, e.g. SDA [Cai et al., 2007], TR-FSDA [Huang
et al., 2012], and linear LapRLS [Belkin et al., 2006]. While
the linear mapping function can simplify the learning pro-
cess, it rigidly assumes that the lower dimension representa-
tion of the original data strictly lies on the its linearly spanned
space. This formulation usually cannot well represent the real
world data especially those embedded with nonlinear mani-
fold. Another limitation that commonly exists in some lin-
ear semi-supervised approaches, such as linear LapRLS and
FME [Nie et al., 2010], is that the dimensionality after re-
duction is inevitably restricted to the number of classes, be-
cause the learned projection matrix has to satisfy the linear
mapping function. Moreover, most of the semi-supervised al-
gorithms use nonorthogonal projections because the orthogo-
nal constraint increases the optimization difficulty, despite the
fact that orthogonal projections tend to balance the weights
on different projection directions and keep the Euclidean
distance based similarity of original data [Cai et al., 2006;
Kokiopoulou and Saad, 2005].

This paper focuses on the three aforementioned challenges
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we’re mainly concerned with. In this paper, we propose the
semi-supervised orthogonal graph embedding with recursive
projections (SOGE), integrating the manifold smoothness and
label fitness as well as a flexible regularization of mapping
mismatch. The major contributions of our work are as fol-
lows,
• Inspired by [Abernethy et al., 2008; Liu et al., 2017], we

employ the regression residue as a regularization, which
helps to relax the strictly linear mapping in most linear
semi-supervised methods, and flexibly adjust the map-
ping mismatch. This formulation can better fit the real
world data embedded with nonlinear manifold.
• Due to the good property and empirically better per-

formance of orthogonal projections [Cai et al., 2006;
Kokiopoulou and Saad, 2005], we obtain our projection
matrix on the Stiefel manifold. We propose an optimiza-
tion algorithm for our model, which can also be applied
to some common optimization problems.
• We propose a recursive procedure to continuously up-

date the projection matrix in its orthogonal complements
and learn more projection vectors, so as to control the di-
mension of reduction freely and provide more choices of
dimensionality after reduction for users.

2 Background
2.1 Notations
In this paper, X = [x1, x2, · · · , xn] ∈ Rd×n denotes the sam-
ple set in c classes. The corresponding label matrix is de-
noted by the binary matrix Y ∈ Bn×c with Yij = 1 if the
data point xi belongs to the j-th class, and Yij = 0 otherwise.
In graph based semi-supervised learning, the Laplacian ma-
trix L is given by L = D − S, where D is a diagonal matrix
whose elements are the row (or column) sums of the symmet-
ric similarity matrix S. The normalized Laplacian matrix L̃ is
defined by L̃ = I− D−

1
2 SD−

1
2 , where I denotes the identity

matrix.

2.2 LLGC and GFHF
Learning with local and global consistency (LLGC) [Zhou
et al., 2004] addresses the problem of prior assumption of
consistency [Zhou et al., 2004] by combining the graph em-
bedding term and the least square of difference between the
soft prediction label matrix F ∈ Rn×c and the label matrix
Y, with a trade-off parameter. The objective function is as
follows:

min
F

n∑
i,j=1

Sij

∥∥∥∥∥ fi√
Dii

− fj√
Djj

∥∥∥∥∥
2

+ µ
l∑

i=1

‖fi − yi‖
2 (1)

Gaussian fields and harmonic functions (GFHF) [Zhu et
al., 2003] learns the predicted labels by minimizing the “har-
monic” entropy function, with the constraint of label fitness:

min
F

n∑
i,j=1

‖fi − fj‖2 Sij , s.t.
l∑

i=1

fi = yi (2)

Apparently the objective function of LLGC and GFHF
share the same formulation

g(F) = tr
(
FT MF

)
+ tr (F− Y)

T U (F− Y) (3)

where M ∈ Rn×n denotes the normalized Laplacian matrix
L̃ in LLGC, and the Laplacian matrix L in GFHF. Matrix
U ∈ Rn×n is diagonal that has the fist l and the rest n − l
diagonal entries as µ and 0 respectively. For GFHF in Eq.
(2), µ =∞.

