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Abstract

The construction of appearance-based object detection
systems is time-consuming and difficult because a large
number of training examples must be collected and man-
ually labeled in order to capture variations in object ap-
pearance. Semi-supervised training is a means for reduc-
ing the effort needed to prepare the training set by train-
ing the model with a small number of fully labeled examples
and an additional set of unlabeled or weakly labeled exam-
ples. In this work we present a semi-supervised approach
to training object detection systems based on self-training.
We implement our approach as a wrapper around the train-
ing process of an existing object detector and present em-
pirical results. The key contributions of this empirical study
is to demonstrate that a model trained in this manner can
achieve results comparable to a model trained in the tradi-
tional manner using a much larger set of fully labeled data,
and that a training data selection metric that is defined in-
dependently of the detector greatly outperforms a selection
metric based on the detection confidence generated by the
detector.

1. Introduction

1.1. Object Detection

Object detection systems based on statistical models of

object appearance have been quite successful in recent years

[18], [19], [17], [23]. Because these systems directly model

an object’s appearance in an image, a large amount of la-

beled training data is needed to provide good coverage over

the space of possible appearance variations. However, col-

lecting a large amount of labeled training data can be a diffi-

cult and time-consuming process. In the case of the training

data for appearance-based statistical object detection, this

typically entails labeling which regions of the image belong

to the object of interest and which belong to the non-object

part of the image, and, in some cases, marking landmark

points. For many of the object detection techniques to be

practical, it is crucial that a streamlined approach to train-

ing be used so that users are able to rapidly insert new ob-

ject models in their systems.

The goal of the approach proposed here is to simplify

the collection and preparation of this training data by uti-

lizing a combination of data labeled in different ways. In

what we call “weakly labeled” training data, the labeling of

each of the image regions can take the form of a probabil-

ity distribution over labels. This makes it possible to capture

a variety of information about the training examples. For ex-

ample, it is possible to indicate that the object of interest is

more likely to be present toward the center of the image. Or

it is possible to encode the knowledge that a specific image

has a high likelihood of containing the object, but that the

object’s position is unknown. We refer to this type of train-

ing as “weakly labeled” or “semi-supervised”.

In the recent literature, [20], [8], anecdotal evidence has

been presented which suggests that semi-supervised training

can provide a performance improvement when applied to the

object detection problem. In the work presented here, we

perform a comprehensive empirical evaluation with the goal

of characterizing and understanding these issues in order to

facilitate the broad practical application of semi-supervised

training to the object detection problem. Although, for prac-

tical reasons, we use one detector for evaluation, the se-

lected detector is representative of other recent algorithms

in the literature. We believe that, in the context of computer

vision, this is the first comprehensive scale study of semi-

supervised training techniques which will be necessary in

any practical application of object detection algorithms.

1.2. Training Approaches

In order to introduce the general approaches to semi-

supervised training, let us first describe a generic detection

algorithm that classifies a subwindow in an image as being a

member of the “object” class or the “clutter” class. The clas-

sification is based on the values of the feature vectors asso-

ciated with each subwindow in the image.

We designate the image feature vectors as X , with xi be-

ing the data at a specific location in the image, where i in-

dexes the image locations from i = 1 : : : n. Our goal is to

compute P (Y j X), where Y = obje
t, or Y = 
lutter.

Associated with each image class is a particular model,

which is equal either to the foreground model f or back-

ground model b. We use �f to indicate the parameters of the

foreground model and �b for the background model. If we



Figure 1. Schematic representation of the batch train-

ing approach with EM (left) and the incremental self-

training approach (right).

set P (Y = obje
t) = P (Y = 
lutter), the likelihood ra-

tio over the entire window is:

P (Y=obje
tjX)
P (Y=
lutterjX) = �n

i=1
P (xij�f )P (M=f)
P (xij�b)P (M=b)

The value of this likelihood ratio can be thresholded to de-

termine the presence or absence of an object. In practice, the

detection is performed in a subwindow of the image that is

scanned across all possible locations in the input image.

