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Abstract

In this paper we develop methods to solve two problems related to time series (TS) analysis using quantum computing:

reconstruction and classification. We formulate the task of reconstructing a given TS from a training set of data as an

unconstrained binary optimization (QUBO) problem, which can be solved by both quantum annealers and gate-model

quantum processors. We accomplish this by discretizing the TS and converting the reconstruction to a set cover problem,

allowing us to perform a one-versus-all method of reconstruction. Using the solution to the reconstruction problem, we show

how to extend this method to perform semi-supervised classification of TS data. We present results indicating our method is

competitive with current semi- and unsupervised classification techniques, but using less data than classical techniques.

Keywords Quantum computing · Quantum annealing · Quantum machine learning · Classification

1 Introduction

The field of quantum computing has experienced rapid

growth in recent years, both in the number of quantum com-

puting hardware providers and their respective processors’

computing power. Companies such as D-Wave Systems,

Rigetti, and IBM offer access to their quantum processors,

and their use in proof-of-concept demonstrations has been

widely discussed in literature. Quantum processing units

(QPUs) have been used to solve a wide variety of prob-

lems such as traffic flow (Neukart et al. 2017), logistics

and scheduling (Venturelli et al. 2015; Stollenwerk et al.

2020), quantum simulation (Streif et al. 2019; McCaskey

et al. 2019; Grimsley et al. 2019), and more (Venturelli and

Kondratyev 2019; Nishimura et al. 2019). Notably, a recent

study by Google showed how their QPU can perform the

task of sampling from random quantum circuits faster than
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state-of-the-art classical software (Arute et al. 2019), ush-

ering a new era in the field of quantum computing. These

applications use so-called noisy intermediate scale quantum

(NISQ; Preskill 2018) processors to solve various forms of

optimization and sampling problems. Most commonly, the

problem is formulated as a quadratic unconstrained binary

optimization (QUBO) problem, or its equivalent form of

an Ising Hamiltonian. The former uses a basis of binary

{0, 1} variables, and the latter makes use of spin vari-

ables {−1, 1}. Both can be solved using existing quantum

computing hardware.

The QPUs provided by D-Wave Systems use a quantum

annealing algorithm that implements a transverse-field

Ising Hamiltonian (Johnson et al. 2011). This quantum

protocol prepares an initial Hamiltonian with a simple

ground state, and transitions to a Hamiltonian whose ground

state is difficult to find. This is referred to as Adiabatic

Quantum Computation (AQC) (Van Dam et al. 2001),

and under open quantum system conditions as quantum

annealing (Kadowaki and Nishimori 1998). Because AQC

has been shown to be polynomially equivalent to gate-

based quantum computation (Aharonov et al. 2008), and

the Ising spin-glass has been shown to be NP-hard to

minimize (Barahona 1982), AQC (and quantum annealing)

has the potential to significantly impact the fields of

optimization, machine learning, and operations research.

Equivalently, with gate-model QPUs such as those produced

by Google, IBM, and Rigetti, the quantum approximate
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optimization algorithm (QAOA) is used to solve such Ising

Hamiltonians. This algorithm also attempts to minimize a

target Ising Hamiltonian by alternating between a driver and

mixer Hamiltonian, until the sampling procedure converges

to the target state population. The derivation and details of

the QAOA algorithm are beyond the scope of this paper, and

are discussed in detail in Farhi et al. (2014).

At the end of a quantum annealing run, or a QAOA

circuit execution, the measurements are a projection along

the z-component of the qubits’ spins, resulting in a sequence

of classical bit strings. These states can be interpreted as

approximations to finite-temperature Boltzmann states from

the classical spin-glass Ising Hamiltonian (Raymond et al.

2016; Verdon et al. 2017):

H(s) =
∑

i

hisi +
∑

i<j

Jij sisj . (1)

The task of programming a quantum annealer or

QAOA circuit involves finding a suitable Ising Hamiltonian

representation for the optimization task. In this paper,

we motivate classification of time series data based

on extracting features which exist within the data, and

use combinatorial optimization techniques to match and

reconstruct data with other time series. We start by reducing

the dimensionality of the TS data and encode it as a string.

