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ABSTRACT
We propose a novel technique for semi-supervised image an-
notation which introduces a harmonic regularizer based on
the graph Laplacian of the data into the probabilistic seman-
tic model for learning latent topics of the images. By using
a probabilistic semantic model, we connect visual features
and textual annotations of images by their latent topics.
Meanwhile, we incorporate the manifold assumption into the
model to say that the probabilities of latent topics of images
are drawn from a manifold, so that for images sharing simi-
lar visual features or the same annotations, their probability
distribution of latent topics should also be similar. We create
a nearest neighbor graph to model the manifold and propose
a regularized EM algorithm to simultaneously learn a gen-
erative model and assign probability density of latent topics
to images discriminatively. In this way, databases with very
few labeled images can be annotated better than previous
works.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Algorithms, Theory, Languages

Keywords
Automatic Image Annotation, Semantic Indexing, Laplacian
Regularization, Semi-supervised Learning

1. INTRODUCTION
In recent years, as digital cameras become increasingly af-

fordable and widespread, personal digital photos are grow-
ing exponentially and photo sharing through the Internet
also becomes a common practice. To achieve the potential
value of large image collections, users have to be able to
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search and access images that are wanted effectively. Im-
age annotation, the task of associating text to the semantic
content of images, is a good way to reduce the semantic gap
and can be used as an intermediate step to image retrieval.
It enables users to retrieve images by text queries and of-
ten provides semantically better results than content-based
image retrieval. In recent years, it is observed that image
annotation has attracted more and more research interests.

The fundamental problem of image annotation is how to
model the relationship among different modalities, including
visual features and textual annotations, associated with the
possibly existed latent topics of images, as well as the rela-
tionship among different images. Latent topic modeling has
long been a promising approach for this problem[3], [1], [8],
[9]. As is common, model based approaches have the benefit
of better efficiency and stability, while it suffers mostly from
probably insufficient modeling, i.e., when the model does
not fully describe the problem domain, the inferred quan-
tities may not be accurate, e.g ., if data is not distributed
in a Gaussian distribution, modeling it with a Gaussian will
cause problems. For image annotation, it is always difficult
for the probabilistic modeling to be sufficient due to the high
variance of image contents.

In the contrast, traditional similarity-based approaches,
e.g ., spectral clustering and manifold regularization, does
not have to assume the specific probability structure of data,
and requires only a similarity function defined on pairs of
data instances. Recently, this approach has been shown to
be successful in the semi-supervised context [2], [12]. When
regarded as a regularization, it is also applicable to proba-
bilistic models [6],[7],[4]. We introduce this approach into
model based image annotation.

In practice, for images sharing some collective properties,
it is reasonable to assume they have similar semantic con-
cepts. In this paper, we incorporate the manifold assump-
tion to say that the probabilities of latent topics of images
reside on or close to a manifold, so that for images sharing
similar visual features or the same annotations, they should
have similar probabilities over different latent topics. We
then fit the generative model with respect to the manifold
structure which is modeled by a nearest neighbor graph.
Using graph Laplacian, the manifold structure can be incor-
porated in the standard EM algorithm as a regularization
term[6],[7],[4], and the semi-supervised annotation can be
carried out in a consistent fashion. Our experimental re-
sults show that the latent topics learned in this way catches
better the similarity relationship between images, which re-
flect some properties of discriminative learning.
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2. LAPLACIAN REGULARIZED
IMAGE ANNOTATION MODEL

Inspired by [8], [9], [11], we use a pLSA-like model to ex-
plicitly represent the image level latent topics for modeling
the connection between visual features and textual annota-
tions of an image, as depicted in Fig. 1(a). We suppose that
there are I images in the database. Among them, Ia images
are labeled, i.e., they are with textual annotations. Another
Iu images are unlabeled. The index sets of the three are I,
Ia and Iu, respectively. The task is to find out the most
probable textual annotations of the unlabeled images.

We suppose that each image is associated with a sin-
gle hidden variable Z representing a specific latent topic.
And there are K latent topics denoted as {z1, ..., zK}. The
probability of image i to have latent topic zk is denoted
as pki. Note that pki may not be equal to P (zk|Fi,Wi)
when the probabilistic model is not sufficient on describing
the problem. The words in the dictionary are denoted as
{w1, ..., wV }, where V is the size of the vocabulary. The vi-
sual features of images are vector quantized into U clusters
denoted as {f1, ..., fU} to form a visual vocabulary [5], so
that visual features of an image is regarded as visual words
and processed in the same way as textual words.

For the ith image in the database, we use a U -nary feature
vector Fi to denote all the features it have, i.e., the uth entry
Fiu is the occurrence count of features of the ith image which
are assigned to visual word fu. Similarly, Wi is the V -nary
word vector denoting the occurrence counts of words of the
ith image. For an unlabeled image i ∈ Iu, Wi is an all zero
vector.

We assume that visual words and textual words are con-
ditioned on latent topics independently. They are gener-
ated as follows: for each image, first, choose a topic Zi for
the ith image from the distribution Multinomial (α), then
generate Ni visual features repeatedly from the distribution
Multinomial (βZi) to form the feature vector Fi, where Ni is
the sum of entries of Fi. The word vector Wi is generated in
a similar way from the distribution Multinomial (φZi) with
Mi words.