For such a generic object detector, a natural approach to

weakly-labeled training is Expectation-Maximization (EM)

[2]. This is a very generic method for generating estimates

of model parameters given unknown or missing data. This

is implemented as an iterative process which alternates be-

tween estimating the expected values of the unknown vari-

ables and the maximum likelihood of values of the model

parameters (Figure 1(left)).

It would seem that, local maxima and model selection

issues not withstanding, EM would be the ideal approach

to semi-supervised learning. Indeed, work using EM in the

context of text classification [14], [12] has found that EM is

a useful approach to training models using weakly labeled

data. However, Nigam in [14] also found that there were in-

stances in which EM did not perform well. There are many

reasons why EM may not perform well in a particular semi-

supervised training context. One reason is that EM solely

finds a set of model parameters which maximize the like-

lihood of the data. The issue is that the fully labeled data

may not sufficiently constrain the solution, which means that

there may be solutions which maximize the data likelihood

but do not optimize classification performance.

There have been a variety of approaches that attempt to

incorporate new information into EM and to design alternate

algorithms which can utilize additional prior information

which we may have about a specific semi-supervised prob-

lem [22], [15], [6]. The alternative that we chose to evaluate

in this work is often called self-training or incremental train-

ing [13]. In self-training, an initial model is constructed by

using the fully labeled data. This model is used to estimate

labels for the weakly labeled (or unlabeled) data. A selec-

tion metric is then used to decide which of the weakly la-

beled examples were labeled correctly. Those examples are

then added to the training set and the process repeats. Ob-

viously the selection metric chosen is crucial here; if incor-

rect detections are included in the training set then the final

answer may be very wrong. This issue is explored through-

out the paper. When discussing the incremental addition of

training data, it is useful to define the following terms:

� The initial labeled training set is the initial set of fully la-

beled data: L = fL1 : : : Lml
g

� The weakly labeled training set is the current set of weakly

labeled data:W = fW1 : : :Wmw
g

� The current labeled training set is the initial training set in

addition to any weakly labeled examples which have been

assigned labels: T = fT1 : : : Tmt
g

We use the object detection framework detailed in the

previous sections as the basis of our weakly labeled data ap-

proach. This approach begins with an initial set of model

parameters trained using the initial labeled training set pro-

vided, M0 = f�0f ; �
0
bg. This serves as the starting point for

our weakly labeled data approach during which we modify

foreground model, �f .

The weakly labeled data approach relies on being able

to estimate where the object is in the training image using

the current model. However, since the initial model,M0, is

trained using a limited amount of data, this may not be pos-

sible, especially for weakly labeled training data which dif-

fers significantly in appearance from the training images.

One approach is to immediately add all of the weakly la-

beled data, W , to the training set, T . However, incorrect la-

bels can potentially “corrupt” the model statistics.

In the approach described here, we attempt to reduce the

impact of this issue by labeling weakly labeled examples

and adding them incrementally to the training set accord-

ing to our confidence in those labels, similar to the methods

described in [13], [12], [20]. Here, the order in which the

images are added is critical to allow the model to first gen-

eralize to images which are most similar to the initial train-

ing set, and then incrementally extending to views which are

quite different from those in the original training set.

A schematic representation of the training procedure,

termed “self-training” or “incremental semi-supervised

training”, is presented in Figure 1(right). The incremen-

tal training procedure for using a combination of weakly

and fully labeled data is summarized as follows:
Initialization:

1. Train the parameters of the initial model,M0, consisting of
the foreground �0f and background �0b models using the fully
labeled data subset. Initialize the initial labeled training set,
T 0, with the provided fully labeled data.

Beginning of Iteration j:

1. For each Wk in Wj compute the selection metric, Sk =
Sel(Mj ;Wk).

2. Select the weakly labeled example, Wk̂ where

k̂ = argmaxk Sk with the highest score and update
both the current training set and the weakly labeled train-
ing set, T j+1  T j [ fWk̂g,W

j+1  Wj � fWk̂g.