2.3 Linear LapRLS
One of the algorithms proposed in [Belkin et al., 2006], the
Laplacian Regularized Least Squares (LapRLS) defines a lin-
ear regression function f(xi) = WT xi +b, where W ∈ Rd×c

is the projection matrix and b ∈ Rc×1 is the bias. The linear
transform of data in the linear LapRLS is obtained by mini-
mizing the following objective:

g(W, b) = λAtr
(
WT W

)
+ λItr

(
WT XLXT W

)
+

1

l

l∑
i=1

∥∥WT xi + b− yTi
∥∥2 (4)

where λA and λI balance the penalty of projection matrix
W, the manifold smoothness and the regression error. The
closed-form solution of the above object minimization can be
easily obtained.

Connections. LLGC and GFHF directly learn the pre-
dicted label matrix by combining the manifold smoothness
and the label fitness. This semi-supervised formulation is ef-
ficient but can do little to the unseen testing data, because
the predicted label matrix exclusively corresponds to the data
involved in the training process, with or without labels. We
note that the linear LapRLS in Eq.(4) is actually the ”out-of-
sample” extension of the formulation of LLGC and GFHF.
It exploits the linear regression function for data mapping,
and the learned projection matrix W can be further applied to
project testing data.

3 Proposed Model
3.1 Regression Regularization
The predicted label matrix in many algorithms such as PCA
and LPP is restricted to lie on the space spanned by the train-
ing samples X, namely, F = XT W + 1bT , where 1 ∈ Rm×1

denotes the vector with all elements as 1. Noted that this
“hard” projection formulation may be too strict to fit the data
samples mostly with nonlinear structure onto the linear man-
ifold, we adopt the regression residue of the linear projection
to relax the hard constraint. We assume the predicted labels
lie on the space F = XT W + 1bT + ∆F, where ∆F ∈ Rn×c

is the residue modeling the mismatch of the linear projection.
In SOGE, we aim to find the optimal mapping with a proper
projection residue ∆F, we add a regularization to the graph
embedding semi-supervised model like Eq. (3):

R(W,∆F) = ‖∆F‖2F + λtr
(
WT W

)
(5)

where the second term is the penalty of the projection matrix
similar to Eq. (4).

3.2 Objective with Orthogonal Constraint
Nonorthogonal projection matrix puts different weights on
different projection directions, while orthogonal projections

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2309



help to preserve distances and the overall geometry of data
[Kokiopoulou and Saad, 2005]. In our work, we obtain the
projection matrix W in the Stiefel manifold V = {W ∈
Rn×c : WT W = I}. In the next subsection, we also show
that the orthogonal constraint setting can also contribute to
learning more projection vectors in our proposed recursive
process.

Since WT W = I, the penalty term in Eq.(5) becomes
tr(WT W) = d. Adding the regularization in Eq.(5) with a
parameter α to the graph embedding semi-supervised formu-
lation, we have the final objective function with the orthogo-
nal constraint for SOGE:

min
WT W=I,b,F

tr
(
FT LF

)
+ tr (F− Y)

T U (F− Y)

+α
∥∥∥XT W + 1bT − F

∥∥∥2
F

(6)

where L ∈ Rn×n is the Laplacian matrix constructed from
the data. We set U ∈ Rn×n as the diagonal matrix, in which
the diagonal entries corresponding to labeled samples are set
as µ, and those corresponding to unlabeled samples set as 0.

The first and the second term in Eq.(6) consider both the
manifold smoothness and label fitness, similarly as in LGC,
GFHF and LapRLS. The last term helps to learn projection
matrix that can be used to map the out-of-sample data for di-
mensionality reduction, with the positive parameter α to ad-
just the mismatch of the projection. Therefore, the proposed
model manages to integrate the manifold smoothness and la-
bel fitness, as well as the optimal projection with proper mis-
match.

3.3 Recursive Projections
In many semi-supervised dimensionality reduction methods
with linear projection method, such as LapRLS and FME
[Nie et al., 2010], the reduced dimensionality is restrained to
be exactly the same as the number of classes, c, because the
projection matrix W satisfies F = XT W + 1bT . In many
situations, it is not always necessary to reduce the dimen-
sions of data to too low dimensions, especially for the high-
dimensional data with small number of classes, because data
in higher dimensions usually contains more information.

The recent work [Wang et al., 2014] proposed that, if we
use the same model to learn a new projection matrix W̃ from
the new sample set obtained as follows,

X̃ = X−WWT X (7)
where WT W = I, the new projection matrix W̃ is orthogonal
to W. The proof can be found in Proposition 1 in [Wang et
al., 2014].

