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Abstract We consider semi-supervised learning, learning

task from both labeled and unlabeled instances and in

particular, self-training with decision tree learners as base

learners. We show that standard decision tree learning as

the base learner cannot be effective in a self-training

algorithm to semi-supervised learning. The main reason is

that the basic decision tree learner does not produce reli-

able probability estimation to its predictions. Therefore, it

cannot be a proper selection criterion in self-training. We

consider the effect of several modifications to the basic

decision tree learner that produce better probability esti-

mation than using the distributions at the leaves of the tree.

We show that these modifications do not produce better

performance when used on the labeled data only, but they

do benefit more from the unlabeled data in self-training.

The modifications that we consider are Naive Bayes Tree, a

combination of No-pruning and Laplace correction, graft-

ing, and using a distance-based measure. We then extend

this improvement to algorithms for ensembles of decision

trees and we show that the ensemble learner gives an extra

improvement over the adapted decision tree learners.

Keywords Semi-supervised learning � Self-training �

Ensemble learning � Decision tree learning

1 Introduction

Supervised learning methods are effective when there are

sufficient labeled instances. In many applications, such as

object detection, document and web-page categorization,

labeled instances however are difficult, expensive, or time

consuming to obtain, because they require empirical

research or experienced human annotators. Semi-super-

vised learning algorithms use not only the labeled data but

also unlabeled data to construct a classifier. The goal of

semi-supervised learning is to use unlabeled instances and

combine the information in the unlabeled data with the

explicit classification information of labeled data for

improving the classification performance. The main issue

of semi-supervised learning is how to exploit information

from the unlabeled data. A number of different algorithms

for semi-supervised learning have been presented, such as

the Expectation Maximization (EM) based algorithms [30,

35], self-training [25, 33, 34, 45], co-training [6, 37],

Transductive Support Vector Machine (TSVM) [23], Semi-

Supervised SVM (S3VM) [4], graph-based methods [2,

48], and boosting based semi-supervised learning methods

[27, 38, 40].

Self-training is a commonly used method to semi-

supervised learning in many domains, such as Natural

Language Processing [33, 41, 45] and object detection and

recognition [34]. A self-training algorithm is an iterative

method for semi-supervised learning, which wraps around

a base learner. It uses its own predictions to assign labels to

unlabeled data. Then, a set of newly-labeled data, which

we call a set of high-confidence predictions, are selected to

be added to the training set for the next iterations. The

performance of the self-training algorithm strongly

depends on the selected newly-labeled data at each itera-

tion of the training procedure. This selection strategy is
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based on confidence in the predictions and therefore it is

vital to self-training that the confidence of prediction,

which we will call here probability estimation, is measured

correctly. There is a difference between learning algo-

rithms that output a probability distribution, e.g. Bayesian

methods, neural networks, logistic regression, margin-

based classifiers, and algorithms that are normally seen as

only outputting a classification model, like decision trees.

Most of the current approaches to self-training utilize the

first kind of learning algorithms as the base learner [25, 33,

34, 45]. In this paper we focus on self-training with a

decision tree learner as the base learner. The goal is to

show how to effectively use a decision tree classifier as the

base learner in self-training.

In a decision tree classifier the class distribution at the

leaves is normally used as probability estimation for the

predictions. We will show that using this as the selection

metric in self-training does not improve the classification

performance of a self-training algorithm and thus the

algorithm does not benefit from the unlabeled data. The

reason is that the decision tree classifier cannot produce a

good ranking for its predictions using only the class dis-

tribution at the leaves of the tree. It can be seen that

decision trees as the base learner in self-training involves

two main difficulties to produce a good ranking of

instances. These include: (1) the sample size at the leaves is

almost always small, there is a limited number of labeled

data, and (2) all instances at a leaf get the same probability.

However, decision trees are the best learning algorithm for

the particular domains, see [31, 42]. This has motivated us

to look for improvements of the probability estimation for

decision tree learning when it is used as the base learner in

self-training.

We first make several modifications to the basic decision

tree learner that produce better probability estimations

when it is used in self-training as the base learner. The

proposed modifications are: (a) No-pruning and applying

the Laplacian Correction (C4.4) [31], (b) Grafting [44],

(c) a combination of Grafting with Laplacian Correction

and No-pruning, (d) a Naive Bayes Tree classifier

(NBTree) [24], (e) using a distance-based measure com-

bined with the improved decision tree learners. Our

hypothesis is that these modified decision tree learners will

show classification accuracy similar to the standard deci-

sion tree learner when applied to the labeled data only, but

will benefit from the unlabeled data when used as the base

classifier in self-training, because they make better proba-

bility estimates which is vital for the selection step of self-

training. We then extend our analysis from single decision

trees to ensembles of decision trees, in particular the

Random Subspace Method [19] and Random Forests [9]. In

this case, probability is estimated by combining the pre-

dictions of multiple trees. However, if the trees in the

ensemble suffer from poor probability estimation, the

ensemble learner will not benefit much from self-training

on unlabeled data. Using the modified decision tree

learners as the base learner for the ensemble will improve

the performance of self-training with the ensemble classi-

fier as the base learner. The results of the experiments on

the several benchmark datasets confirm this. We perform

several statistical tests to show the effect of the proposed

methods.

The rest of this paper is organized as follows. Section 2

reviews related work on semi-supervised learning. Section

3 addresses the decision tree classifiers as the base learner

in self-training. Sections 4 and 5 address the improvements

for self-training. The experimental setup is presented in

Sect. 6. Sections 7 and 8 present the results of the exper-

iments and Sect. 9 addresses the conclusions.

2 Related work

There are several different methods for semi-supervised

learning. The generative approach is one of the well-known

semi-supervised learning methods. It uses Expectation

Maximization (EM) [11] with generative mixture models,

for example a mixture of Gaussians [35]. One issue in EM

when it is used in semi-supervised learning is that maxi-

mizing the likelihood may not lead to the optimal classi-

fication performance [34]. Another approach is to extend

margin-based methods to semi-supervised learning.

Examples of this approach are the Transductive Support

Vector Machine (TSVM) [23] and Semi-Supervised SVM

method (S3VM) [4]. These methods use the unlabeled data

to regularize the decision boundary. However, finding the

exact decision boundary is an NP-hard problem. Further-

more, recent approaches to margin-based methods cannot

solve semi-supervised classification problems with more

than a few hundred unlabeled examples. Recently, new

approaches have been presented based on graphs, such as

manifold regularization [2], and boosting, like MSAB [40].

The effect of these methods depends strongly on the sim-

ilarity function, because selecting and tuning a similarity

function makes the approach expensive [39, 48].

Self-training has been applied to several natural language

processing tasks. Yarowsky [45] uses self-training for word

sense disambiguation. A self-training algorithm is used to

recognize different nouns in [33]. Maeireizo et al. [26] pro-

pose a self-training algorithm to classify dialogues as

‘‘emotional’’ or ‘‘non-emotional’’ with a procedure involv-

ing two classifiers. In [41] a semi-supervised self-training

approach using a hybrid of Naive Bayes and decision trees is

used to classify sentences as subjective or objective.

