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Abstract

Single image rain removal is a typical inverse problem in

computer vision. The deep learning technique has been ver-

ified to be effective for this task and achieved state-of-the-

art performance. However, previous deep learning methods

need to pre-collect a large set of image pairs with/without

synthesized rain for training, which tends to make the neu-

ral network be biased toward learning the specific patterns

of the synthesized rain, while be less able to generalize to

real test samples whose rain types differ from those in the

training data. To this issue, this paper firstly proposes a

semi-supervised learning paradigm toward this task. Dif-

ferent from traditional deep learning methods which only

use supervised image pairs with/without synthesized rain,

we further put real rainy images, without need of their clean

ones, into the network training process. This is realized by

elaborately formulating the residual between an input rainy

image and its expected network output (clear image without

rain) as a specific parametrized rain streaks distribution.

The network is therefore trained to adapt real unsupervised

diverse rain types through transferring from the supervised

synthesized rain, and thus both the short-of-training-sample

and bias-to-supervised-sample issues can be evidently alle-

viated. Experiments on synthetic and real data verify the

superiority of our model compared to the state-of-the-arts.

1. Introduction

Rain streaks and rain drops often occlude or blur the key

information of the images captured outdoors. Thus the rain

removal task for an image or a video is useful and necessary,

which can be served as an important pre-processing step for

outdoor visual system. An effective rain removal technique

can often help an image/video better deliver more accurate

detection or recognition results [17].

Current rain removal tasks can be mainly divided into

two categories: video rain removal (VRR) and single im-

age rain removal (SIRR). Compared to VRR, which could

∗Deyu Meng is the corresponding author.

Figure 1: The comparison of the synthesized rain and real

rain. (a) is a clean image; (b), (c) are two synthesized rainy

image samples. (d), (e), (f) are real world rainy images.

utilize the temporal correlation among consecutive frames,

SIRR is generally much more difficult and challenging

without the aid of much prior knowledge capable of be-

ing extracted from a single image. Since being firstly pro-

posed by Kang et al. [17], the SIRR problem has been at-

tracting much attention. Recently, deep learning methods

[9, 10, 29, 32, 31, 23, 12, 11, 8] have been empirically sub-

stantiated to achieve state-of-the-art performance for SIRR

by training an appropriate, carefully designed network to

detect and remove the rain streaks simultaneously.

Albeit achieving good performance on this task, current

deep learning approach still exists some limitations on the

methodology. First, for training data, since it is hard to ob-

tain clean/rainy image pairs from real rainy scenarios, pre-

vious methods use synthesized data as an alternative, and

mainly adopt the strategy of adding the “fake” rain streaks

synthesized by the Photoshop software1 on the clean im-

ages. Two samples of such synthesized rainy images are

shown in Figure 1.(b) and (c) (the corresponding clean im-

age is shown in Figure 1.(a)). Albeit being varied by the rain

streak direction and density, the synthesized rainy images

still cannot include sufficiently wider range of rain streak

patterns in real rainy images. For instance, in Figure 1.(d),

the rain streaks have multiple directions in a single frame in-

fluenced by the wind; in Figure 1.(e), the rain streaks have

1https://www.photoshopessentials.com/photo-effects/rain/
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multi-layers because of their different distances to the cam-

era; in Figure 1.(f), the rain streaks produce the effect of

aggregation which is similar to fog or mist. Therefore there

exists obvious bias between synthetic training data and real

testing data in this task, naturally leading to an issue that the

network trained on the synthetic training data possibly not

capable of being finely generalized to the real test data.

Meanwhile, one of the main problems for deep learning

methods lies on the preliminary conditions that they gener-

ally need sufficiently large number of supervised samples

(ideal cases are natural images with/without real rain for

our task), which are generally time-consuming and cumber-

some to collect, in order to train a derain network. However,

one generally can easily attain large amount of practical un-

supervised samples, i.e., real rainy images, while without

their corresponding clean ones. How to rationally feed these

cheap samples into the network training is not only mean-

ingful and necessary for the investigated task, but also pos-

sibly inevitable in the next generation of deep learning to

fully prompt its capability on unsupervised data for general

image restoration tasks.