According to this proposition, we can recursively obtain
new projection matrices W̃ in the orthogonal complements
of W, by continuously solving Eq.(6) with new data matrix
X̃ updated by Eq.(7). Assume that we apply K times of the
recursive process, finally we get the concatenation of all the
diagonal projection matrices from each recursion, referred to
as the recursive projection matrix

W∗ = [W1,W2, · · · ,Wk] ∈ Rd×Kc (8)
We can exploit the recursive projection matrix W∗ to project
the original data to the subspace with dimensionality of Kc.

4 Optimization
4.1 Problem Analysis
It can be easily proved that the objective function in Eq.(6) is
convex. To optimize the objective function with the orthogo-
nal constraint on W, our strategy is that we firstly express the
optimal solutions of F and b with W and then find the optimal
solution of W on the Stiefel manifold.

By setting the derivative of the objective with respect to b
equal to zero, we get the solution b = 1/n

(
FT 1−WT X1

)
.

Then we have XT W + 1bT − F = Hc

(
XT W− F

)
, where

Hc = In − (1/n)11T is used for centering the data by
subtracting the mean of the data. Apparently we also have
HcHc = Hc = HT

c . By setting the derivative of the func-
tion above respective to F equal to zero, we have the optimal
solution for F:

F = (L + U + αHc)
−1 (UY + αHcXT W

)
= αQXT

c W + QUY (9)

where Q = (L + U + αHc)
−1 and Xc = HcX. Apparently

QT = Q. Replace F and b in Eq.(6) with their solutions
above, and the objective function in Eq.(6) becomes

min
WT W=I

tr
(
αQHcXT W+QUY

)T
L
(
αQHcXT W+QUY

)
+ tr

(
αQHcXT W+QUY−Y

)T
U
(
αQHcXT W+QUY−Y

)
+ αtr

[
(αQHc−In)XT W+QUY

]T
×Hc

[
(αQHc−In)XT W+QUY

]
Then we remove the constant term and rewrite the above
problem in the form as follows:

min
WT W=I

tr
(
WT AW

)
− 2tr

(
WT B

)
(10)

where

A = α2Xc

(
1

α
In −Q

)
XT

c (11)

B = αXcQUY (12)

We note that tr
(
WTλmaxIdW

)
= λmaxc, where λmax

is the greatest eigenvalue of matrix A and Id ∈ Rd×d is an
identity matrix. We can convert the problem in Eq.(10) into
a convex optimization problem on the Stiefel manifold, by
rewriting Eq.(10) to the following

max
WT W=I

tr
[
WT (λmaxId − A) W

]
+ 2tr

(
WT B

)
(13)

Obviously the matrix (λmaxId − A) is positive semi-definite.
It can be readily proved that the objective function in Eq.(13)
is also convex.

4.2 Optimization with Orthogonal Constraint
To solve the optimization problem of SOGE in Eq.(6), we
need to obtain the optimal solution of W by solving Eq.(13)
first. Similarly as in [Nie et al., 2014; Enhbat, 1996; Nie et
al., 2017], we consider a general version of the problem in
Eq.(13) as follows

max
X∈V
F(X) (16)
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Algorithm 1 Algorithm to solve problem in Eq.(16)

Initialize X: X ∈ {X ∈ Rm×n : XT X = I}.
Repeat

1. Obtain the derivative of F at point X(t):
D(t) = F ′(X(t)) (14)

2. Update X by solving the following problem
max

XT X=I
〈D(t),X− X(t)〉 ⇔ max

XT X=I
tr(D(t)TX) (15)

Apply SVD decomposition: D(t) = ΛΣVT , and the
optimal solution is X(t+1) = ΛVT .