We introduce a pulling procedure, comparing the encoded

strings to form a collection of sets, where common features

between the strings are extracted. All extracted common

features are pooled together, which we can then use to

construct new TS and compare between existing ones.

We perform these tasks by using the pulled features as

elements of the universe in the set cover problem, which

has a known QUBO/Ising formulation and can be solved

using quantum computers. By reformulating the critical task

in our clustering algorithm as a set cover problem, we

introduce two novel ideas to quantum clustering algorithms:

(1) we avoid representing single vectors with polynomial

numbers of qubits, instead representing the features within

the data as the qubits, and (2) we perform the clustering

task by transferring the core concepts of clustering (and

reconstruction) to the quantum algorithm for set cover,

as opposed to a direct translation of a distance-based

minimization procedure. This results in an algorithm that

avoids a classical “learning” procedure, therefore requiring

significantly fewer computational resources compared to

other classical and quantum methods.

The rest of this paper is organized as follows. Section 2

provides a short overview of existing methods for both

classical and quantum clustering. Section 3 motivates the

task of TS reconstruction, explains the methods used to

discretize the data, and how to convert the discretized data

to the set cover problem and its representative QUBO.

Section 4 shows how to extend the reconstruction method

to classify the TS data. Section 5 outlines the experimental

setup used in this analysis to test the developed method

using various open-source data sets, and Section 6 reviews

the results from those experiments. Section 7 presents the

conclusions from our work and outlines future research in

this area.

2 Previous works

Quantum computing-based approaches which exist in

literature involve fundamentally different approaches than

that introduced in this work; we provide a brief overview

of some key methods and algorithms related to quantum

clustering. Assuming the existence of error-corrected

quantum processors (and the existence of quantum RAM),

it has been shown that quantum computers could perform

k-means clustering exponentially faster than their classical

counterparts (Lloyd et al. 2013). Other works have also

shown how to reformulate parts of classical clustering

algorithms as quantum subroutines that can be executed on

error-corrected gate-model QPUs (Alexander et al. 2018;

Aimeur et al. 2013; Wiebe et al. 2015; Horn and Gottlieb

2001). In quantum annealing, a similar approach has been

shown in which the objective function of the clustering task

(minimizing distance metrics between high-dimensional

vectors) has been directly translated to a QUBO, with

each vector’s possible assignment represented via one-hot

encoding to physical qubits (Kumar et al. 2018; Neukart

et al. 2018).

Classical time series (TS) analysis is considered to be a

challenging task due to high number of dimensions involved

resulting in the Curse of Dimensionality phenomenon.

A series of works address the question of efficient

dimensionality reduction (Keogh et al. 2005; Lin et al.

2003; Lin et al. 2002; Senin et al. 2018; Schäfer and

Högqvist 2012; Patel et al. 2002; Guo et al. 2010; Xiaodong

et al. 2002), explaining the trade-off between information

loss and search space size. Main results presented in

this manuscript are obtained with Symbolic Fourier

Approximation (SFA) method (Schäfer and Högqvist 2012)

due to its pruning power, noise-robustness and scalability.

SFA represents each real-valued TS in a frequency domain

by a symbolic string using the discrete Fourier transform.

These transformed TS can then be used by classical string-

based similarity algorithms such as phonetic distance based,

Levenshtein, Hamming, Jaro, Jaro-Winkler measures, and

more (Gomaa et al. 2013).

Classical TS clustering techniques can be split into the

following categories: model-based, feature-based, shape-

based and their combinations (Aghabozorgi et al. 2015).

In the model-based approach the TS is encoded and fit

by parametric models and clustering is applied to these
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extracted parameters (Liao 2005). In feature-based methods,

the features of TS, like Fourier components, periodicity,

trend, number of peaks, and variance, are extracted and

later clustered by conventional algorithms (Hautamaki et al.