3. Compute a new foreground model �
j+1
f by using T j+1.

End of Iteration j: While W 6= ;

The practical implementation of the semi-supervised ap-

proach is not a straightforward application of the techniques

described in this section because of the complex nature of

real world image data. In this paper, we focus on and pro-

vide insight into specific two key issues which are funda-

mental to practical implementation of the semi-supervised

training of object detection systems: 1) What metric should

be used in deciding which examples to add to the training

set during incremental training? 2) How is the performance

of the detector affected by the size of the labeled and weakly

labeled sets?

1.3. Previous Work

In recent years there has been a substantial amount of

work that addresses the problem of incorporating unlabeled

data into the training process, [14], [9], [11]. Some of the

earliest work in the context of object detection is described

in [1]. The authors used an Expectation-Maximization (EM)

approach. More recent work by Selinger in [20] uses an in-

cremental approach similar to our approach. One of the main

differences is that a contour based detection model is used.

Also the model output is used as the scoring metric to de-

cide which image to add next, whereas we found that other

metrics tended to work better. Recent work [8], [7] utilizes

an EM based approach.

The work which is most similar to our work is that de-

scribed in [24]. In this work an object detection system is

trained using images which are labeled indicating the pres-

ence or the absence of the object of interest. A search ap-

proach is used to find likely correspondences between de-

tected features and model features. The work described in

this paper is similar, but extends the prior work in that an

evaluation of a mix of labeled and weakly labeled data is

performed, the problem is examined in a discriminative con-

text and the incorporation of other types of labeled data can

be accommodated.

A number of authors have taken the approach of repre-

senting the relationships between labeled and unlabeled data

using a graph in which the edge weights are inversely re-

lated to the similarity between the different examples in fea-

ture space [3]. They use a minimum cut algorithm to de-

cide the labeling of the unlabeled data. That method aug-

ments the graph of training examples with a pair of “class”

nodes which represent the positive and negative classes. In-

finite weight edges connect labeled examples to the appro-

priate “class” nodes. Their analysis showed that particular

graph structures and edge weights correspond to optimiz-

ing specific learning criteria.

The next set of ideas in this area is based on using random

walks through the graph to capture the notion that examples

which are similar in feature space should have similar la-
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Figure 2. Schematic representation of the detection

process for a single stage of the detector.

bels. Some of the earliest work in this area is that of Szum-

mer and Jaakkola [21], which was analyzed and extended in

[25]. A promising recent direction is that of information reg-

ularization by [22] and [5]. The notion is to exactly capture

the information that we hope to transfer from the uncondi-

tional underlying distribution P (x) to the class label likeli-

hood P (y j x). The idea is that the unlabeled data will con-

strain the final hypothesis in a particular way. Specifically,

we want hypotheses that tend not to split high density re-

gions in the underlying distribution.

2. Experimental Setup

2.1. Detector Overview

We chose the detector described in [18], [19] to conduct

our experiments. It has been used successfully for face de-

tection and other rigid objects and has been demonstrated

to be one of the most accurate for face detection. The de-

tector is able to capture certain aspects of appearance vari-

ation such as intra-class variation. To handle large changes

in scale and translation, the detector is scanned over the im-

age at different scales and locations, and each correspond-

ing subwindow is run through the detector.

A schematic representation of the detection process is

presented in Figure 2: First, the subwindow is processed

for lighting correction, then a two-level wavelet transform

is applied, from which features are computed by vector-

quantizing groups of wavelet coefficients. Finally, the sub-

window is classified by thresholding a linear combination of

the log-likelihood ratios of the features. The detector uses

a cascade architecture, in which a number of detectors are

placed in series; only image patches which are accepted by

the first detector are passed on to the next. In this work we

only use a single stage of the cascade to simplify the train-

ing process. Accordingly, detection performance is lower

than what is typically achieved for the detector. We chose

to limit the processing to one stage to facilitate many rep-

etitions of the training process in the experiments, which

would not have been possible with the full detector because

of the long training times.



Figure 3. Landmark used on a typical training im-

age (left); sample training images and the training

examples associated with them (right).