Until tr(D(t)T X(t+1)) ≤ tr(D(t)T X(t))
Return X.

where V = {X ∈ Rm×n : XT X = I} is referred to as the set
of orthogonal k-frames, also known as the Stiefel manifold,
and F : Rm×n → R is a convex function. Since function
F is convex, obviously its derivative (gradient) at a certain
point X∗, referred to as D∗ = F ′(X∗), is a subgradient of F .
According to the optimality characterization of subgradient
[Rockafellar, 1970], the point X∗ is an optimal solution of
problem in Eq.(16) if and only if the condition as follows
holds:

〈F ′ (X∗) ,X− X∗〉 ≤ 0, ∀X ∈ V (17)

where 〈·〉 denotes the Euclidean inner product of matrices.
The condition above is equivalent to

max
X∈V
〈F ′ (X∗) ,X−X∗〉=max

X∈V
tr
[
D∗T (X−X∗)

]
≤0 (18)

Hence X∗ is an optimal solution to Eq.(16) if and only if
tr
(
D∗T X

)
≤ tr

(
D∗T X∗

)
, ∀X ∈ V .

We combine the subgradient ascent together with simul-
taneously enforcing the orthogonal constraint on X, and de-
velop an iterative optimization algorithm for the problem in
Eq(16), as shown in Algorithm 1. The empirical analysis in
the next section shows that Algorithm 1 can converge very
fast.

Theorem 1 Algorithm 1 will monotonically increase the ob-
jective of the problem in Eq.(16) in each iteration until the
algorithm converges.

Proof. Because function F is convex, the derivative D(t) is a
subgradient of F . According to the definition of subgradient
[Rockafellar, 1970], we have

F(X(t+1)) ≥ F(X(t)) + 〈D(t),X(t+1) − X(t)〉 (19)

When X(t) is not the optimal solution to the problem in
Eq.(16), according to the condition of optimal solution
in Eq.(17), we have 〈D(t),X(t+1) − X(t)〉 > 0, hence
F(X(t+1)) > F(X(t)). So the objective will increase in each
iteration before it converges. �

According to Theorem 1 we can conclude that Algorithm
1 monotonically increase the objective of the problem in
Eq.(16) in each iteration until the objective function con-
verges. The convergence of Algorithm 1 is also shown by
Figure 1 in the experiment.

Algorithm 2 Algorithm of SOGE
Input: Dataset X = [x1, x2, · · · , xl, xl+1 · · · , xn] ∈ Rd×n,

Laplacian matrix L ∈ Rn×n, diagonal matrix U ∈
Rn×n, label matrix Y ∈ Bn×c, the regularization pa-
rameter α and the number of recursion times K.

Output: Recursive projection matrix W∗ ∈ Rd×Kc.
1: j = 1
2: for j < K do
3: Initialize Wj randomly to satisfy WT W = I.
4: while not converge do
5: 1) Obtain the greatest eigenvalue λmax of A;
6: 2) Obtain gradient: D = (λmaxI− A)Wi + B;
7: 3) Update Wj : D = ΛΣVT , Wj = ΛVT .
8: end while
9: Update data matrix X← X−WT

j WjX.
10: return Wj , X
11: j ← j + 1
12: end for
13: Recursive projections W∗ = [W1,W2, · · · ,WK ].
Return W∗.

4.3 Algorithm of SOGE
To optimize the objective of our SOGE method, we apply
Algorithm 1 to solve the maximization problem in Eq.(13).
Thus we can optimize the objective function of SOGE in
Eq.(6). Then we update the data matrix following Eq.(7), and
continue obtaining new W in its orthocomplemented space.
After repeating the recursive process for K times, finally we
get the recursive projection matrix W∗ by Eq.(8). The num-
ber of recursion times K can be set by users as they need,
according to different types of data. The algorithm of SOGE
is shown in Algorithm 2.

Time Complexity. In each iteration in Algorithm 2, the
major computational burden lies on computing the SVD de-
composition to matrix D ∈ Rd×c (step 6) with time complex-
ity O(d2c + dc2 + c3), and updating data matrix by Eq.(7)
(step 7) with time complexity O(d2c+ d2n). For most of the
data, usually d < n and c << n, so the SOGE method is very
efficient for dimensionality reduction.

5 Experiment
5.1 Datasets
In our experiments, we use six real world benchmarks includ-
ing three face benchmarks (JAFFE1, AT&T2, and CMU-PIE),
a handwritten digits dataset MNIST, and two object bench-
marks (COIL-20 and MPEG73). For CMU-PIE database that
contains more than 40,000 faces, we choose the frontal pose
group (C27) from varying illuminations and facial expres-
sions. For the dataset MNIST that contains more than 70,000
facial images, we randomly select 15,000 of them from all 10
classes. For other datasets, all samples are used in the exper-
iment. The detailed information of the benchmark datasets
used in the experiment are listed in Table 2.