2008; Christ et al. 2018). Shape-based approaches refer

to comparing shapes of TS directly and matching them

according to specifically chosen metrics. A typical example

for this approach is Dynamic Time Warping (DTW) (Sakoe

and Chiba 1978), which has been shown to outperform

Euclidean metrics (Chu et al. 2002; Vlachos et al. 2002).

DTW-based classical methods are used to evaluate the

accuracy of our approach in Section 6. For more details on

classical approaches to TS clustering, we refer the reader

to Gonzalez et al. (2014), Fu (2011), and Aghabozorgi et al.

(2015).

3 Time series reconstruction: problem
formulation

Clustering techniques generally require specific data rep-

resentation, similarity measure definitions, and clustering

algorithm selection. Similarly, in our quantum computing-

based approach, we represent the TS data as encoded strings

from which we formulate semi-supervised clustering and

optimal reconstruction as a set cover problem, and pro-

vide metrics based on solutions to the set cover problem.

While different than classical approaches (Iwama et al.

2018; Acharya et al. 2010; Frieze et al. 1999; Skiena and

Sundaram 1995), we preserve the computational complex-

ity of the problem, while introducing a method that is based

on latent features within the data.

In order to reconstruct given time series data, we

start by discretizing the data, and comparing the encoded

strings to generate the elements of our universe to form

the set cover. This pulling technique is crucial to allow

feature-wise comparison of the data, as well as arbitrary

reconstruction of TS using existing (or training) data. We

use existing techniques for discretization, and explain the

pulling procedure in detail. We then show how to use

this data to construct the set cover problem for quantum

optimization.

3.1 Discretization and pulling technique

There are many ways to discretize time series data,

as reviewed previously. For our purposes, we use the

symbolic Fourier approximation (SFA) method (Schäfer

and Högqvist 2012), as it provides differentiation between

separate TS classes and features in high-dimensional data

sets, allowing us to use these representative symbols for our

quantum algorithm. Nevertheless, the exact discretization

is data-dependent, with various hyperparameters (such as

number of letters in the alphabet and length of each encoded

string) present in the method; for a full explanation we

refer the reader to Schäfer and Högqvist (2012). Given

the encoded strings, we compare the time series using

the following pulling procedure, illustrated in Fig. 1. This

pair-wise comparison is considered a preprocessing step

necessary to formulate our set cover problem. Starting

with one fixed string (red in the figure), we consider

each encoded character as an independent element in

the universe set1 (U = {0, 1, 2, 3, 4} in the figure). A

second string (green in the figure) is compared element-

wise by successively moving the second string along

the first, as illustrated. At every iteration, all character

matches between the two strings are recorded as a new

set. In the example from Fig. 1, the set of sets is

V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} , {∅} , {∅} , {3} , {∅}}.

The procedure is repeated for the rest of the encoded

training TS to form the set of sets V . This set, which is

a union of all subsets obtained via the pulling technique,

represents the features in common between the target time

series and all other time series in the data set. Given this

aggregate set, the goal is now to select the minimal subset

that most closely reconstructs the universe, which is the NP-

hard set cover problem. In the case illustrated in Fig. 1,

the optimal selection of subsets is underlined in red. In

principle, solutions of this set cover problem do not preserve

order of elements, and allow the use of the same element

multiple times. This feature is useful for TS comparison,

as elements of the time series data can be permuted and

duplicated without affecting our reconstruction method.

3.2 Formulating the set cover problem

Given the encoded strings and the common set of features

V , we can now formulate the set cover problem as

a QUBO, following the method demonstrated in Lucas

(2014). Consider the universe set U = {1, ..., n}, and a set

of subsets Vi , such that U =
N
⋃

i=1

Vi , Vi ⊆ U . Finding

the smallest number of subsets Vi whose union is U is

a well-known NP-hard optimization problem in the worst

case (Karp 1972). In order to map the set cover problem to

a QUBO problem, we use the following binary variables:

xi =

{

1, if set i is included,

0, otherwise,
(2)

and

xα,m =

{

1, if the number of Vi which include element α is equal to m,

0, otherwise.
(3)

1It is important to note that by using the same encoding scheme for

all TS data, we ensure that all string characters belong to the same

alphabet.
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Fig. 1 Schematic illustration of TS encoding and pulling procedure

to produce subsets of set V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} ,