Due to the inconsistence in the distribution of training

data and test data, this task can be naturally viewed as a

typical domain adaption problem. How to transfer from

learning the synthesized rain patterns (training, supervised)

to learning real rain patterns (testing, unsupervised) is cru-

cial. To alleviate the aforementioned issue of previous su-

pervised deep learning methods for the SIRR task, instead

of from the perspective of manually collecting more appro-

priate supervised dataset (real rainy images and their cor-

responding clean ones) to better suit this task, we propose

a novel semi-supervised method attempting to effectively

feed unsupervised real rainy images into the network train-

ing as well, ultimately expecting to transfer from synthe-

sized rain domain to real rain domain. Different from pre-

vious supervised deep learning methods by only using syn-

thesized image pairs as network inputs, our method is ca-

pable of fully utilizing unsupervised practical rainy images

during training in a mathematically sound manner. Specif-

ically, our model allows both the supervised synthetic data

and unsupervised real data being fed into the network si-

multaneously, and the network parameters can be optimized

by the combination of least square residuals (for supervised

samples) of network output images of supervised inputs and

their ground truth labels, and negative log-likelihood (NLL)

losses of a specific parametrized rain distribution (for unsu-

pervised samples) measured by the difference of network

output images of unsupervised inputs and their original

rainy ones. In this manner, both supervised synthetic and

unsupervised real samples can be rationally employed in

our method for network training.

In summary, the main contributions of the proposed

method are:

• To our knowledge, this is the first work that takes no-

tice of domain adaption issue for SIRR task. We are

the first to propose a semi-supervised transfer learn-

ing framework for this task. Different from the previ-

ous deep learning SIRR methods, our model can fully

take use of the unsupervised real rainy images, which

can be easily collected in practice, without need of

the corresponding clean ones. Such unsupervised sam-

ples not only help evidently reduce the time and labor

costs of pre-collecting image pairs with/without real

rain for network parameters updating, but also allevi-

ate the over-fitting issue of the deep network on limited

rain types covered by only supervised training samples

through compensating those unsupervised ones con-

taining more general and practical rain characteristics.

• We provide a general methodology for simultaneously

utilizing supervised and unsupervised knowledge for

image restoration tasks. For supervised one, the tradi-

tional least square loss between network output images

and their clean ones can be directly employed. For

the unsupervised one, we can rationally formulate the

residual between the expected output clean images and

their original noisy ones through a likelihood term im-

posed on a parameterized distribution designed based

on the domain understanding for residuals (e.g., rain in

our study).

• We design an Expectation Maximization algorithm to-

gether with a gradient descent strategy to solve the pro-

posed model. The rain distribution parameters and net-

work parameters can be optimized by sequence in each

epoch. Experiments implemented on synthesized rainy

images and especially real ones show that our model

is capable of transferring from learning synthesized to

real rain patterns, thus substantiating the superiority of

the proposed method compared to the state-of-the-arts.

The rest of this paper is organized as follows. In Section

2 we detailedly review the previous derain methods along

a history line. In Section 3 we present our model as well

as the optimization algorithms. We show the experimental

results in Section 4 and make conclusion in Section 5 .

2. Related work

2.1. Single image rain removal methods

The problem of SIRR was firstly proposed by Kang et al.

[17]. They detected the rain from the high frequency part of

an image based on morphological component analysis and

dictionary learning. Chen et al.’s [5] also operated on the

high frequency part of the rainy image but they employed

a hybrid feature set, including histogram of oriented gra-

dients, depth of field, and Eigen color, in order to distin-

guish the rain portions from the image and enhance the tex-

ture/edge information. After that, Luo et al. [26] introduced
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screen blend model and used discriminative sparse coding

for rain layer separation, and the model is solved by greedy

pursuit algorithm. Li et al.’s [24] incorporated patch-based

Gaussian mixture model to deliver the prior information of

image background and rain layer, and trained the model pa-

rameters under pre-collected clean and rainy images. Sim-

ilarly, Zhang et al. [30] learned a set of generic sparsity-

based and low-rank representation-based convolutional fil-

ters to represent background and rain streaks, respectively.