The log likelihood to maximize with standard EM is,

L =
I∑

i=1

log
K∑

k=1

P (zk|α)
U∏

u=1

P (fu|zk, β)Fiu

V∏
v=1

P (wv|zk, φ)Wiv

(1)

In the standard M step, expectations are taken w.r.t. the
posterior probability P (zk|Fi,Wi)’s. According to a re-
cent view of EM [10], it is equivalent to taking expectations
w.r.t. the variational distributions {pki}, and maximizing
the negative free energy as follows. In this way, the two-
step EM algorithm becomes a single-objective optimization
which makes it easy for us to add regularization,

F =
I∑

i=1

K∑
k=1

pki log P (zk|α)
U∏

u=1

P (fu|zk, β)Fiu

V∏
v=1

P (wv |zk, φ)Wiv

−
I∑

i=1

K∑
k=1

pki log pki (2)

A variant of this model named GM-Mixture is also pro-
posed in [3], where the feature descriptors are modeled with
a Gaussian component. However, the various restrictions
imposed on the Gaussian component in [1] suggest that it
has numerical problems when dealing with high dimensional
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Figure 1: (a) Graphical model representation for the
generative part; (b) Similarity graph for the discrim-
inative part. Images as nodes are connected to each
other according to visual similarity or co-occurrence
of words. Some images have no textual annotations.

feature descriptors. Thus, we introduce the visual vocabu-
lary approach to cope with this problem [5]. Additionally, in
contrast to those in [3], [1], [11], our model assigns a single
latent topic to each image. This is suitable for the discrimi-
native part to put constraints on them based on image-level
similarity.

To be specifically, we assume that the probabilities of la-
tent topics of images should be similar if they share common
annotations or similar visual features, i.e., pki for the ith im-
age and pkj for the jth image with k ∈ {1, ..., K} should have
similar values if

|{Wi} ∩ {Wj}| � Tw or |{Fi} ∩ {Fj}| � Tf (3)

here {·} denotes the set of feature elements or word elements.
|·| is the cardinality of the set. Tw and Tf are threshold
numbers. When condition in Eq.(3) is satisfied, we create
an edge 〈i, j〉. All these edges together with all the images
as nodes form a similarity graph denoted by S, which is
illustrated in Fig. 1(b).

This assumption is usually referred to as manifold assump-
tion [2], in which we assume that the probabilities are reside
on or close to a manifold and vary smoothly on the man-
ifold [6],[7],[4]. We aim to fit the probabilistic model with
respect to this manifold structure. However, in reality the
actual manifold structure is unknown. Thus we constructed
a nearest neighbor graph S to model the geometric struc-
ture. We can define the adjacency matrix S on the graph
according to the similarity of the visual features and the an-
notations of the images. There are commonly three ways to
define a non-zero element of S with an edge 〈i, j〉 ∈ S[6]:
1) 0-1 Weighting:

Sij = 1 (4)

2) Heat Kernel Weighting:

Sij = e
−‖Fi−Fj‖2

/
σf−‖Wi−Wj‖2

/
σw (5)

where ‖·‖ is the norm operator, σf and σw are the heat
kernel parameters.
3) Dot-Product Weighting:

Sij = μfF
T
i Fj + μwWT

i Wj (6)

where μf and μw are relative weights of different modalities.
We define D as a diagonal matrix where Dii =

∑
j Sij

and L = D − S. L is called graph Laplacian. Also de-
fine vector pk as [pk1, ..., pkI ]

T . We introduce the Laplacian
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regularization term as:

R =
1

2

K∑
k=1

∑
〈i,j〉∈S

Sij (pki − pkj)
2 =

K∑
k=1

pT
k Lpk (7)

The regularizer with our choice of Sij incurs a heavy penalty
if images associated by Sij have very different probability
distributions over latent topics. Therefore, minimizing R is
an attempt to ensure that the probabilities of latent topics
of the images are similar if they share common annotations
or similar visual features. By minimizing R, we get the
probability pki’s that are sufficiently smooth on the intrinsic
manifold.

We incorporate the Laplacian regularizer into the stan-
dard objective function in Eq.(1) and get a newly defined
objective as:

Q = F− λR (8)

where λ is the regularization parameter, λ � 0.
It would be important to note that our method is closely

related to the NetPLSA algorithm [7, 4]. However, unlike
NetPLSA which regularizes the expected complete likeli-
hood only in M step, we add the regularization term to form
a globally consistent objective function.

3. PARAMETER ESTIMATION BY
REGULARIZED EM ALGORITHM

The new objective function in Eq.(8) can be carried out
in an EM like procedure. We denote the parameters of the
model as Θ, such that Θ = {α, β, φ} and Q is a function of

Θ and {pk}. We denote the current parameters as Θ(t), the

parameters obtained in the previous EM iteration as Θ(t−1).
It is easy to see that M step remains unchanged since R does
not depend on Θ. However, E step is a bit difficult to solve.
We adopt the optimization scheme discussed in [7, 4]. To
simplify the optimization, our algorithm is also divided into
“E step” and “M step”, but the meanings are different.