{∅} , {∅} , {3} , {∅}}. The optimal selection to cover U = {0, 1, 2, 3, 4}

in this case would be underlined subsets V = {{0} , {1, 2, 3}} with item

numbers 0 and 4

Here, α ∈ U denotes an element of universe set, and m

signifies if element α appears in m subsets. We consider the

full QUBO as a sum of two components:

HA = A

n
∑

α=1

(

1 −

N
∑

m=1

xα,m

)2

+ A

n
∑

α=1

⎛

⎝

N
∑

m=1

mxα,m −
∑

i:α∈Vi

xi

⎞

⎠

2

,

(4)

and

HB = B

N
∑

i=1

xi . (5)

The complete QUBO is given by H = HA + HB (Lucas

2014). The first summation in HA imposes that exactly one

of xα,m must be selected in the minimum via a one-hot

encoding. The second term in HA represents the number of

times α is selected, and that this is equal to the number of

selected subsets α appears in (m, as only one xα,m can be 1

in the minimum). The final term HB (5) serves to minimize

the number of Vi needed to cover the universe U . The total

number of variables required is N + n(1 + M), where M

is the maximal number of sets that contain given element of

U (see Lucas (2014) for details). The limiting case where

each element of Vi included covers only one element of U

constrains the coefficient of HA and HB to 0 < B < A. The

closer the coefficient B and A, the more weight is given to

(5), minimizing the number of elements selected from V .

In our application of time series reconstruction, the final

size of the QUBO is heavily dependent on our choices

during discretization. For example, the number of binary

variables is equal to Ntrain TS (2L − 1) (L + 1), where

Ntrain TS is the number of TS in the training set used for

reconstruction, and L is the length of string that encodes the

TS. Increasing the string length to encode each TS changes

the size of the universe U . Allowing longer encoded strings

to represent the data creates more subsets Vi . Therefore,

there exists a trade-off between the granularity of the

encoded strings and the ability to solve the set cover

representation of the problem. Including more characters in

our alphabet for discretization changes the non-empty sets

Vi , which the number of quadratic elements in the QUBO

depends on. The general trend is, however, that the number

of the quadratic element decreases with the increase of the

characters used in our alphabet. This is explained by the

properties of the pulling procedure described above, since

a smaller alphabet produces more non-empty elements Vi

which could be used for reconstruction of the universe U . In

Fig. 2 we show how varying these hyperparameters of the

discretization affects the size of the QUBO problem, based

on 20 test samples from the BeetleFly data set (Hills et al.

2014).

4 Semi-supervised classification

We can now combine the methods described in the

previous sections—constructing the universe set U from

discretized data and the subsets V —to perform semi-

supervised clustering. We start by separating the input TS

data into two groups—training and test data. In our case we

use training data sets with known labels, and the task we

solve is to use the labeled data to assign labels to the test set.

Normally, the training set with labeled data is significantly

smaller than unlabeled test set, which we exploit in our

method.
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Fig. 2 a The number of quadratic terms in millions as a function

of string and alphabet length. b Quadratic elements as a function of

alphabet length, with string length being fixed to 6. c Quadratic terms

as function of string length, with alphabet length being fixed to 6.

The corresponding isolines (b, c) are shown with dashed line on sur-

face plot (a). Analysis was performed using 20 test samples from the

BeetleFly data set (Hills et al. 2014)

We encode both the training and test data sets into strings

using the method described in Section 3.1. We then perform

the reconstruction procedure for every TS in our test set

using the entire training set. Each TS from the test set is

assumed to individually form a universe U , and is to be

reconstructed using the sets Vi , obtained via the pulling

procedure. Explicitly, using Fig. 1, the red string is the

TS from the test data set, and all strings in the training

set are pulled through (green strings) to obtain the Vi’s.