2.2. Data

The object chosen for these experiments is a human eye

as seen in a full or near frontal face. In each fully labeled

example, four landmark locations on the eye were labeled

(Figure 3). The labeled regions of each training image were

rotated to a canonical orientation, scaled and cropped to re-

sult in a 24 � 16 training example image.

The full set of images with positive examples consists of

231 images. In each of these images, there were from two

to six training examples per image for a total of 480 train-

ing examples. The independent test set consisted of 44 im-

ages. In each of these images, there were from two to 10 test-

ing examples for a total of 102 test examples. In addition to

the object training examples, we used a set of 15,000 neg-

ative examples. In all the experiments described in this pa-

per, we used a fixed set of negative examples. Negative ex-

amples are assumed to be plentiful [23] and can be collected

cheaply.

The training and test images were typically in the range

of 200-300 pixels high and 300-400 pixels wide. While the

training examples are all normalized to 24 � 16 images,

scale invariance is achieved by scaling the image during the

detection process. A total of 80 synthetic variations are ap-

plied to each training example including: �0:5 translation,

0.945 to 1.055 scale, �12 degrees rotation.

2.3. Training

Training the model with fully labeled data consists of the

following steps:

1. Given the training data landmark locations, geometrically
normalize the training example subimages, apply lighting
normalization to the subimages, and generate synthetic train-
ing examples. The latter consists of scaling, shifting, and ro-
tating the images by small amounts.

2. Compute the wavelet transform of the subimages.

3. Quantize each group of wavelet coefficients and build a naive
Bayes model with respect to each group to discriminate be-
tween positive and negative examples.

4. Adjust the naive Bayes model using boosting, but maintain-
ing a linear decision function, effectively performing gradi-
ent descent on the margin.

5. Compute an ROC curve for the detector using a cross valida-
tion set.

6. Choose a threshold for the linear function, based on the final
performance desired.

If the full detector cascade is trained, these steps are re-

peated by setting a threshold that achieves a low false neg-

ative rate at each stage. The positive examples at each it-

eration are those images in the current training set which

passed the detection test for the previous iteration. For com-

putational reasons, we limit ourselves to one stage.

The goal of our experiments is to train the detector with

different combinations of fully labeled and weakly labeled

data and to evaluate the resulting detector performance.

The semi-supervised, incremental version of the training

procedure that we used in the experiments reported here can

be summarized as follows:

1. Train the detector using a limited amount of fully labeled pos-
itive examples and the full set of negative examples.

2. Run the detector over the weakly labeled portion of the data
set and find the locations and scales corresponding to max-
ima of the likelihood ratio.

3. Use the output of the detector to label the unlabeled training
examples and assign a selection score to each detection.

4. Select a subset of the newly labeled examples using the se-
lection metric.

5. Iterate and go back to step 1. Stop after a fixed number of it-
erations or after all of the training images have been added.

Typically, once an image has been added to the training

set, it is not removed, and the values of the latent variables

are fixed.

2.4. Selection metrics

The type of selection metrics used for selecting the next

example to add from the weakly labeled data set in Step

4. above is crucial to the performance of the training. We

evaluated the difference in performance between a selection

metric based on the classification confidence and a selec-

tion metric based on an distance measure between patches

that is defined independently from the detector. A key obser-

vation is that, because it is independently defined, the sec-

ond metric will have failure modes that are “orthogonal” to

the failure modes of the detector, leading to better perfor-

mance, as supported by the empirical results below. The ef-

fect of using an independently-defined metric had not been

previously investigated and it appears to contribute in a crit-

ical way to training performance.