Gu et al. [14] combined analysis sparse representation to

represent image large-scale structures and synthesis sparse

representation to represent image fine-scale textures, in-

cluding the directional prior and the non-negativeness prior

in their JCAS model. More recently, Zhu et al. [33] pro-

posed a joint optimization process that alternates between

removing rain-streak details from background layer and re-

moving non-streak details from rain layer. Their model is

aided by the rain priors, which are narrow directions and

self-similarity of rain patches, and the background prior,

which is centralized sparse representation. Chang et al. [4]

transformed a rainy image into a domain where the line pat-

tern appearance has extremely distinct low-rank structure,

and proposed a model with compositional directional total

variational and low-rank priors, to deal with the rain streaks

as line pattern noise and camera noise at the same time.

While these model-based methods are mathematically

sound, they mostly suffer from slow speed when testing be-

cause they need to solve an optimization problem. Deep

learning has an advantage on test speed and has been sub-

stantiated to be effective in many computer vision tasks

[21, 20, 15], so does in SIRR. Fu et al. firstly introduced

deep learning technique for this task in [9]. They trained a

convolutional neural network (CNN) with three hidden lay-

ers on the high frequency domain of the image. Later, they

further ameliorated the CNN by introducing deeper hidden

layers, batch normalization and negative residual mapping

structure, and achieved better effect [10]. To better deal

with the scenario of heavy rain images (where individual

streaks are hardly seen, and thus visually similar to mist or

fog). Yang et al. [29] exploited a contextualized dilated

network with a binary map. In their model, a continuous

process of rain streak detection, estimation and removal are

predicted in a sequential order. Zhang et al. [32] applied the

mechanism of GAN and introduced a perceptual loss func-

tion for the consideration of rain removal problem. After-

wards, they developed a density aware multi-stream dense

network for joint rain density estimation and de-raining

[31]. In summary, these methods learn from synthesized

rain data and test their learned network in real scenes.

2.2. Video rain removal methods

For literature comprehensiveness, we simply list several

representative state-of-the-art video rain removal methods.

Since the extra inter-frame information is extremely help-

ful, these methods showed relatively better reconstruction

effect than SIRR methods. Early video derain methods

[13, 2, 3, 18] designed many useful techniques to detect po-

tential rain streaks based on their physical characteristics

and removed these detected rain by image restoration algo-

rithms. In recently years, low-rankness [6, 27], total vari-

ation [16], stochastic distribution priors [28], convolutional

sparse coding [22], neural networks [25] have been applied

to the task and achieved satisfying results.

Since the SIRR problem is more difficult in real world

with less information provided other than a rainy image, to

design an effective SIRR regime is also more challenging

beyond VRR ones.

3. Semi-supervised model for SIRR

We show the framework of our model which includes the

training data (both supervised and unsupervised samples)

and the network loss in Figure 2. As introduced aforemen-

tioned, our model is capable of feeding not only supervised

synthesized rainy images but also unsupervised real rainy

images into the network training process, in order to trans-

fer from learning synthesized rain patterns to learning real

rain patterns.

3.1. Model formulation

As shown in Figure 1.(d,e,f), the real rain usually shows

relatively more complex patterns and representations com-

pared to synthesized rain. However, due to the techni-

cal defects, these data’s “labels” (i.e., the corresponding

clean images) are generally unavailable. Although we can

hardly exactly extract the rain layer, as well as the clean

background, from a real rainy image, we instead can de-

sign a parametrized distribution to finely approximate its

stochastic configurations. Since the rain generally contains

multi-modal structures due to their occurrence on positions

with different distances to the cameras, we can finely ap-

proximately express the rain as a Gaussian mixture model

(GMM). That is,

R ∼
K∑

k=1

πkN (R|µk,Σk), (1)

where πk, µk,Σk denote the mixture coefficients, Gaussian

distribution means and variances. Mixture models can be

universal approximations to any continuous functions if the

parameters are learned appropriately, and thus it is suitable

to be utilized to describe the rain streaks to-be-extracted

from the input rainy image. Thus the negative log likeli-

hood function imposed on these unsupervised samples can

be written as:

Lunsupervised(R; Π,Σ)=−
N∑

n=1

log

K∑

k=1

πkN (Rn|0,Σk), (2)
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Figure 2: The flow chart of the proposed method. Those

surrounded with concrete yellow square frames are the

given inputs for network training. The arrows represent the

forward process of network training. The upper panel shows

the supervised learning term, which is to minimize the dif-

ference of network output and the corresponding clean im-

age using a least square loss. The lower panel shows the

unsupervised learning term, which is to minimize an MAP

model with a GMM likelihood term imposed on rain distri-

bution and a TV regularization term on background. The

network structure and parameters are shared in both parts.

A K-L regularizer between the distribution of two types of

residuals (extracted rain) is further added to control the de-

gree of freedom.

where Π = π1, ...πK , Σ = Σ1, ...ΣK , K is the number

of mixture components, and N is the number of samples.

Note that the means of Gaussian distributions are manually

set to be zero, and this doesn’t affect the results in our ex-

periments.

By utilizing the above encoding manner, we can also

construct an objective function for unsupervised rainy im-

ages, which can be further used to fine-tune the network pa-

rameters through back-propagating its gradients to the net-

work layers.

Meanwhile, we follow the network structure and nega-

tive residual mapping skill of DerainNet [10] (a deep con-

volutional neural network) to formulate the loss function on

supervised samples. The network which is denoted by fw(·)
(here w represents the network parameters) is supposed to

remove the rain streaks of input image and output a rain-free

one. The classical loss function of CNN is to minimize the

least square loss between the expected derain output fw(xi)
and the ground truth label yi, as shown in the upper panel

of Figure 2. That is, the loss function imposed on the super-

vised samples is with the following least square form:

Lsupervised =

N∑

i=1

||fw(xi)− yi||
2

F , (3)

where xi, i = 1, ...N represents the samples of the synthe-

sized rainy image.

Moreover, since GMM can be adapted to any continuous

distribution, in order to let it better fit the real rain samples,

we add a constraint that the discrepancy between synthe-

sized rain data domain and real rain data domain is not too

far by minimizing a Kullback−Leibler divergence between

a Gaussian Gsyn learned from the synthesized rain and the

aforementioned mixture of Gaussians GMMreal learned

from the real rain during training, with a small controlling

parameter, as shown in the middle-right of Figure 2. This is

to indicate that our model is expecting to transfer from syn-

thesized rain to real rain, other than to arbitrary domains.

Since this KL divergence is not analytically tractable, we

use the minimum of KL divergence between Gsyn and each

component of GMMreal as an empirical and simple substi-

tute, to ensure that at least one component of GMM learned

from the real samples is similar to rain. That is,

DKL(Gsyn||GMMreal) ≃ min
k

DKL(Gsyn||GMM
k
real), (4)

where GMMk
real indicates the kth component of

GMMreal.

To further remove the potential remained rain streaks in

the output image, we add a Total Variation regularizer term

to slightly smooth the image. Note that together with the

aforementioned likelihood term on rain, a complete MAP

model (likelihood + regularizer) is formulated on the to-be-

estimated network outputs of the unsupervised real rain im-

ages. It facilitates a right direction for gradient descent to

network training on these unsupervised data even without

specific explicit guidance of corresponding clean images.