This allows us to compare every test TS to the full training

set in one-versus-all manner. Then, using the universe U

and Vi’s from the pulling procedure, we formulate the

set cover problem outlined in Section 3.2. Thus, a single

solution to that set cover problem (even sub-optimal in

the worst case) allows us to reconstruct each TS from the

test set using a set of discretized features obtained from

all elements which appear in the training set. Furthermore,

since annealing-based sampling methods produce finite-

temperature Boltzmann distributions (Raymond et al. 2016),

various optima of the set cover problem could yield different

ways to reconstruct the test TS using the training set.

Due to this, it is therefore the users’ task to use these

reconstructions to associate each test TS with a label from

the training set. We outline the steps of our classification

procedure using pseudo-code in Algorithm 1.

To classify the reconstructed test TS data we evaluated

three different similarity metrics using set cover solutions:
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largest common subset Vi , highest number of common

subsets Vi , and largest sum of common elements in selected

Vi . We briefly explain how each metric is calculated, and

discuss the performance of each.

– Largest common subset. Given a candidate solution to

the set cover problem, the label corresponding to the Vi

which contains the most elements is selected. The label

is then assigned to the test TS. This metric captures

the longest continuous set of features from the training

TS data, and assumes that is sufficient to determine the

label.

– Number of common subsets. Frequently, multiple Vi’s

from the same training TS are used to reconstruct a test

TS. In this metric, we count the number of Vi subsets

used to cover the universe. The test label is assigned

the same label as the training TS which appears most

frequently in the set cover solution.

– Largest sum of subsets. This metric is a combination

of the previous two. For every training TS that is used to

reconstruct a test set, the total number of elements used

by each is counted (summed over all Vi’s). The label

which corresponds to the training TS with the largest

sum is assigned to the test TS.

These metrics allow us to quantify the accuracy of our

semi-supervised clustering algorithm. The first two metrics,

being based on large sets of common features between

the TS, performed the best (results shown in the next

section). There was no significant difference between the

two metrics, and the superiority of one metric over the

other varied between data sets. The third metric, which

was a combination of the first two, performed worse than

either of the first metrics in the majority of the cases

tested. While unexpected to begin with, this observation

could be explained by the fact that because the third

metric admits matches with many small subsets Vi that are

selected in the set cover, this metric could miss significant

signatures present in the TS data. The largest common

subset metric was selected for the experiments presented

in the next section. It should also be noted that the use

of labeled training data is not designed to not reach the

accuracy of supervised learning methods. Moreover, there

are modifications that could be made to the methods

presented to improve the accuracy, for example increasing

the word length and/or using a larger train set. Both are

constrained in our use-case to prohibit excessively large

QUBOs from being constructed. The goal of this method,

as described, is to allow for relatively high accuracy using

small sets of training data.

We provide an illustrative example of our QUBO-

based reconstruction and classification in Fig. 3 using the

BeetleFly data set. The task is to reconstruct the data in

Fig. 3a using (b) and (c). For this example, an alphabet of

size 5 was used for encoding, color-coded in the figure.

The results of the set cover problem, formulated using

the methods explained in previous sections, are three sets,

shown as v1, v2, and v3 in Fig. 3. Meaning, each box

(representing a fifth of the TS data per box) that appears

in one of the subsets forming the solution is designated

as such. Specifically, v1 = [‘A’, ‘E’], v2 = [‘E’, ‘B’],

and v3 = [‘C’]. Therefore, the union v1

⋃

v2

⋃

v3 = U ,

where U =‘ACEEB’, the test TS data to reconstruct. For

classifying the reconstructed sample, we refer to the classes

of the training data used for the reconstruction, and note that

the training samples in Fig. 3b and c belong to two different

classes. Using the similarity metrics defined above, it is easy

to determine that v1 and v2 both originate from the time

series (b), whereas only v3 (which contains only a single

element) is obtained from (c). Therefore, (a) is assigned

the same label as (b). This example is representative of the

majority of cases encountered during classification, with

components of the reconstructed TS varying across multiple

training samples, and often also across multiple classes.

5 Experimental setup

The experiments performed in this work used open-source

labeled TS data available publicly (Bagnall et al. 2017;

Bagnall et al. ). We restricted our analysis to univariate TS

data with two classes and small training set size to make

our work amenable to NISQ devices in the near future.