Rosenberg et al. [34] proposed a self-training approach

to object detection using an existing object detector based
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on the Nearest Neighbor classifier. The study shows that a

model trained on a small set of labeled instances can

achieve results comparable to a model trained in the

supervised manner using a larger set of labeled data.

Li et al. [25] propose a self-training semi-supervised

support vector machine algorithm and a selection metric,

which are designed for learning from a limited number of

training data. Two examples show the validity of the

algorithm and selection metric on a data set collected from

a P300-based brain computer interface speller. This algo-

rithm is shown to significantly reduce training effort.

In general, self-training is a wrapper algorithm, and is

hard to analyze. However, for specific base classifiers,

theoretical analysis is feasible, for example [17] showed

that the Yarowsky algorithm [45] minimizes an upper-

bound on a new definition of cross entropy based on a

specific instantiation of the Bregman distance. In this

paper, we focus on using a decision tree learner as the base

learner in self-training. We show that improving the

probability estimation of the decision trees will improve

the performance of a self-training algorithm.

3 Semi-supervised self-training with decision trees

In this section, we first define the Semi-supervised setting

and then address the semi-supervised self-training

algorithm.

3.1 Semi-supervised setting

In semi-supervised learning there is a small set of labeled

data and a large pool of unlabeled data. Data points

are divided into the points Xl = (x1,x2...,xl), for which labels

Yl = {?1,-1} are provided, and the points Xu =

(xlþ1,xlþ2; . . .; xlþu), the labels of which are not known. We

assume that labeled and unlabeled data are drawn inde-

pendently from the same data distribution.

In this paper we consider datasets for which nl � nu,

where nl and nu are the number of labeled data and unla-

beled data respectively.

3.2 The self-training algorithm

The self-training algorithm wraps around a base classifier

and uses its own predictions through the training process

[48]. A base learner is first trained on a small number of

labeled examples, the initial training set. The classifier is

then used to predict labels for unlabeled examples (pre-

diction step) based on the classification confidence. Next, a

subset S of the unlabeled examples, together with their

predicted labels, is selected to train a new classifier

(selection step). Typically, S consists of a few unlabeled

examples with high-confidence predictions. The classifier

is then re-trained on the new set of labeled examples, and

the procedure is repeated (re-training step) until it reaches a

stopping condition. As a base learner, we employ the

decision tree classifier in self-training. The most well-

known algorithm for building decision trees is the C4.5

algorithm [32], an extension of Quinlan’s earlier ID3

algorithm. Decision trees are one of the most widely used

classification methods, see [5, 10, 16]. They are fast and

effective in many domains. They work well with little or no

tweaking of parameters which has made them a popular

tool for many domains [31]. This has motivated us to find a

semi-supervised method for learning decision trees. Algo-

rithm 1 presents the main structure of the self-training

algorithm.

Algorithm 1 Outline of the Self-Training algorithm

Initialize: L, U, F, T ; L: Labeled data; U: Unlabeled data;
F : Underlying classifier; T : Threshold for selection;
Itermax : Number of iterations; {Pl}

M

l=1
: Prior probability;

t ← 1;
while (U ! = empty) and (t < Itermax ) do

- Ht−1 ← BaseClassifier(L, F );
for each xi ∈ U do

- Assign pseudo-label to xi based on classification confidence

- Sort Newly-Labeled examples based on the confidence
- Select a set S of the high-confidence predictions according to nl ∝ Pl

and threshold T // Selection Step
- Update U = U - S; L = L U S;
- t ← t + 1
- Re-Train Ht−1 by the new training set L

end while

Output: Generate final hypothesis based on the new training set

The goal of the selection step in Algorithm 1 is to find a

set unlabeled examples with high-confidence predictions,

above a threshold T . This is important, because selection of

incorrect predictions will propagate to produce further

classification errors. At each iteration the newly-labeled

instances are added to the original labeled data for con-

structing a new classification model. The number of iter-

ations in Algorithm 1 depends on the threshold T and also

on the pre-defined maximal number of iterations, Itermax.

4 Self-training with improved probability estimates

The main difficulty in self-training is to find a set of high-

confidence predictions of unlabeled data. Although for

many domains decision tree classifiers produce good

classifiers, they provide poor probability estimates [28, 31].

The reason is that the sample size at the leaves is almost

always small, and all instances at a leaf get the same

probability. The probability estimate is simply the pro-

portion of the majority class at the leaf of a (pruned)

decision tree. A trained decision tree indeed uses the

absolute class frequencies of each leaf of the tree as

follows:
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pðkjxÞ ¼
K

N
ð1Þ

where K is the number of instances of the class k out of N

instances at a leaf. However, these probabilities are based

on very few data points, due to the fragmentation of data

over the decision tree. For example, if a leaf node has

subset of 50 examples of which 45 examples belong to one

class, then any example that corresponds to this leaf will

get 0:9 probability where a leaf with 3 examples of one

class get a probability of 1:0. In semi-supervised learning

this problem is even more serious, because in applications

the size of initial set of labeled data is typically quite small.

Here, we consider several methods for improving the

probability estimates at the leaves of decision trees.

4.1 C4.4: No-pruning and Laplacian correction

One candidate improvement is the Laplacian correction (or

Laplace estimator) which smooths the probability values at

the leaves of the decision tree [31]. Smoothing of proba-

bility estimates from small samples is a well-studied sta-

tistical problem [36]. Assume there are K instances of a

class out of N instances at a leaf, and C classes. The La-

placian correction calculates the estimated probability

P(class) as:

pðkjxÞ ¼
K þ 1

N þ C
ð2Þ

Therefore, while the frequency estimate yields a proba-

bility of 1:0 from K ¼ 10, N ¼ 10 leaf, for a binary clas-

sification problem the Laplace estimate produces a

probability of ð10þ 1Þ=ð10þ 2Þ ¼ 0:92. For sparse data,

the Laplacian correction at the leaves of a tree yields a

more reliable estimation that is crucial for the selection

step in self-training. Without it, regions with low density

will show relatively extreme probabilities that are based on

very few data points. These have a high probability of

being used for self-training, which is problematic. Because

the misclassified examples can get the high confidence by

the classifier.

Another possible improvement is a decision tree learner

that does not do any pruning. Although this introduces the

risk of ‘‘overfitting’’, it may be a useful method because of

the small amount of training data. If there are few training

data, then pruning methods can easily produce underfitting

and No-pruning avoids this. In applications of semi-

supervised learning, ‘‘underfitting’’ is a potential problem.

Although it produces even fewer data at leave nodes, No-

pruning may therefore still provide better probability esti-

mates, especially if combined with the Laplace correction

[29, 31]. We therefore include this combination in our

analysis as C4.4.