The first selection metric, termed confidence selection

metric, is computed at every iteration by applying the detec-

tor trained from the current set of labeled data to the weakly

labeled set. The detection with the highest detection confi-

dence are selected and added to the training set. The second

selection metric, termed MSE selection metric is calculated

for each weakly labeled example by evaluating the distance

between the corresponding image window and all of the

other templates in the training data (including the original

labeled examples and the weakly labeled examples added in



Figure 4. A schematic representation of the computa-

tion of the MSE score metric. The candidate image and

the labeled images are first normalized with a specific set

of processing steps before the MSE based score metric

is computed.

prior iterations). The distance is computed after normaliza-

tion of the detected template for scale, position, and orienta-

tion, based on the values computed by the detector, and after

3x3 high-pass filtering and normalization to zero mean and

unit variance (Figure 4). Each candidate image is assigned

a score which is the minimum of these distances. The can-

didate images with the smallest scores are selected for addi-

tion to the training set. If we define Wi to be the weakly la-

beled image under consideration, j to be the index over la-

beled images, Lj to be a specific image from the set of la-

beled images, g(X) to be the transformation performed by

the image preprocessing step, and � to be the weights for

computing the Mahalanobis distance, then the overall com-

putation can be written as:

Score(Wi) = minj Mahalanobis (g(Wi); g(Lj);�)

It is important to note that, in the computation of the MSE

selection metric, the key information that is used is the po-

sition and scale returned by the currently detector. As a re-

sult, the detector must be accurate in localization but need

not be accurate in detection since false detection will be dis-

carded due to large their large MSE distances to all of the

training examples. This is crucial to ensure the performance

of the training algorithm with small initial training sets. This

is also part of the reason for the MSE to outperform the con-

fidence metric, which requires the detector to be accurate in

both localization and detection performance.

3. Experiments and Analysis

3.1. Experiment Scenarios

We found that there was quite a bit of variance in the fi-

nal detector performance and in the behavior of the semi-

supervised training process. Much of this variance arose

from the specific set of images randomly selected in the

small initial training subset. To overcome this limitation,

each experiment was repeated using a different initial ran-

dom subset. We call a specific set of experimental condi-

tions an experiment, and each repetition of that experiment

we call a run. In most cases 5 runs were performed for each

experiment.

Another parameter of the experiments is the number of

images added at each iteration. Ideally, only a single im-

age would be added at each iteration. However, because of

the substantial training time of the detector, more than one

image was added at each iteration. Adding more images re-

duces the average training time per weakly labeled image,

but increases the chance that there will be an incorrect de-

tection included in the weakly labeled data set. Typically 20

weakly labeled images were added to the training set at each

iteration.

One of the challenges in performing such experiments is

that the inner loop of the algorithm, training the detector on

one specific training set, takes on the order of twelve hours

on 3.0 GHz level machines. If the detector is trained dur-

ing 10 iterations and 5 repetitions of an experiment are per-

formed, then each experiment takes 12 � 10 � 5 = 600
hours of compute time. As a result, the total computation

time necessary to investigate all the variations of parame-

ters and training conditions increases rapidly (to approxi-

mately 3 CPU-years).1

3.2. Evaluation Metrics

Each “run” was evaluated by using the area under the

ROC curve (AUC). Because different experimental condi-

tions affect performance, the AUCs were normalized rela-

tive to the full data performance of that run. So a reported

performance level of 1.0 would mean that the model be-

ing evaluated has the same performance as it would if all

of the labeled data was utilized. A value of less than 1.0

would mean that the model has a lower performance than

that achieved with the full data set. To compute the full data

performance, each specific run is trained with the full data

set and its performance is recorded. The performance from

all of the runs of a specific experiment are aggregated and

we compute a single set of performance measures: the mean,

the standard deviation, and the 95% significance interval,

computed as the mean plus and minus 1.64 times the stan-

dard error of the mean. The plots show either or both the

standard deviation or the 95% significance interval as error

bars.

3.3. Baseline training configuration

It is very important to characterize sensitivity to train-

ing set size because we want to perform our experiments

under conditions where the addition of weakly labeled data

will make a difference. If the performance of the detector

is already at its maximum, given a labeled training set of a

specific size, then we cannot expect weakly labeled data to

1 For reasons of space, we present only a summary of the experiments.
Detailed analysis of the influence of the number of features, the geo-
metric variations, and other training variations are reported in [16].
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help. In order to establish a baseline for the typical number

of examples needed to train the detector, we ran the detector

with different training set sizes and recorded the AUC per-

formance (Figure 5). Our interpretation of this data is that is

there are three regimes in which the training process oper-

ates. We call the first the “saturated” regime, which in this

case appears to be from approximately 160 to 480 train-

ing examples. In this regime, 160 examples are sufficient

for the detector to learn the requisite parameters; more data

does not result in better performance. Similarly, variation in

performance is relatively constant and small in this range.