However, this method of semi-supervised classification can

be used with any number of classes, at the cost of QUBO

size. Since both the number of TS in the training data and the

word length used to encode the TS contribute to the number

of variables in the QUBO, we select data sets that have

small numbers of TS in the training set. The test and training

sets used in these experiments are already determined and

labeled by the source, allowing us to easily calculate the

classification rate of our method and avoid the step of

selecting a training set. To benchmark the performance of

our classification method, we compared the accuracy of

our labeling to semi-supervised and unsupervised classical

classification methods. The results of these experiments for

the various data sets are summarized in Table 2.

5.1 Data sources

To test the robustness of our method we collected a variety

of data sources of different types. We briefly review each

source and provide a literature reference for further details.

We note that in the data sources’ accompanying cited works,

higher classification rates than our methods are reported

using supervised algorithms. In our analysis we do not

consider supervised classification algorithms, and compare
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Fig. 3 An illustrative example of reconstruction and classification

from the BeetleFly data set. a A test TS sample (encoded as ‘ACEEB’)

reconstructed from two training TS. Each box in the sub-figure is

encoded as a single letter in a string, as per the color bar. The subsets

vi obtained from the pulling procedure and used to reconstruct this

data are shown both in the reconstructed (test) TS and in the training

TS. b The first training data used for reconstruction and classification

(encoded as ‘EABBE’). c A second time series used for reconstruction

(encoded as ‘CCEAB’)

our semi-supervised quantum-based approach to similar

classical algorithms.

SonyAIBORobotSurface1 (Mueen et al. 2011) data is

sensor data collected from a small, dog-shaped, quadruped

robot. It is equipped with multiple sensors, including a tri-

axial accelerometer. In the experiments section we classify

between roll accelerometer measurements on two classes of

surfaces: soft carpet and hard cement.

GunPoint (Ratanamahatana and Keogh 2005) data

includes motion tracking of actors’ hands during gun-

drawing and gun-pointing actions. For both classes the

X-component of the actor’s right hand centroid is tracked

and used to distinguish between the two classes.

TwoLeadECG (AL et al. 2003) and ECG200 (AL

et al. 2003) are electrocardiogram data sets available at the

PhysioNet database (AL et al. 2003; Wagner et al. 2020).

The first includes long-term measurements from the same

patient using two different leads. The classification task

aims to differentiate between each lead signal. In contrast,

the second ECG200 (AL et al. 2003) set contains electrical

activity recorded during one heartbeat. The two classes are

the normal heartbeat and a Myocardial Infarction records.

BeetleFly (Hills et al. 2014) time series data is generated

from binary images developed for the testing of shape

descriptors. The external contour of these images is

extracted and mapped into the distance to the image center.

The two image classes are contours of beetles and flies.

Chinatown (Chinatown 2020) data is collected by

an automated pedestrian counting system in the city of

Melbourne, Australia. The classes are based on weekday or

weekend traffic.

It is important to note that all data sources used in this

experiment are real-world data sources which are available

for public use. Furthermore, the sources are pre-divided into

labeled training and test sets. These sets were used as-is in

the experiments performed below. Validation is performed

by measuring the classification rates of each methods on the

labeled test data.

5.2 QUBO sizes and optimization

The QUBOs generated by our methods were too large to

be optimized using the largest available QPUs (D-Wave

2000Q) at the time of experiments. The exact sizes of the

QUBOs for each data set are shown in Fig. 4. To solve

the QUBOs we used simulated thermal annealing (SA), a

well-known classical heuristic for solving such optimization

problems. The specific implementation of SA was from the
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Fig. 4 Distribution of number of QUBO variables for all data sets in

Table 1

D-Wave Python package for classical QUBO optimizers (D-

Wave Systems 2021). We found that 20,000 samples and

1000 SA sweeps (with geometric interpolation of the inverse

temperature) were sufficient to ensure that low-energy

local minima were sampled within reasonable times per

QUBO. We use the default SA settings in the package for

initial and terminal inverse temperature selection (for more

information about the implementation of SA we refer the

reader to (D-Wave Systems 2021)).