4.2 NBTree

The Naive Bayesian Tree learner, NBTree [24], combines

the Naive Bayes Classifier with decision tree learning. In

an NBTree, a local Naive Bayes Classifier is constructed at

each leaf of decision tree that is built by a standard decision

tree learning algorithm like C4.5. NBTree achieves in some

domains higher accuracy than either a Naive Bayes Clas-

sifier or a decision tree learner.

NBTree classifies a test sample by passing it to a leaf

and then using the naive Bayes classifier in that leaf to

assign a class label to it. It also assigns the highest PðkjXÞ
for the test example X 2 Rn as the probability estimation,

where k is a class variable [14].

4.3 Grafted decision tree

A grafted decision tree classifier generates a decision tree

from a standard decision tree. The idea behind grafting is

that some regions in the data space are more sparsely

populated. The class label for sparse regions can better be

estimated from a larger region. The grafting technique [44]

searches for regions of the multidimensional space of

attributes that are labeled by the decision tree but they

contain no or very sparse training data. These regions are

then split by the region that corresponds to a leaf and

labeling the empty or sparse areas by the label of the

majority above the previous leaf node. Consider the

example in Fig. 1. It shows the resulting grafted tree. There

are two cuts in the decision trees at nodes 12 and 4. After

grafting, branches are added by the grafting technique.

Grafting performs a kind of local ‘‘unpruning’’ for low-

density areas. This can improve the resulting model, see

[44]. In fact, grafted decision tree learning often gives

better decision trees in case of sparse data and also

improves the probability estimates. The probability esti-

mates of the grafted decision tree is computed by (1).

4.4 Combining no-pruning, Laplace correction

and grafting

We combine Grafting with the Laplacian correction and

No-pruning, which we call C4.4graft. We expect that

C4.4graft gives better decision tree than C4.5 in the case of

sparse data and it also improves probability estimates due

to using the Laplacian correction and No-pruning, see Sect.

7.1. C4.4graft computes the probability estimation as

introduced in (2).

4.5 Global distance-based measure

In Algorithm 1, only the probability estimation is used to

select high-confidence predictions, which may not always
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be optimal because of some misclassified examples with

high-confidence probability estimation. Another way to

select from the unlabeled examples is to use a combination

of distance-based approach and the probability estimation.

We propose a selection metric based on a rather drastic step

against the problem of data fragmentation for sample

selection. There are several approaches to sample selection

using decision trees [43]. We use all data for a global

distance-based measure to sample selection. Specifically

we subtract the difference in average Mahalanobis distance

between an unlabeled data point and all positively labeled

data, pi, from that of the negatively labeled data, qi, see

Fig. 2 and Algorithm 2. The Mahalanobis distance measure

differs from Euclidean distance in that it takes into account

the correlation of the data. It is defined as follows:

DðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � �XÞTS�1ðX � �XÞ

q

ð3Þ

where X ¼ ðX1; :::;XnÞ 2 U is a multivariate vector, �X ¼

ð �X1; :::; �XnÞ is the mean, and S is covariance matrix. Then,

the absolute value of the difference between pi and qi is

calculated as a score for each unlabeled example, see

Algorithm 2. These scores are used for selection metric.

Algorithm 2 shows the procedure for selection metric. The

labeled data are used to calculate the covariance. This

measure uses all (labeled) data and thereby avoids errors in

the probability estimates that are caused by the instability

due to data fragmentation. Note that when M ¼ S�1 is the

identity matrix, DðXÞ gives the Euclidean distance.

Otherwise, we can address M as LTL such that L 2 Rk�n

where k is the rank of M . Then (3) is reformulated as

DðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLX � L �XÞTMðLX � L �XÞ

q

ð4Þ

which emphasizes that a Mahalanobis distance implicitly

corresponds to computing the Euclidean distance after the

linear projection of the data defined by the transformation

matrix L. One important point in Mahalanobis distance is

that if M is low-rank (rankðMÞ ¼ r\n), then it transforms

a linear projection of the data into a space of lower

dimension, i.e. r [3]. However, there are some practical

issues using Mahalanobis distance, for example the com-

putation of the covariance matrix can cause problems.

When the data consist of a large number of features and the

limited number of the data points, they can contain much

redundant or correlated information, which leads to a sin-

gular or nearly singular covariance matrix. This problem

can be solved by using feature reduction or using pseudo-

covariance [21].

Following the general self-training algorithm, a set of

examples with highest score is selected from unlabeled

(a) (b)

Fig. 1 Grafted decision tree

Fig. 2 Distance of unlabeled examples X and Y and positive and

negative examples based on the Mahalanobis distance
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examples according to Algorithm 2. This subset is then

assigned ‘‘pseudo-labels’’ as in Algorithm 1. Next, the

high-confidence predictions from this subset is added along

with their ‘‘pseudo-labels’’ to the training set. This proce-

dure is repeated until it reaches a stopping condition.

Algorithm 2 Selection Metric

Initialize: U, P;
U : Unlabeled examples; P: Number of selected examples;
for each xi ∈ U do

- pi ← Calculate distance between xi and the mean of the positive examples;
- qi ← Calculate distance between xi and the mean of the negative examples
- wi ← |pi − qi| as score for each example;

SubSet ← Select P% of the highest score examples;
return SubSet

5 Self-training for ensembles of decision trees

In this section we extend the analysis from decision trees

to ensembles of decision trees. An ensemble combines

many, possibly weak, classifiers to produce a (hopefully)

strong classifier [13]. Ensemble methods differ in their

base learner and in how classifiers are combined. Exam-

ples of the ensemble methods are bagging [8], boosting

[15], Random Forest (RF) [9], and Random Subspace

Method (RSM) [19]. In an ensemble classifier, probability

estimation is estimated by combining the confidences of

their components. This tends to improve both the classi-

fication accuracy and the probability estimation. How-

ever, if a standard decision tree learner is used as the base

learner, then the problems, that we noted above, carry

over to the ensemble. We therefore expect that improving

the probability estimates of the base learner will enable

the ensemble learner to benefit more from the unlabeled

data than if the standard decision tree learner is used.

Algorithm 3 shows the generation of the trees in an

ensemble classifier. In the experiments we use Random

Forest and the Random Subspace Method to generate

ensembles of trees.

The RSM and RF ensemble classifiers are well-suited

for data that are high-dimensional. A single decision tree

minimizes the number of features that are used in the

decision tree and does not exploit features that are corre-

lated and all have little predictive power. The ensemble

classifiers do not suffer from this problem because the

random component and the ensemble allow including more

features.

5.1 Random forest

A Random Forest (RF) is an ensemble of n decision trees.