1http://www.kasrl.org/jaffe.html
2http://www.cl.cam.ac.uk/research/dtg/attarchive.html
3http://www.dabi.temple.edu/ shape/MPEG7/dataset.html
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Figure 1: Convergence curves of the objective in Eq.(13) on each dataset.

Table 1: Recognition performance (Mean Accuracy ± Std %) of each algorithm over 20 random splits on six benchmark datasets. The
optimal parameters for each algorithm under different experimental settings are also shown in the table.

Dataset Method 1 Labeled Sample 2 Labeled Samples 3 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

COIL-20

LapRLS 74.37±3.7 74.59±3.2 (10−3, 100) 82.39±1.6 82.42±1.4 (10−3, 100) 83.80±2.3 83.92±2.4 (10−3, 100)
SDA 67.34±2.6 66.86±3.1 (10−3, 100) 76.40±2.6 76.27±2.4 (10−3, 100) 80.31±2.8 80.08±2.9 (10−3, 100)
TCA 65.27±3.2 65.17±3.7 (10−3, 10−6) 70.77±4.2 70.60±4.1 (10−3, 10−6) 71.91±2.9 67.99±2.5 (10−3, 10−6)
FME 61.44±3.9 61.20±3.4 (106, 109) 71.53±2.6 70.83±2.7 (103, 106) 76.25±2.0 75.24±1.7 (103, 106)

TR-FSDA 52.23±4.1 54.00±3.5 (10−3, 100) 75.77±5.1 75.57±5.5 (10−3, 100) 83.73±4.3 81.91±4.4 (10−3.100)
SOGE 72.01±2.3 71.43±2.39 (10−6) 82.68±2.7 82.86±2.1 (10−9) 84.09±2.4 84.31±2.2 (10−9)

Dataset Method 1 Labeled Sample 2 Labeled Samples 3 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

JAFFE

LapRLS 92.88±5.8 83.15±5.4 (10−3, 100) 96.25±3.6 86.45±4.3 (10−3, 100) 97.64±1.8 89.65±2.4 (10−3, 100)
SDA 93.61±3.4 84.7±4.7 (10−3, 100) 96.06±2.1 87.50±4.5 (10−3, 100) 96.28±2.0 90.55±4.1 (10−3, 100)
TCA 90.77±4.4 90.75±4.8 (10−3, 10−6) 92.94±4.7 92.95±4.1 (106, 106) 92.43±4.3 94.20±3.3 (106, 106)
FME 94.22±3.7 93.75±3.3 (103, 106) 97.00±2.1 96.05±2.2 (103, 106) 98.20±0.9 98.15±0.8 (103, 106)

TR-FSDA 85.55±4.6 86.05±4.7 (10−3, 103) 95.06±2.9 95.25±2.4 (10−3, 103) 97.43±2.4 97.60±2.3 (10−3, 103)
SOGE 95.16±2.8 94.60±3.2 (10−3) 97.12±3.6 96.65±3.3 (10−3) 98.36±2.7 98.70±2.3 (10−3)

Dataset Method 1 Labeled Sample 2 Labeled Samples 3 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

AT&T

LapRLS 67.34±3.1 67.32±2.8 (103, 100) 81.41±3.0 80.10±3.4 (103, 100) 85.81±3.5 87.03±3.1 (103, 100)
SDA 65.56±3.6 67.83±2.9 (106, 100) 80.54±3.7 78.65±3.3 (106, 100) 86.68±3.5 87.30±2.6 (106, 100)
TCA 63.22±3.4 62.20±4.3 (106, 106) 68.58±4.9 71.83±3.4 (106, 106) 70.00±4.2 73.45±3.21(106, 109)
FME 68.34±3.4 66.92±3.2 (103, 100) 79.08±3.2 77.38±3.9 (103, 100) 84.00±3.1 81.87±3.0 (103, 100)

TR-FSDA 65.93±4.4 65.97±3.0 (10−3, 103) 79.83±4.0 80.15±3.0 (10−3, 103) 87.37±4.3 87.95±2.1 (10−3, 103)
SOGE 69.72±3.7 70.25±2.9 (100) 83.88±3.5 82.33±3.1 (100) 88.81±3.5 88.60±2.6 (100)

Dataset Method 1 Labeled Sample 2 Labeled Samples 3 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