The specific parameters used for the TS encoding to

generate the QUBOs are shown in Table 1. In general, the

longer the TS are and the fewer TS are in the training set,

the finer the discretization method required to accurately

classify the test data. In all data sets we were able to

reconstruct each test TS with elements from the training

set, as explained in Section 3.2. The distributions of the

number of variables in each QUBO for all data sets is shown

in Fig. 4.

5.3 Classification benchmarking

For the purposes of evaluating our QUBO-based classi-

fication method quantitatively, we compare two classical

time series classification algorithms based on dynamical

time warping (DTW) (Sakoe and Chiba 1978) measures:

k-means clustering and a classical analogue of the semi-

supervised method described in the paper. The motivation

for using these specifically is that both are based on pair-

wise similarity metrics as in our approach. DTW applied to

temporal sequences aligns the pair series in a non-linear way

to minimize differences and calculate Euclidean distance

afterwards. The DTW measure could be applied directly in

unsupervised k-means clustering or similarly to the method

described in our paper in the semi-supervised fashion We

use k-means clustering with pairwise DTW metrics calcu-

lated on the original TS (before encoding), with the labels

being assigned based on belonging to one of two clus-

ters. The second method assigns the test TS labels are by

the DTW metric directly, calculated pairwise between each

training and test TS (without encoding). We use these two

methods to calculate classification rates for all data sources

in the experiments (Table 2).

6 Results

As expected, the semi-supervised QUBO-based method

outperforms classical unsupervised methods. We note

however, that the QUBO-based method operates on a

reduced dimensionality in contrast to the classical methods

which use the original TS, where full information is

preserved. Even under this consideration the accuracy

of QUBO-based method is comparable with the semi-

supervised DTW methods, and could be improved still by

enriching the set V , i.e. by augmenting the training set or

increasing the discretization granularity.

The worst performance of the QUBO-based algorithm

is observed on the TwoLeadECG data set. This could be

explained by the nature of our method, as well as the

Table 1 Table with data set description, number of TS in training and test sets, length of TS, and length of each encoded string and number of

different letters used to encode data set

Data set Data type Train/test Time series Word/alphabet

size length length

SonyAIBORobotSurface1 (Mueen et al. 2011) Sensor 10/601 70 8/8

GunPoint (Ratanamahatana and Keogh 2005) Motion 30/150 150 5/5

TwoLeadECG (AL et al. 2003) ECG 20/1139 82 5/5

ECG200 (AL et al. 2003) ECG 20/100 96 5/5

BeetleFly (Hills et al. 2014) Image 20/20 512 5/5

Chinatown (Chinatown 2020) Traffic 20/345 24 5/5
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Table 2 The clustering accuracy measured on two classes and weighted average reported for QUBO-based and classical DTW-based methods

Data set QUBO method K-means clustering DTW semi-supervised

class1/class2/weighted class1/class2/weighted class1/class2/weighted

SonyAIBORobotSurface1 (Mueen et al. 2011) 0.7/0.9/0.78 0.85/0.97/0.92 0.97/0.63/0.83

GunPoint (Ratanamahatana and Keogh 2005) 0.76/0.79/0.78∗ 0.53/0.51/0.52 0.82/0.77/0.79∗

TwoLeadECG (AL et al. 2003) 0.6/0.62/0.61 0.65/0.7/0.68 0.86/0.94/0.9

ECG200 (AL et al. 2003) 0.61/0.82/0.75 0.62/0.8/0.79 0.87/0.51/0.64

BeetleFly (Hills et al. 2014) 0.85/0.89/0.87 0.64/0.83/0.73 0.62/1.0/0.82

Chinatown (Chinatown 2020) 0.72/0.91/0.86 0.37/0.78/0.67 0.89/0.98/0.94

Bold text signifies the most effective classification method (based on the weighted average of the two classes) for each data set tested. Asterisk