Each decision tree in the forest is trained on different subsets

of the training set, generated from the original labeled data by

bagging [8]. Random Forest uses randomized feature

selection while the tree is growing. In the case of multidi-

mensional datasets this property is indeed crucial, because

when there are hundreds or thousand features, for example in

medical diagnosis and documents, many weakly relevant

features may not appear in a single decision tree at all. The

final hypothesis in Random Forest is produced by using

majority voting method among the trees. Many semi-

supervised algorithms have been developed based on the

Random Forest approach, such as Co-Forest [47].

There are several ways to compute the probability

estimation in a random forest such as averaging class

probability distributions estimated by the relative class

frequency, the Laplace estimate and the m-estimate

respectively. The standard random forest uses the relative

class frequency as its probability estimation which is not

suitable for self-training as we discussed. As a result we

use the improved base classifier C4.4graft as a base learner

in random forest.

Let’s denote the ensemble H as H ¼ fh1; h2; :::; hNg,

where N is the number of trees in the forest. Then, the

probability estimation for predicting example x is defined as

argmax
k

PðkjxÞ ð5Þ

where

PðkjxÞ ¼
1

N

X

N

i¼1

PiðkjxÞ ð6Þ

and k is the class label and PiðkjxÞ is the probability esti-

mate of the i-th tree for sample x which is computed by (2).

5.2 The random subspaces method

A Random Subspace method [19] is an ensemble method

that combines randomly chosen feature subspaces of the

original feature space. In the Random Subspaces method

instead of using a subsample of data points, subsampling is

performed on the feature space. The Random Subspaces

method constructs a decision forest that maintains highest

accuracy on training data and improves on generalization

accuracy as it grows in complexity.

Assume that the ith tree of the ensemble be defined as

hiðX; SiÞ : X 7!K, where X are the data points, K are the

labels, and the Si are independent identically distributed

(i.i.d) random vectors. Let’s define the ensemble classifier

H as H ¼ fh1; h2; :::; hNg, where N is the number of trees

in the forest. The probability estimation is then computed

as in (5), where PiðkjxÞ is the probability estimate of the

i-th tree for sample x. This probability estimation cab be

computed by NBTree, C4.4, or C4.4graft.

5.3 The ensemble self-training algorithm

Beside modifying the decision tree learner, probability

estimates can be improved by constructing an ensemble of
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decision trees and using their predictions for probability

estimates. We use the modified decision tree learners as

base learners and construct the ensemble following

EnsembleTreesðL;F;NÞ. This is then used as the base

learner in Algorithm 1, where N is the number of trees. In

the self-training process, first the decision trees are gen-

erated by bagging or the random subspace method using

our proposed decision trees, see Algorithm 3. The ensem-

ble classifier then assigns ‘‘pseudo-labels’’ and confidence

to the unlabeled examples at each iteration. Labeling is

performed by using different voting strategies, such as

majority voting or average probability as in (5). The

training process is given in Algorithm 1. The selection

metric in this algorithm is based on the ensemble classifier,

which improves the probability estimation of the trees.

Algorithm 3 Ensemble of Decision Trees

Initialize: L, F, N ; L: Labeled data;
F : Base classifier;// This base classifier is one of the proposed method in this paper.
N: Number of trees;
for i=1 to N do

- Li ←BootstrapSample(L)// or RandomSubSpaceSample(L);
- hi ← F (Li)
- H ← H+ hi

Output: Generate ensemble H

6 Experiments

In the experiments we compare the performance of the

supervised decision tree learning algorithms to self-train-

ing. We use the following decision tree classifiers as the

base classifier in self-training: J48 (the Java implementa-

tion of C4.5), C4.4, NBTree, C4.4graft, J48graft, and

ensemble of trees. For our experiments we use the WEKA

[18] implementation of the classifiers in Java. We expect to

see that the decision tree learners that give better proba-

bility estimates for their predictions will benefit more from

unlabeled examples. We then make the same comparison

for ensemble learners. We further compare the perfor-

mance of self-training with distance-based selection metric

to other algorithms.

In the experiments, for each dataset 30 % of the data are

kept as test set, and the rest is used as training data.

Training data in each experiment are first partitioned into

90 % unlabeled data and 10 % labeled data, keeping the

class proportions in all sets similar to the original data set.

We run each experiment 10 times with different subsets of

training and testing data. The results reported refer to the

test set. To provide a statistical basis for the main com-

parisons we use the following statistical tests.

6.1 Statistical test

We compare the performance of the proposed algorithms

by the method in [12]. We first apply Friedman’s test as a

nonparametric test equivalent to the repeated measures

ANOVA. Under the null hypothesis Friedman’s test states

that all the algorithms are equal and the rejection of this

hypothesis implies differences among the performance of

the algorithms. It ranks the algorithms based on their per-

formance for each dataset separately, it then assigns the

rank 1 to the best performing algorithm, rank 2 to the

second best, and so on. In case of ties average ranks are

assigned to the related algorithms. Let’s define r
j
i as the

rank of the jth algorithm on the ith datasets. The Friedman

test compares the average ranks of algorithms,

Rj ¼
1
N

P

i r
j
i , where N is the number of datasets and k is

the number of the classifiers. Friedman’s statistic

v
2
F ¼

12N

kðk þ 1Þ

X

j

R2
j �

kðk þ 1Þ2

4

" #

ð7Þ

is distributed according to v
2
F with k � 1 degrees of free-

dom. Iman and Davenport [22] showed that Friedman’s v2F
is conservative. Then they present a better statistic based

on Friedman’s test:

FF ¼
ðN � 1Þv2F

Nðk � 1Þ � v
2
F

ð8Þ

This statistic is distributed according to the F-distribution

with k � 1 and ðk � 1ÞðN � 1Þ degrees of freedom.

As mentioned earlier, Friedman’s test shows whether

there is a significant difference between the averages or

not. The next step for comparing the performance of the

algorithms with each other is to use a post-hoc test. We use

Holm’s method [20] for post-hoc tests. This sequentially

checks the hypothesis ordered by their performance. The

ordered p-values are denoted by p1 � p2 � . . .� pk�1. Then

each pi is compared with a

ðk�iÞ, starting from the most sig-

nificant p-value. If p1 is less than a

ðk�1Þ, then the corre-

sponding hypothesis is rejected and p2 is compared with
a

ðk�2Þ. As soon as a certain hypothesis cannot be rejected, all

remaining averages are taken as not significantly different.

The test statistic for comparing two algorithms is

z ¼
Ri � Rj
ffiffiffiffiffiffiffiffiffiffiffi

kðkþ1Þ
6N

q ð9Þ

The value z is used to find the corresponding probability

from the normal distribution and is compared with the

corresponding value of a. We use a ¼ 0:05.

6.2 UCI datasets

We use a number of UCI datasets [1] to evaluate the per-

formance of our proposed methods. Recently the UCI

datasets have been extensively used for evaluating semi-

supervised learning methods. Consequently, we adopt UCI
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datasets to assess the performance of the proposed algo-

rithms. Fourteen datasets from the UCI repository are used

in our experiments. We selected these datasets, because

they differ from the number of features and examples, and

distribution of classes. Information about these datasets is

in Table 1. All sets have two classes and Perc. represents

the percentage of the largest class.