By combining Eq.(2), (3), (4) and TV term, the entire

objective function to train the network is formulated as:

L(w,Π,Σ) =

N1∑

i=1

||fw(xi)− yi||
2

F + α

N2∑

n=1

||fw(x̃)n||TV

+βDKL(Gx||GMMx̃)−λ

N2∑

n=1

log

K∑

k=1

πkN (x̃n−fw(x̃)n|0,Σk),

(5)

where xi, yi, i = 1, ...N1 represent corresponding rainy in-

put and ground truth label sample pairs of the synthesized

supervised data, and x̃n, n = 1, ...N2 represent the rainy

input of the real unsupervised data without ground truth la-

bels. Through the last term of Eq. (5), the unsupervised

data can be fed into the same network with which imposed

on the supervised data, and the term x̃n − fw(x̃)n is the

supposed rain extracted from the input rainy image, which

is equivalent to Rn as defined in Eq. (2). α, β and λ are the

trade-off parameters. Note that when α, β and λ equal to 0,

our model degenerates to the conventional supervised deep

learning model [10].

By using such objective setting, the network can be

trained not only by the well annotated supervised data, but
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also purely unsupervised inputs by fully encoding the prior

information underlying rain streak distributions. As com-

pared with the traditional deep learning techniques imple-

mented on only supervised samples, the better generaliza-

tion effect of the network is expected due to the fact that it

facilitates a rational transferring effect from the supervised

samples to unsupervised types of rain.

3.2. The EM algorithm

Since the loss function in Eq. (5) is intractable, we use

the Expectation Maximization algorithm [7] to iteratively

solve the model. In E step, the posterior distribution which

represents the responsibility of certain mixture component

is calculated. In M step, the mixture distribution and the

convolutional neural network parameters are updated..

E step : Introduce a latent variable znk where znk ∈ {0, 1}

and
∑K

k=1
znk = 1, indicating the assignment of noise term

(x̃n−fw(x̃)n) to a certain component of the mixture model.

According to the Bayes’ theorem, the posterior responsibil-

ity of component k for generating the noise is given by:

γnk =
πkN (x̃n − fw(x̃)n|0,Σk)∑
k πkN (x̃n − fw(x̃)n|0,Σk)

. (6)

M step : After the E step, the loss function in Eq. (5) is

unfolded into a differential one with respect to GMM pa-

rameters, shown as:

min
w,Π,Σ

λ

N2∑

n=1

K∑

k=1

γnk(
(x̃n−fw(x̃)n)

2

2Σk

+
1

2
log |Σk|−log πk)

+

N1∑

i=1

||fw(xi)−yi||
2

F +α

N2∑

n=1

||fw(x̃n)||TV +βDKL(Gx||GMMx̃).

(7)

The closed-form solution of mixture coefficients and Gaus-

sian covariance parameters are [7]:

Nk =
N∑

n=1

γnk, πk =
Nk

N
, (8)

Σk =
1

Nk

N∑

n=1

γnk(x̃n − f(x̃)n)
2, k = 1, ...K. (9)

Then we can employ the gradient methods to optimize the

objective function as defined in Eq. (7) and the gradient

so calculated can thus be easily back propagated to the net-

work to gradually ameliorate its parameters w. We readily

utilize Adam [19], the off-the-shelf first order gradient op-

timization algorithm, for network parameter training on the

objective function (7) imposed on both synthesized super-

vised and real unsupervised training samples.

3.3. Discussions on domain transfer learning

The main difference of the proposed method from the

other supervised deep learning SIRR methods is the in-

volvement of the real world rainy images whose ground

truth rain-free images or ground-truth rain images) are un-

available during training. One main motivation for this in-

vestigation is that the manually synthesized rain shapes usu-

ally differ from real ones collected in practice. According

to several SIRR methods in the framework of deep learning

[9, 10, 29, 31], clean images are used to synthesize rainy

images by Photoshop software. Although each clean image

is supposed to synthesize several different type of rainy im-

age, as shown in upper panel of Figure 1, the difference of

scale, illuminance and distance to the camera of the real rain

streaks and usually accompanied fog or mist visual effect

are hardly sufficiently considered, thus yielding nonnegligi-

ble gap between the synthesized rainy images for training

and the real rainy images for testing.