We call the second regime the “smooth” regime, which ap-

pears in this case to be between 35 and 160 training exam-

ples. In this regime, performance decreases and variation in-

creases relatively smoothly as training set size decreases. In

the third regime, the “failure” regime, there is both a precip-

itous drop in performance and a very large increase in per-

formance variation. This third regime occurs when the train-

ing algorithm does not have sufficient data to estimate some

set of parameters. An extreme case of this would be when

the parameter estimation problem is ill conditioned. Based

on this set of experiments, we chose the size of the labeled

training set to be in the smooth regime for the experiments

with weakly-labeled data.

3.4. Selection Metrics

The next question is whether the choice of the selection

metric makes a substantial difference in the performance of

the semi-supervised training. We conducted experiments to

compare the two main options: A confidence metric based

on the most natural approach of selecting the example with

the highest detector confidence, and the MSE metric that is

defined independently of the detector confidence. The over-

all result is that the detector-independent MSE metric out-

performs the more intuitive confidence metric.

Norm

AUC

Confidence Score

Training Set

Iter MSE Score

Training Set

Norm

AUC

0.822 0 0.822

0.770 1 0.867

0.798 2 0.882

0.745 3 0.922

0.759 4 0.931

Figure 6. Comparison of the training images selected

at each iteration for the confidence and the MSE selec-

tion metrics. The initial training set of 40 images is the

same for both metrics and is 1/12 of the initial training

set size.

The comparison between the two selection metrics is

summarized in Figure 7. In these plots, the horizontal axis

indicates the frequency at which the training data is sam-

pled in order to select the initial labeled training set for each

run (“8” means that 1/8th of the full training data was used

as initial labeled training data, while the rest was used as un-

labeled data). The plots show that performance is improved

by the addition of weakly labeled data over the range of data

set sizes. However, the improvements are not significant at

the 95% level for the confidence metric. For the MSE met-

ric however, the improvement in performance is significant

for all the data set sizes. This observation is supported by

other experimental variations in which the MSE metric con-

sistently outperforms the confidence metric. Figure 6 shows

montages of the examples selected from the weakly labeled

training images selected at each iteration using the confi-

dence metric and the MSE metric for a single run. The per-

formance of the detector trained with the MSE metric im-

proves with each iteration, whereas the performance of the

confidence-based one decreases. For the confidence metric,

there are clearly incorrect detections included in the train-

ing set past the first iteration. In contrast, all of the images

that the MSE metric selects are valid except for one outlier

at iteration 4.

3.5. Relative size of Fully Labeled Data

It is also important to evaluate the number of weakly la-

beled exemplars that need to be added to the labeled set in

order to reach the best detector performance. For this evalu-

ation, we recorded the number of examples that need to be

added to the initial set in order to reach the point at which

the performance of the detector does not change apprecia-

bly for every training run. The data is summarized in Fig-

ure 8, in which we plotted the ratio of weakly labeled data

to labeled data at which the training procedure converged,
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metric (a) or the MSE metric (b), as the fully labeled train-

ing set size varies. The bottom plot line is the perfor-

mance with labeled data only and the top plot line is the

performance with the addition of weakly labeled data.

Error bars indicate the 95% significance interval of the

mean value.
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Figure 8. Ratio of weakly labeled to fully labeled data

as the fully labeled training set size increases.

against the size of the initial training set (or, more precisely,

the sampling rate that was used for generating the initial

training set). This data shows that, as expected, the ratio in-

creases as the size of the initial training set decreases since

more weakly labeled examples are needed to compensate

for smaller training sets. More importantly, the total size

of the training set (initial labeled training images + exam-

ples added during training) is within the “saturated” operat-

ing regime identified in Figure 5. This is important because

it shows that, even for small initial training sets, the total

number of examples is on the same order as the number that

would be needed to train the detector with a single set of la-

beled examples. In other words, using a small set of labeled

examples does not cause us to pay a penalty in terms of a

greater size of the total training set.