6.3 Web-pages datasets

The datasets from the UCI Repository have a relatively

small number of attributes. We performed additional

experiments on image classification data with a somewhat

larger set of attributes. The task here is to learn to classify

web pages by their visual appearance as in [7]. Specifically

the task is to recognize aesthetic value a (ugly vs. beautiful)

and the recency of a page (old vs. new) from simple color

and edge histograms, Gabor and texture attributes. These

labels were assigned by human evaluators with a very high

inter-rater agreement. Information about these datasets is in

Table 2. In these data ensembles of decision trees are more

effective than single decision trees because typically a

large number of attributes is relevant and the decision tree

learners minimize the number of attributes in the classifier.

All datasets have two classes and Prc. represents the per-

centage of the largest class label.

7 Results

Tables 3, 6, 7, and 8 give the classification accuracies for

the experiments. For each base classifier, the performance

of the supervised learning only on labeled data and self-

training on both labeled and unlabeled data are reported.

7.1 Self-training with a single classifier

Table 3 compares the results of the standard decision tree

learner J48 (DT) to its self-training version (ST-DT) and

the same for the C4.4, grafting (GT), the combination of

grafting and C4.4 (C4G), and the Naive Bayes Decision

trees (NBTree). We expect that the modified algorithms

show results similar to J48 when only labeled data are used,

but improved classification accuracies when they are used

as the base learner in self-training.

7.1.1 Self-training with J48 decision tree learner

In Table 3, the columns DT and ST-DT show the classi-

fication accuracy of J48 base learner and self-training

respectively. As can be seen, self-training does not benefit

from unlabeled data and there is no difference in accuracy

between learning from the labeled data only and self-

training from labeled and unlabeled data. The average

improvement over all datasets is 0.15 %.

7.1.2 Self-training with C4.4, grafting, and NBTree

Table 3 gives the classification accuracy of C4.4 and ST-

C4.4. As can be seen, unlike the basic decision tree learner,

C4.4 enables self-training to become effective for nearly all

the datasets. The average improvement over the used

datasets is 1.9 %. The reason for improvement is that using

Laplacian correction and No-pruning give better rank for

probability estimation of the decision tree, which leads to

select a set of high-confidence predictions.

In Table 3, we can see the same observation for J48graft

(grafted decision tree). When using only labeled data we

see no difference with the standard algorithm but self-

training improves the performance of the supervised

J48graft on all datasets. The average improvement over all

datasets is 1.6 %. Next, we combine Laplacian correction

and No-pruning in J48graft, C4.4graft. This modification in

grafted decision tree gives better results when it is used as

the base learner in self-training. The results show that self-

training outperforms the supervised C4.4graft classifier on

all datasets. A t-test on the results shows that self-training

significantly improves the classification performance of

C4.4graft classifier on 10 out of 14 datasets and the average

improvement over all datasets is 3.5 %. Finally, the results

of experiments on NBTree classifier as the base learner in

self-training show that it improves the performance of

NBTree classifier on 13 out of 14 datasets and the average

improvement is 2.7 %.

Table 1 Overview of UCI datasets

Dataset (classes) Attributes Size Perc.

Breath-cancer (1,2) 10 286 70

Bupa (1,2) 6 345 58

Car (1,2) 7 1,594 76

Cmc (1,3) 10 1,140 55

Colic (1,2) 22 368 63

Diabetes (1,2) 6 768 65

Heart statlog (1,2) 13 270 55

Hepatitis (1,2) 19 155 79

Ionosphere (1,2) 34 351 36

Liver (1,2) 7 345 58

Sonar (1,2) 61 208 53

Tic-tac-toe (1,2) 9 958 65

Vote (1,2) 16 435 61

Wave (1,2) 41 3,345 51
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7.1.3 Statistical analysis

In this section, we analyze the results in Table 3. Table 4

shows the rank of each algorithm for each dataset

according to Friedman’s test. Average ranks are reported in

the last row. Friedman’s test checks whether the measured

average ranks are significantly different from the mean

rank Rj ¼ 2:96 expected under the null-hypothesis. Then,

according to the Eqs. (7) and (8), v
2
F ¼ 39:54 and

FF ¼ 31:24.

With five algorithms and 14 datasets, FF follows the F-

distribution with 5� 1 ¼ 4 and ð5� 1Þð14� 1Þ ¼ 39

degrees of freedom. The critical value of Fð4; 39Þ for a ¼

0:05 is 2.61, so we reject the null-hypothesis. Next we

apply Holm’s test, see Table 5.

Table 5 shows the results. The Holm procedure rejects

the first, second, third, and then fourth hypotheses, since

the corresponding p values are smaller than the adjusted a0s

(0.05). We conclude that the performance of C4.4graft,

NBTree, J48graft, and C4.4 as the base learner in self-

training algorithm are significantly different from standard

decision tree (J48).

7.2 Self-training with single classifier and global

distance-based measure

To evaluate the impact of the global distance-based

selection metric for self-training (as in Algorithm 2), we

run another set of experiments. Table 6 shows the results of

the experiments. The columns ST-DT, ST-C4.4, ST-GT,

ST-C4G, and ST-NB show the classification performance

of self-training with J48, C4.4, J48graft, C4.4graft, and

NBTree as the base learners respectively.

The results show that in general using the Mahalanobis

distance as the selection metric improves the classification

performance of all self-training algorithms. For example,

comparing the results of self-training in Tables 3 and 6

when the base classifier is C4.4graft, we observe that self-

training in Table 6 except for web-pages datasets, using

distance-based selection metric, outperforms the self-

training in Table 3 on 10 out of 14 datasets. The same

results are seen for J48 as the base learner.

The results on the web page classification task show the

same pattern. Note that Self-Training with web page

classification starts with only six labeled examples. The

results do not seem to depend on the number of variables or

the nature of the domain.

7.3 Self-training with an ensemble of trees

In this experiment, we expect that the ensemble learner will

perform somewhat better than the basic decision tree

learner, when used on the labeled data only. More inter-

esting thought, we expect that the ensemble, with improved

base learner, can improve the probability estimation and

therefore if it is used as the base learner in self-training it

will benefit even more from the unlabeled data than a

single modified decision tree learner.

We use C4.4graft as the base classifier in RF. REPTree,

NBTree, and C4.4graft classifiers are also used in a RSM

ensemble classifier as the base classifiers. REPTree is a fast

decision tree learner. It builds a decision tree using infor-

mation gain and prunes it using reduced-error pruning

Table 2 Overview of web-pages datasets

Dataset Attributes Size Perc.