E Step:
While it is possible to solve the new estimation of pki’s in the
E step using Newton-Raphson algorithm, the updating for-
mula is too complex to be efficiently computed, we optimize
the two terms in Eq.(8) separately in the hope of finding a
solution which is better than the last iteration. For the F

part, the updating formula is the same as standard EM [10],

pki ∝ P (zk|α)

U∏
u=1

P (fu|zk, β)Fiu

V∏
v=1

P (wv|zk, φ)Wiv (9)

The symbol of proportionate“∝”in the above equation means
a normalization step over all k’s for each i after computing
Eq.(9), so that the results are valid probability distributions.

After carrying out this standard E step, we then use these
pki’s as the initial values and continue to use the Newton-
Raphson method to update the pki’s until R converged, in
the hope that the evaluation of the objective function after
M step will give better results than the last iteration.

By taking the first and second derivatives of R with re-
spect to every pki, we get the following updating scheme:

p
(t)
ki = (1− γ) p

(t−1)
ki + γ

∑
j Sij · p(t−1)

kj∑
j Sij

(10)

Algorithm 1 Laplacian Regularized EM

Input:
Visual features of all images Fi, i ∈ I.
Words of annotated images Wi, i ∈ Ia.

Output:
Parameters Θ = {α, β, φ},
Probabilities of latent topics pki’s for i ∈ I.

Set Values of Constants ε, λ, γ, Tw, Tf , σw, σf , μw, μf .

Initialize Θ(0) and {pk}(0) randomly.
Construct S using any of Eq.(4)(5)(6).
t← 0
repeat

t← t + 1.
E Step:

Compute probabilities {pk}(t) using Eq.(9).

Smooth {pk}(t) using Eq.(10) until R converged.
M Step:
Compute new estimation of parameters Θ(t) by Eq.(11).

Evaluate Q

(
Θ(t), {pk}(t)

)
using Eq.(8)(1)(7).

until Q

(
Θ(t), {pk}(t)

)
−Q

(
Θ(t−1), {pk}(t−1)

)
� ε

where 0 ≤ γ ≤ 1 is the step parameter. It is easy to show
that the graph Laplacian is positive semi-definite, so each
updating step will decrease R. Moreover, by properly choos-
ing the threshold parameters Tf and Tw, the weight matrix
S is highly sparse, so the updating of pki’s are very efficient.

M Step:
M step is the same as in standard EM algorithm,

αk ∝
I∑

i=1

pki, k ∈ {1, ..., K} ;

βku ∝
I∑

i=1

Fiu · pki, (k, u) ∈ {1, ..., K} × {1, ..., U} ;

φkv ∝
I∑

i=1

Wiv · pki, (k, v) ∈ {1, ..., K} × {1, ..., V } ;

(11)

Normalization steps are required here over k’s, u’s and v’s
for the three equations respectively.

Annotation:
The annotation of unlabeled images is done by computing
the marginal probability of words given the probability of
latent topics computed at the training stage,

P (wv) =
K∑

k=1

pki · P (wv |zk, φ), i ∈ Iu (12)

The most probable textual annotations are obtained by choos-
ing the words with highest probabilities.

4. EXPERIMENTS
We use the Corel image dataset from Barnard et. al. [1]

to evaluate the performance of our algorithm. This dataset
uses a subset of 80 Corel CDs and is comprised of roughly
14000 images. For each image, there are no more than 10
blob features and 1 to 5 annotations. These images are
divided into 10 overlapping subsets and each set is further
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divided into a big set (75%, about 5200 images) and a small
set (25%, about 1800 images). The vocabulary size of each
subset is around 150.

There are different measures to evaluate the annotation
performance of an algorithm, such as hit rate [11], complete
length [1], accuracy [9] and normalized score [1]. Among
them, complete length and accuracy are two measures that
are complementary and representative, we use them as our
performance measurements.

• Complete Length: the average minimum length of
top returned annotations that contains the ground truth.

• Accuracy: the average value of R/M , where M is
both the number of predications and the number of
ground truth annotations, R is the number of correctly
predicated annotations.

In our experiments, we use the small set of each subset as la-
beled images and try to annotate the large set of each subset.
We cluster all visual features of the training images into 600
clusters (U = 600) and the number of latent topics K varies
from 10 to 100. The regularization parameter λ is tuned to
2.11 and the Newton step parameter γ is set to 0.1. Tw is set
to infinite since annotated images are very few. Tf is set to
3 to ensure sparsity. We compared our results with pLSA-
Words introduced in [9], which is the state-of-the-art result
for using pLSA to do image annotation. From Fig. 2, we
see that our method out performs pLSA-Words overwhelm-
ingly. For both methods, the annotation performance gets
better with increasing number of latent topics. With more
detailed inspection on the annotation results we can see that
pLSA-Words tend to prefer annotations that are empirically
dominating, while our method achieves rather perfect results
even in many tough images, as shown in Fig. 3.
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Figure 2: Annotation performance.
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