3.6. Discussion

These experiments lead us to several observations that

will be useful in developing future detection systems based

on weakly-labeled training. First, the results show that it is

possible to achieve detection performance that is close to the

base performance obtained with the fully labeled data, even

when a small fraction of the training data is used in the ini-

tial training set. This observation remains valid even when

taking into account the high degree of variability in perfor-

mance across different choices of initial training sets (as il-

lustrated by the error bars in the graphs presented, and the

fact that we normalize the detector performance with respect

to the base detector trained with all the labeled data). Sec-

ond, as a practical matter, the experiments show that the self-

training approach to semi-supervised training can be applied

to an existing detector that was originally designed for su-

pervised training. In fact, in our case, we used a detector that

was already highly optimized and we were able to integrate

it in the training framework. This suggests a general proce-

dure for using semi-supervised training with existing detec-

tors.

Finally, a more fundamental observation is that the MSE

selection metric consistently outperforms the confidence

metric. Experiments with simulated data and other, filter-

based detectors (from [16], not reported here from reasons

of space) show that, more generally, the self-training ap-

proach using an independently-defined selection metric out-

performs both the same approach with confidence metrics,

but also batch EM approaches. These results bring to light an

important aspect of the the self-training process which is of-

ten overlooked. The issue is that during the training process,

the distribution of the labeled data at any particular iteration

may not match the actual underlying distribution of the data.

As a result, confidence metrics may perform poorly because

the labeled data distribution created by this metric is quite

different from the underlying distribution, even when all of

the weakly labeled data selected by the metric is correctly

labeled. To illustrate this observation, Figure 9 shows a sim-

ple simulated example in which the labeled and unlabeled

examples are drawn from two Gaussian distributions in the

plane. Comparing the labels obtained after five iterations by

using the confidence metric (Figure9(c)) and the Euclidean

metric, we see that the labeled points cluster around exist-

ing data points. We believe a closer examination of this issue

from both a theoretical and practical standpoint is an impor-

tant interesting topic for future research toward the effective

application of the semi-supervised approaches to object de-

tection problems.

4. Summary and Conclusions

The goal of this work was to explore and evaluate ap-

proaches to semi-supervised training using weakly labeled

data for appearance-based object detection. We conducted

extensive experiments with a state-of-the art detector that

led to several important conclusions including a quantita-

tive evaluation of the performance gained by adding weakly

labeled data to an initial small set of labeled data; a demon-

stration of the feasibility of modifying an existing detector
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Figure 9. (a) Original unlabeled data and labeled data;

(b) Plot of the true labels for the unlabeled data; (c),(d)

The points labeled by the incremental self-training algo-

rithm after 5 iterations using the confidence metric and

the Euclidean metric, respectively.

to use weakly labeled data; and insights into the choice of

selection metric used for training.

Many important issues that are critical to practical appli-

cations of these training ideas remain to be explored. First,

it might be important to use a different version of the de-

tector for initial training and for actual use on test images.

For example, we found that the position and scale accuracy

of the detector are important for semi-supervised training,

whereas they may be less important when the detector is

used in an application. Second, one alternative explanation

for the success of the nearest neighbor approach (based on

the appropriate selection metric) is that it is performing a

type of co-training [4], [13], [10]. It would be interesting to

study the relation between the semi-supervised training ap-

proach evaluated here with the co-training approaches. As

shown in the experiments, the choice of the initial training

set has a large effect on performance. Although we have per-

formed experiments that compare different selections of the

initial training set, it would be useful to develop more pre-

cise guidelines for selecting it. Finally, the approach could

be extended to training examples that are labeled in differ-

ent ways. For example, some images may be provided with

scale information and nothing else. Additional information

may be provided such as the rough shape of the object, or a

prior distribution over its location in the image.
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