Aesthetic 192 60 50

Recency 192 60 50

Table 3 Average classification

accuracy of supervised learning

and self-training with different

base classifiers

Dataset DT ST-DT C4.4 ST-C4.4 GT ST-GT C4G ST-C4G NB ST-NB

Breath-cancer 68.00 69.00 66.25 67.00 68.00 70.01 66.25 70.12 72.50 75.75

Bupa 58.62 57.09 58.62 58.68 58.62 59.25 58.62 61.40 58.20 58.20

Car 86.08 86.04 85.48 87.48 86.08 87.28 85.48 88.28 85.08 87.68

Cmc 57.00 58.25 56.75 59.05 57.00 59.13 56.75 60.12 54.25 58.00

Colic 72.83 72.36 70.56 73.70 72.84 74.80 70.56 75.03 74.60 76.71

Diabetes 67.82 67.83 67.51 69.18 68.46 69.40 68.14 71.79 71.14 72.59

Heart 67.27 67.27 68.63 70.50 67.27 69.10 68.63 72.12 71.81 73.85

Hepatitis 76.00 75.60 76.00 76.40 76.00 76.60 76.00 80.60 78.40 82.40

Ionoshere 70.47 70.67 70.47 71.46 70.37 71.56 70.37 73.72 79.97 82.57

Liver 56.80 56.60 57.00 60.80 57.00 59.80 57.00 59.98 57.00 59.90

Sonar 63.40 63.40 63.40 63.76 63.40 64.92 63.40 65.40 59.60 63.60

Tic-tac-toe 66.40 68.20 63.40 68.80 66.40 70.10 63.80 69.60 65.20 68.60

Vote 89.08 89.08 89.05 90.30 89.08 89.80 88.05 90.48 90.00 92.74

Wave 83.10 83.63 82.85 85.13 84.10 85.25 83.60 86.25 84.75 88.00
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(with backfitting). REPTree is the default decision tree

learner for the Random Subspace Method in WEKA.

Table 7 gives the classification accuracies of the all

experiments. The columns RFG, RREP, RG, and RNB

show the classification performance of supervised classi-

fiers Random Forest with C4.4graft and RSM with REP-

Tree, C4.4graft, and NBTree respectively and their

corresponding self-training algorithms. Using RF with

C4.4graft as the base learner in self-training improves the

classification performance of the supervised classifier RF,

on 13 out of 14 datasets. As can be seen, the results are

better than a single decision tree, but in most cases the

differences are not significant. We suspect that this is due

to using the bagging method for generating different

training set in Random Forest. In the case of a small set of

labeled data, bagging does not work well [37], because the

pool of labeled data is too small for re-sampling. However

the average improvement is 1.9 % over all datasets.

In the second experiment, we use the RSM ensemble

classifier with improved versions of decision trees. We

observe that using C4.4graft and NBTree as the base

classifiers in RSM is more effective than using REPTree,

when RSM is used as the base learner in self-training. The

results show that RSM with C4.4graft as the base learner in

self-training improves the classification performance of

RSM on 13 out of 14 datasets and the average improve-

ment over all datasets is 2.7 %. The same results are shown

in Table 7 for RSM, when the NBTree is the base learner.

7.4 Self-training with ensemble classifier and distance-

based measure

Table 8 shows the results of the experiments using dis-

tance-based selection metric. The columns ST-RFG, ST-

RREP, ST-RG, and ST-RNB show the classification per-

formance of self-training with RF (ST-RFG as the base

learner), RSM when the base learners are REPTree,

C4.4graft, and NBTree respectively. The results, as in

single classifier, show that in general using the Mahalan-

obis distance along with the probability estimation as the

selection metric improves the classification performance of

all self-training algorithms and emphasizes the effective-

ness of this selection metric.

Results in Table 8 also show that ensemble RSM clas-

sifier with NBTree and C4.4graft, as the base learners,

achieves the best classification performance on web-pages

datasets. Finally, comparing Tables 6–8, shows that

ensemble methods outperform the single classifier espe-

cially for web-page datasets. The results also verify that

improving both the classification accuracy and the proba-

bility estimates of the base learner in self-training are

effective for improving the performance.

7.5 Sensitivity to the amount of trees

We also study the effect on performance of the number of

trees when using ensemble methods RF and RSM as the

base learner of self-training. Figure 3 shows the accuracy

of self-training with varying numbers of trees on two web-

pages datasets. As we expect overall the classification

accuracy is improved with increasing the number of trees.

7.6 Sensitivity to the amount of unlabeled data

To study the sensitivity of the proposed algorithms to the

number of labeled data, we run a set of experiments with

different proportions of labeled data which vary from 10 to

40 % on web-pages datasets. We expect that the difference

between the supervised algorithms and the semi-supervised

methods decreases when more labeled data are available.

Figure 4 shows the performance of self-training with dif-

ferent base learners on two web-pages datasets. In this

experiment, we use RF and RSM with C4.4graft as the base

learner in self-training. For fair comparison we include a set

of experiments with single classifiers, J48 and C4.4graft, as

Table 4 Statistical rank (Friedman’s test)

Datasets Decision tree C4.4 J48graft C4.4graft NBTree

Breath-

cancer

4 5 3 2 1

Bupa 5 3 2 1 4

Car 5 3 4 1 2

Cmc 5 3 2 1 4

Colic 5 4 3 2 1

Diabetes 5 4 3 2 1

Heart 5 3 4 2 1

Hepatitis 5 4 3 2 1

Ionosphere 5 4 3 2 1

Liver 5 3 4 1 2

Sonar 5 3 2 1 4

Tic-tac-toe 5 3 1 2 4

Vote 5 3 4 2 1

Wave 5 4 3 2 1

Average rank 4.93 3.50 2.93 1.64 1.93

Table 5 Statistical rank (Holm’s test)

i Classifier Z P-value a=ðk � iÞ

1 C4.4graft 5.498051603 0.00000004 0.0125

2 NBTree 4.780914437 0.00000174 0.016666667

3 j48graft 3.82473155 0.00013092 0.025

4 C4.4 2.031888636 0.0421658 0.05
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well. Figure 4 shows the performance obtained by self-

training algorithms and supervised classifiers. Figure 4a, b

show the performance of self-training with ensemble clas-

sifiers and Fig. 4c, d give the performance of self-training

with single classifiers on web-pages datasets. Consistent

with our hypothesis we observe that difference between

supervised algorithms and self-training methods decreases

when the number of labeled data increases. Another inter-

esting observation is that RF improves the classification

performance of self-training when more labeled data are

available, because with more labeled data the bagging

approach, used in RF, generates diverse decision trees.

7.7 Sensitivity to the threshold parameter

As mentioned in Sect. 3, at each iteration of the self-

training algorithm a set of informative newly-labeled

examples is selected for the next iterations. Therefore there

is a need for a selection metric. We have used the proba-

bility estimation of the decision tree as the selection cri-

terion. However in order to be able to select this subset, we

need to introduce a threshold (T in Algorithm 1) regarding

the probability estimation of the base learner. In fact, this

threshold is a tuning parameter and needs to be tuned for

each dataset.