CMU-PIE

LapRLS 19.30±1.2 18.41±1.1 (10−3, 10−3) 30.88±1.5 30.44±1.6 (10−3, 10−3) 37.39±1.3 38.94±1.7 (10−3, 10−3)
SDA 28.41±2.6 26.67±3.2 (106, 109) 46.66±2.6 45.11±3.0 (106, 109) 56.39±2.8 58.10±3.1 (106, 109)
TCA 52.45±1.7 51.29±2.1 (10−3, 100) 67.85±1.7 66.66±1.4 (10−3, 100) 74.82±1.6 76.99±1.2 (10−3, 100)
FME 54.20±1.0 52.26±1.0 (103, 100) 69.26±2.0 68.35±2.3 (103, 100) 75.74±1.7 78.57±1.4 (103, 100)

TR-FSDA 45.72±6.2 43.66±6.6 (103, 10−3) 56.80±6.2 57.49±5.7 (103, 10−3) 64.95±5.2 65.69±5.9 (103, 10−3)
SOGE 54.62±2.5 55.44±2.7 (100) 66.77±1.4 66.562.0 (100) 74.05±1.7 76.03±1.2 (100)

Dataset Method 1 Labeled Sample 2 Labeled Samples 3 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

MPEG7

LapRLS 54.50±1.8 49.93±1.4 (10−6, 10−3) 62.89±2.1 58.24±1.7 (10−6, 10−3) 67.47±1.5 63.17±1.1 (10−6, 10−3)
SDA 51.57±1.8 51.02±1.8 (106, 10−3) 62.35±2.0 63.41±1.5 (106, 10−3) 68.46±2.2 67.20±1.5 (106, 10−3)
TCA 47.67±2.7 46.80±2.7 (106, 106) 49.24±1.9 51.07±1.9 (106, 106) 50.00±1.6 52.24±1.5 (106, 106)
FME 50.53±2.0 48.54±2.4 (103, 100) 57.33±1.8 54.03±1.2 (103, 100) 59.75±1.5 56.86±1.3 (103, 100)

TR-FSDA 51.56±1.4 51.67±2.3 (10−6, 100) 57.92±1.7 58.11±1.8 (10−6, 100) 59.65±2.2 60.59±1.5 (10−6, 100)
SOGE 53.92±1.4 52.96±1.7 (100) 63.05±1.4 63.95±1.1 (100) 69.36±1.3 68.90±1.3 (100)

Dataset Method 10 Labeled Samples 20 Labeled Samples 30 Labeled Samples
Unlabel Test Param Unlabel Test Param Unlabel Test Param

MNIST

LapRLS 73.29±2.1 72.75±2.2 (10−3, 10−3) 77.87±0.9 76.97±1.1 (10−3, 100) 82.94±0.7 83.68±0.8 (10−3, 100)
SDA 71.27±1.4 71.24±1.4 (106, 100) 75.74±1.1 75.63±1.4 (106, 100) 79.46±0.9 79.37±1.2 (106, 100)
TCA 63.03±2.5 63.11±2.1 (10−3, 100) 63.21±1.3 62.94±1.4 (10−3, 100) 64.41±1.3 61.45±1.5 (10−6, 10−3)
FME 69.96±2.7 69.22±2.8 (10−3, 100) 74.95±1.4 74.01±1.4 (10−6, 100) 79.29±0.8 77.65±1.0 (10−6, 100)

TR-FSDA – – – – – –
SOGE 74.04±1.2 73.71±1.2 (10−6) 79.46±1.2 78.64±1.3 (10−3) 85.31±1.2 84.92±1.2 (100)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2312



Table 2: Description of Benchmark Datasets

Dataset Type #Sample #Dim #Class
COIL-20 Object 1,440 1,024 20
JAFFE Face 200 4,096 10
AT&T Face 400 644 40
CMU-PIE Face 3,332 1,024 68
MPEG7 Object 1,400 4,096 70
MNIST Digits 15,000 784 10

5.2 Experiment Setup
We compare SOGE with several graph based semi-supervised
methods: LapRLS [Belkin et al., 2006], SDA [Cai et al.,
2007], TCA [Liu et al., 2008], FME [Nie et al., 2010], and
TR-FSDA [Huang et al., 2012]. For all the algorithms ex-
cept TR-FSDA, we follow the constrained Laplacian rank
(CLR) in [Nie et al., 2016] to construct the Laplacian ma-
trix L that exactly has rank (n − c) and perform well em-
pirically. For TR-FSDA, we construct the Laplacian matri-
ces L̃a and L̃b directly following the paper [Huang et al.,
2012]. In SOGE, we set the weight µ in the diagonal matrix
U as 100 for all datasets. In order to fairly compare SOGE
with other algorithms, we tuned all the regularization pa-
rameters involved in each algorithms with grid search within
{10−9, 10−6, 10−3, 100, 103, 106, 109}.