denotes a tie between the methods within statistical variance

sensitivity of the ECG data. By using the set cover problem,

we allow for permutations of subsets of TS data in the

reconstruction of the test TS. It is likely that this permutation

of TS segments, and similar representation in Fourier space

of the signals from the two leads in the ECG measurements,

makes our method not suitable for this kind of data. To

confirm this is the case, and improve the classification

accuracy, we applied SAX (Senin et al. 2018) encoding,

based on sliding window time series magnitude, rather than

the Fourier transform. Using this method, and encoding

the TS as a word of length 5 constructed from a 5 letter

alphabet, the accuracy is improved to 0.62 and 0.85 for the

two respective classes (0.74 weighted average). In contrast

to the Fourier encoding, the better results with ECG200 data

are due to the significant differences between the classes of

normal and ischemia ECG readings.

The highest accuracy is obtained using the BeetleFly and

Chinatown data sets. In the first case, many permutations

of the training set to construct the test set are permissible,

which our method takes advantage of. The accuracy of our

method is additionally improved by the relative size of the

training set, further augmenting the combinatorial space

of permutations. This robustness can also be explained by

the dimensionality reduction technique for this data set:

the 2D BeetleFly images (with different orientations) were

mapped to 1D series of distances to the image centre, which

again is beneficial for permutation-based methods. The

Chinatown data set, for comparison, contained significantly

shorter TS than BeetleFly. Encoding the Chinatown TS data

with the same word length as BeetleFly resulted in higher

granularity representations, and ultimately higher accuracy.

This provides additional evidence that the accuracy of our

method can be improved by increasing the granularity of the

encoding.

7 Conclusions

We present a QUBO-based method for TS reconstruc-

tion and semi-supervised classification that reaches accu-

racy scores comparable with classical DTW pairwise

approaches, and in most cases outperforms unsupervised

clustering. Among the advantages of our method is the

utilization of significantly less data with respect to con-

ventional classical methods, as well as a one-versus-all

comparison that allows the selection of segments of data

from multiple sources to reconstruct a single TS. This

provides an additional robustness in our method in permuta-

tions of TS segments during the reconstruction. We showed

how to reformulate the task of TS reconstruction as the

set cover problem with a minimal number of subsets. In

order to formulate this problem as a QUBO we apply TS

dimensionality reduction by encoding each time series as

a separate string. This encoding procedure and selection of

comparison metrics (as discussed in Section 4) define the

hyperparameter space of the problem. The QUBO-based

classification method performed the best on image and traf-

fic data, which is consistent with our method’s inherit ability

to utilize permutations of features/data within the TS to

perform reconstruction.

Time series reconstruction and classification has a wide

variety of useful applications, such as: management of

energy systems, factory process control, sensor systems, and

many more. The methods introduced in this paper show how

to reformulate the tasks of reconstruction and classification

of such data using quantum computing. The fact that our

work uses small training sets of labeled data means that

the QUBOs produced could be solved by next-generation

NISQ devices. Using quantum technologies, this method

could analyze significantly more complex TS data, even
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in a live setting. The results of the optimization process

(the selected subsets used for the reconstruction) would be

informative as feedback for live process optimization as

well. Future work in this are will be focused on generalising

the method to multivariate TS cases, finding application-

ready data sets, and execution of the presented methods

on quantum processors. Specifically, with the advancement

of hybrid quantum-classical algorithms, we will focus on

converting the methods presented in this paper to be suitable

for commercial applications.
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Schäfer P, Högqvist M (2012) Sfa: a symbolic fourier approximation

and index for similarity search in high dimensional datasets. In:

Proceedings of the 15th International conference on extending

database technology, pp 516–527. ACM

Senin P, Lin J, Wang X, Oates T, Gandhi S, Boedihardjo AP, Chen

C, Frankenstein S. (2018) Grammarviz 3.0: Interactive discovery

of variable-length time series patterns. ACM Trans Knowl Discov

Data 12(1):10:1–10:28

Skiena SS, Sundaram G (1995) Reconstructing strings from sub-

strings. J Comput Biol 2(2):333–353

Stollenwerk T, O’Gorman B, Venturelli D, Mandrà S, Rodionova
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