Table 6 Average performance

of supervised learning and self-

training using the global

Mahalanobis distance selection

metric

Dataset Supervised learning Self-training

DT C4.4 GT C4G NB ST-DT ST-C4.4 ST-GT ST-C4G ST-NB

Breath-cancer 68.00 66.25 68.00 66.25 72.50 70.07 70.12 70.25 71.27 76.14

Bupa 58.62 58.62 58.62 58.62 58.20 61.60 61.60 61.80 62.37 61.76

Car 86.08 85.48 86.08 85.48 85.08 87.04 87.56 87.28 89.01 88.04

Cmc 57.00 56.75 57.00 56.75 54.25 59.00 60.01 60.77 61.01 60.00

Colic 72.83 70.56 72.84 70.56 74.60 74.29 75.17 75.49 76.25 77.34

Diabetes 67.82 67.51 68.46 68.14 71.14 69.80 70.80 70.90 71.20 72.40

Heart 67.27 68.63 67.27 68.63 71.81 68.50 71.61 70.27 71.63 74.00

Hepatitis 76.00 76.00 76.00 76.00 78.40 77.12 77.29 78.71 80.97 82.40

Ionosphere 70.47 70.47 70.37 70.37 79.79 72.62 71.61 72.29 73.43 82.15

Liver 56.80 57.00 57.00 57.00 57.00 57.28 60.88 61.10 60.80 58.32

Sonar 63.40 63.40 63.40 63.40 59.60 64.12 65.00 65.10 66.43 64.31

Tic-tac-toe 66.40 63.40 66.40 63.80 65.20 67.40 66.02 68.40 67.33 67.17

Vote 89.08 89.05 89.08 88.05 90.00 90.43 91.37 92.12 92.18 92.15

Wave 83.10 82.85 84.10 83.60 84.75 84.63 85.13 85.67 86.75 88.00

Aesthetics 53.47 54.12 54.40 54.48 54.40 57.70 57.87 56.70 59.22 60.45

Recency 65.27 66.01 66.70 67.50 67.00 68.08 70.71 70.27 72.47 74.36

Table 7 Average performance

of supervised learning and self-

training with ensemble

classifiers

Dataset RFG ST-RFG RREP ST-RREP RG ST-RG RNB ST-RNB

Breath-cancer 66.25 68.75 68.50 69.50 68.50 71.50 74.50 75.50

Bupa 57.34 60.32 56.45 57.72 55.04 59.38 58.40 58.40

Car 87.00 88.32 77.60 80.40 80.60 83.02 78.00 80.80

Cmc 60.25 63.25 58.75 59.63 59.50 63.70 57.25 59.38

Colic 75.00 74.90 67.32 71.65 77.50 79.60 76.77 79.26

Diabetes 69.56 71.66 70.66 70.75 67.82 70.56 70.04 72.29

Heart 74.99 76.22 72.04 74.58 73.18 76.09 70.91 73.40

Hepatitis 80.00 80.80 80.00 80.00 80.40 81.80 79.60 82.00

Ionoshere 80.00 82.00 71.20 73.80 73.04 77.76 78.31 81.10

Liver 56.60 58.14 56.00 58.40 61.40 63.00 56.80 58.00

Sonar 63.60 67.20 59.20 60.60 63.40 64.80 59.80 61.20

Tic-tac-toe 70.00 71.40 67.20 67.60 69.60 69.60 68.20 70.40

Vote 91.25 93.25 88.78 90.25 89.00 93.00 88.78 92.50

Wave 86.00 88.50 85.75 86.75 87.25 89.50 88.75 89.75
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We perform several experiments on colic dataset to

show the effect of this threshold on the performance of

self-training. Figure 5 shows the results of the experiments.

As can be seen, the performance of the self-training with

NBTree as the base classifier changes when the different

threshold for selection metric is used in the training pro-

cedure. The same results are seen for self-training when the

base learner is RSM with NBTree. As a result the selection

of the threshold has a direct impact on the performance. In

the experiment we selected 10 % of the high-confidence

predictions and used the mean of the probability estimation

of these predictions as threshold.

8 Multiclass classification

In order to generalize the proposed methods to multiclass

classification problem, we perform several experiments to

show the effect of the improved probability estimation of the

decision trees. Since the decision tree classifiers are basically
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Fig. 3 Average performance of self-training with increasing the number of trees on web-pages datasets

Table 8 Average performance

of supervised learning and self-

training using the Mahalanobis

distance along with the

probability estimation as the

selection metric

Dataset Supervised learning Self-training

RFG RREP RG RNB ST-RFG ST-RREP ST-RG ST-RNB

Breath-cancer 66.25 68.50 68.50 74.50 69.80 70.50 71.95 76.93

Bupa 57.34 56.45 55.04 58.40 61.60 60.76 61.06 60.04

Car 87.00 77.60 80.60 78.00 89.27 81.40 84.29 81.18

Cmc 60.25 58.75 59.50 57.25 64.00 60.00 64.12 60.10

Colic 75.00 67.32 77.50 76.77 75.21 71.15 80.60 79.32

Diabetes 69.56 70.66 67.82 70.04 71.80 70.98 71.80 72.00

Heart 74.99 72.04 73.18 70.91 77.01 74.15 76.62 74.27

Hepatitis 80.00 80.00 80.40 79.60 81.81 81.25 82.15 83.00

Ionoshere 80.00 71.20 73.04 78.31 82.34 74.79 78.56 81.91

Liver 56.60 56.00 61.40 56.80 59.00 57.92 63.60 58.52

Sonar 63.60 59.20 63.40 59.80 69.07 64.15 69.23 63.14

Tic-tac-toe 70.00 67.20 69.60 68.20 72.01 69.34 70.67 71.33

Vote 91.25 88.78 89.00 88.78 93.25 91.53 93.17 93.79

Wave 86.00 85.75 87.25 88.75 88.15 86.97 89.50 89.86

Aesthetics 58.55 60.88 63.88 60.41 61.91 61.04 68.91 65.01

Recency 68.49 70.37 70.37 71.29 71.87 72.3 78.74 75.57
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Fig. 4 Average performance of self-training [using ensemble classifier (a, b) and single classifier (c, b) as the base learner] with increasing

proportions of labeled data on web-pages datasets

(a) (b)

Fig. 5 The classification accuracy of self-training (using single classifier (a) and ensemble classifier (b) as the base learner) with different value

for T parameter on colic dataset
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multiclass classifiers [46]. Therefore they can directly handle

the multiclass classification problems, which is one of the

key advantages of using the decision trees. Most of the

classifiers often convert the original multiclass problem into

several binary classification problems using one-vs-one or

one-vs-all methods, which may lead to several problems like

imbalance data [38, 40].