For all the algorithms, we employ the k-nearest neighbor
(kNN) classifier to evaluate the performance of dimensional-
ity reduction, and set k = 1 in kNN for all the algorithms. For
all the datasets, we use PCA as a preprocessing procedure to
denoise all the data with 95% of the information preserved,
similarly as in [Yan et al., 2007]. We follow the experiment
setting as in [Cai et al., 2007], to split the data for compar-
ing different dimensionality reduction algorithms. Firstly, we
randomly select 50% of the data as the training set and use
the remained 50% as the testing set for the semi-supervised
methods. Next, among the training set, we randomly label p
samples in each class and treat the rest without labels as the
unlabeled data. Thus, the original dataset is split into three
part: labeled, unlabeled, and testing samples.

In the experiment, we set p as 10, 20 and 30 for MNIST and
1, 2 and 3 for the others, considering MNIST has much more
samples per class. The selected p labeled samples per class
are used to train the kNN classifier. Algorithms like LapRLS
and FME can only reduce the dimensionality of data to c di-
mensions. So the number of final dimensions after reduction
in all the algorithms is fixed as c for fair comparison.

5.3 Experiment Results
We split the data randomly and apply kNN classifier to both
the unlabeled samples and testing samples respectively, and
repeat the random splitting and recognition for 20 times. The
mean recognition accuracy and the standard deviation are re-
ported in Table 1 (the recognition accuracy of TR-FSDA on
MINIST is skipped because it takes TR-FSDA too long to
process data in such a large size). Figure 1 shows the conver-
gence of the objective in Eq.(13) on each dataset.

Moreover, we take the datasets COIL-20 and JAFFE with
small number of classes as examples to demonstrate the per-
formance of the recursive projections in SOGE. We set the
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Figure 2: Recognition performance (Mean Accuracy ± Std %) of
SOGE over 20 random splits on COIL-20 and JAFFE with different
feature dimensions. The recursion times K is set from 1 through 10,
and p = 3.

recursion timesK from 1 through 10 and plot the recognition
accuracy and the standard deviation on both the unlabeled and
testing sets, as shown in Figure 2. We have the following ob-
servations from the experiment result:
• Algorithms like SOGE, LapRLS and FME that use

linear projection functions generally outperform the
LDA-like algorithms like SDA and TR-FSDA on most
datasets. It shows the advantage of linear projection
functions to better preserve the information and struc-
ture of data in c feature dimensions.
• Our method SOGE generally outperforms other graph

based semi-supervised methods involved in the experi-
ment, which implies the significant advantage of the or-
thogonal projections employed in SOGE. Besides, Fig-
ure 1 demonstrates that the optimization algorithm of
SOGE converges fast and effectively.
• Figure 2 shows that the recognition accuracy of SOGE

changes little with different value of K. In SOGE, the
data information and structure is well projected into ev-
ery c feature dimensions, so its good performance is sta-
ble for different dimensions. The recursive projections
makes SOGE more flexible in controlling the dimension
of reduction without reducing the performance.

6 Conclusion
In this paper, we propose a novel orthogonal graph embed-
ding semi-supervised method for dimensionality reduction,
which integrates manifold smoothness and label fitness as
well as proper projections. We employ the regression residue
as the regularization to relax the strictly linear mapping and
flexibly adjust the mapping mismatch. Moreover, we ob-
tain the projection matrix for SOGE on the Stiefel manifold,
which empirically demonstrates better performance. To op-
timize our model, we introduce an optimization algorithm
that can also solve general convex maximization problems
with orthogonal constraint. The adoption of recursive pro-
jections helps SOGE to flexibly learn more feature dimen-
sions. The experiment on six benchmarks demonstrate the
significant improvement of the proposed method over other
semi-supervised dimensionality reduction methods.
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