In this section, we use five multiclass UCI datasets in the

experiments as shown in Table 9. Table 10 compares the

results of the standard decision tree learner (DT) to its self-

training version (ST-DT) and the same for C4.4graft

(C4G), and the Naive Bayes Decision trees (NB). It also

compares the results of the DT to ensemble classifiers RF

with C4.4graft (RFG) and RSM with C4.4graft (RG) and

NBTree (RNB) as the base learners.

As can be seen in Table 10, consistent with the perfor-

mance of the binary classification, the proposed methods

outperform the performance of the standard decision tree.

Figure 6 shows the average improvement of the used

methods in the comparison.

We further present the precision (P), recall (R), and the

area under curve (AUC) of some datasets in terms of each

class to show the improvements in more details. In this

experiment Balance and Cmc datasets are evaluated using

self-training with single and ensemble classifiers as in the

pervious experiment. Table 11 shows the results in more

details.

9 Conclusions and discussions

The main contribution of this paper is the observation that

when a learning algorithm is used as the base learner in

self-training, it is very important that the confidence of

prediction is correctly estimated, probability estimation.

The standard technique of using the distribution at the

leaves of decision tree as probability estimation does not

enable self-training with a decision tree learner to benefit

from unlabeled data. The accuracy is the same as when the

decision tree learner is applied to only the labeled data. If a

modified decision tree learner is used which has an

improved technique for estimating probability, then self-

training with the modified version does benefit from the

unlabeled data. Although to a lesser extent, the same is true

when the modified decision tree learners are used as the

base learner in an ensemble learner.

Based on the results of the experiments we conclude that

improving the probability estimation of the tree classifiers

leads to better selection metric for the self-training algo-

rithm and produces better classification model. We observe

that using Laplacian correction, No-pruning, grafting, and

NBTree produce better probability estimation in tree

classifiers. We also observed that Mahalanobis distance

method for sampling is effective and guides a decision tree

learner to select a set of high-confidence predictions. The

best result based on our experiments with a small amount

of labeled instances (10 %), which is the most relevant for

semi-supervised settings, is obtained by a combination of

grafting, No-pruning, and Laplacian correction. This was

useful in the Random Subspace Method as well. Random

Forest suffers from the small amount of labeled data and

therefore does not work well. Better probability-based

ranking and high classification accuracy could select the

high-confidence predictions in the selection step of self-

training and therefore, these variations improved the per-

formance of self-training.

Table 9 Overview of multiclass datasets

Dataset # Samples # Attributes # Classes

Balance 625 4 3

Car 1,728 6 4

Cmc 1,473 9 3

Iris 150 4 3

Vehicle 846 19 4

Table 10 Average

classification accuracy of

supervised learning and self-

training using single and

ensemble classifiers

Self-training with ensemble classifiers

Datasets DT ST-DT RFG ST-RFG RG ST-RG RNB ST-RNB

Balance 63.59 63.11 67.96 69.41 68.44 70.38 66.99 66.99

Car 76.94 77.29 79.23 81.34 72.71 73.50 72.00 75.18

Cmc 42.77 44.42 45.46 47.32 46.28 50.00 44.70 48.02

Iris 77.08 77.08 77.08 81.25 89.58 95.83 91.67 95.83

Vehicle 53.99 54.71 59.42 61.96 59.42 64.13 64.85 65.22

Self-training with single classifiers

Datasets DT ST-DT NB ST-NB C4G ST-C4G

Balance 63.59 63.11 67.47 71.84 65.53 67.96

Car 76.94 77.29 76.76 78.52 74.64 76.23

Cmc 42.77 44.42 42.36 45.04 42.96 45.46

Iris 77.08 77.08 89.58 91.67 75.00 75.00

Vehicle 53.99 54.71 61.59 62.68 53.99 55.70
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Future work can consider extending the proposed

selection metric to multiclass classification. Most of the

measures we used are for binary classification and can be

extended to the muticlass case. Another line is to consider

the probability estimates of other learning algorithms that

are not designed to output probabilities. Also co-training

algorithms rely on good probability estimates. We expect

that similar issues play a role in that setting.

Fig. 6 The improvement in the

classification performance of

the used methods in Table 10

Table 11 Detailed classification accuracy by classes for Balance and Cmc datasets using self-training with single and ensemble classifiers

Classes DT ST-DT NB ST-NB C4G ST-C4G

P R AUC P R AUC P R AUC P R AUC P R AUC P R AUC

Balance

Class 1 0.74 0.63 0.80 0.68 0.71 0.77 0.63 0.87 0.74 0.68 0.85 0.85 0.71 0.76 0.76 0.75 0.74 0.79

Class 2 0.07 0.13 0.42 0.07 0.13 0.44 0.0 0.0 0.56 0.0 0.0 0.47 0.0 0.0 0.44 0.04 0.06 0.60

Class 3 0.73 0.73 0.76 0.78 0.64 0.74 0.79 0.62 0.77 0.77 0.71 0.83 0.70 0.72 0.76 0.69 0.66 0.79

RFG ST-RFG RFG ST-RFG RNB ST-RNB

Class 1 0.71 0.77 0.77 0.72 0.75 0.83 0.68 0.78 0.84 0.68 0.83 0.85 0.76 0.59 0.73 0.78 0.60 0.86

Class 2 0.0 0.0 0.46 0.09 0.13 0.60 0.0 0.0 0.53 0.0 0.0 0.55 0.0 0.0 0.47 0.0 0.0 0.44

Class 3 0.80 0.74 0.81 0.79 0.71 0.85 0.72 0.71 0.86 0.78 0.70 0.87 0.62 0.86 0.72 0.65 0.86 0.85

Classes DT ST-DT NB ST-NB C4G ST-C4G

Cmc

Class 1 0.47 0.63 0.62 0.49 0.75 0.61 0.46 0.45 0.54 0.49 0.6 0.57 0.48 0.56 0.58 0.54 0.47 0.57

Class 2 0.32 0.27 0.64 0.37 0.60 0.68 0.35 0.40 0.64 0.47 0.32 0.67 0.29 0.27 0.58 0.37 0.32 0.64

Class 3 0.38 0.27 0.56 1.0 0.02 0.60 0.42 0.39 0.54 0.39 0.41 0.56 0.43 0.36 0.61 0.42 0.52 0.61

RFG ST-RFG RFG ST-RFG RNB ST-RNB

Class 1 0.50 0.48 0.60 0.50 0.70 0.61 0.48 0.63 0.62 0.48 0.86 0.65 0.49 0.55 0.59 0.56 0.58 0.61

Class 2 0.36 0.31 0.67 0.37 0.18 0.56 0.37 0.23 0.66 0.58 0.18 0.69 0.42 0.28 0.59 0.43 0.31 0.65

Class 3 0.45 0.51 0.60 0.47 0.39 0.59 0.45 0.40 0.60 0.57 0.29 0.62 0.40 0.42 0.57 0.44 0.5 0.58
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