In our method, the involvement of the unsupervised real

rainy data alleviates this problem. As shown in Figure 3,

we use the same synthesized rainy data with [10] as the

supervised training data. To empirically show the domain

transfer capability and verify the superiority of our model

on this point, we use a different way to synthesize rainy

images introduced in [28], and separate them as unsuper-

vised input set and validation set. Therefore the supervised

training rain and validation rain lie in distinct domains. We

found that our model shows better capability to overcome

the gap and transfer from the training data domain to valida-

tion data domain. Although our semi-supervised model not

extremely finely fit the effect of the training data when the

unsupervised term in our loss function Eq. (5) plays more

important role (as shown in Column 1 of Figure 3, green

and blue lines are our semi-supervised model, with differ-

ent unsupervised term parameters), Column 2 of Figure 3

reflects that our model has better effect on the target domain

(solid line represents supervised data domain while dotted

line represents target domain). Moreover, with the training

dataset booming, the baseline supervised CNN (red line in

Figure 3) tends more and more to achieve specific patterns

of the training data (i.e., the performance of training data

improve), thus less being generalized to the validation data

(i.e., the performance of testing data does not improve cor-

respondingly, even slightly worsen) if they lie in separate

domain, as shown in Column 3 of Figure 3. However, the

involvement of the unsupervised term in our loss function

can effectively alleviate this issues, as shown in Column 4

and 5 of Figure 3, which is critical in real rain removal task.

4. Experimental results

In this section, we evaluate our methods both on synthe-

sized rainy data and real world rainy data. The compared

methods include the discriminative sparse coding based

method (DSC) [26], layer priors based method (LP) [24],

CNN method [10], joint bi-layer optimization (JBO) [33],

multi-task deep learning method (JORDER) [29] and multi-

stream dense net (DID-MDN) [31]. These methods include
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Figure 3: The PSNR trend graph of supervised training data and validation data during training process. In all subgraphs,

the solid line represents trend of supervised training data and the dotted line represents the trend of validation data. Note that

they in distinct domain because of the different rain-synthesized way. The red, green, blue lines represent the unsupervised

term controlling parameter λ in Eq. (5) equals to 0 (equivalent to supervised learning), 0.2 and 1, respectively. The three

rows use five hundred, five thousand and ten thousand image patches as the training data from top to bottom.

conventional unsupervised model-driven methods and more

recent supervised data-driven deep learning methods. Our

method to some extent can be viewed as an intrinsic combi-

nation of both methodologies.

4.1. Implementation details

For supervised training data, we use one million 64×64

synthesized rainy/clean image patch pairs which are the

same with the baseline CNN method [10]. For unsuper-

vised training data, we collect the real world rainy images

from the dataset provided by [29, 28, 32] and Google image

search. We randomly cropped one million 64×64 image

patches from these images to constitute the unsupervised

samples. Batch size is 20. The initial learning rate is 10−3,

decaying by multiplying 0.1 after every 5 epochs. We train

15 epochs in total. The training is implemented using Ten-

sorflow [1].

We design the number of GMM components as 3. For

the trade-off parameter λ, we simply set it as 0.5 throughout

all our experiments. The parameter α which controls the TV

smoothing term is set as a small value 10−5. The parameter

β which controls the KL divergence term is set to be 10−9.

The network structures and related parameters are directly

inherited from the baseline method [10].

4.2. Experiments on synthetic images

In this subsection, we evaluate the rain removal effect of

our method with synthetic data by both visual quality and

performance metric. We use the skill of [28] to synthesize

the rainy image as test data. Considering the complexity

and multiformity of the rain streaks, we compare our meth-

ods with others under two different scenarios: sparse rain

streaks and dense rain streaks. In each scenario we use ten

test images. Figure 4 shows an example of synthetic data

with sparse rain streaks. The added rain streaks are sparse

but with multiple lengths and layers, in consideration of the

different distance to the camera. As shown in Figure 4, the

DSC method [26] and JBO method [33] fail to remove the

main component of the rain streaks. The LP method [24]

tends to blur the visual effect of the image and over-smooth

the texture and edge information. The two deep learning

methods CNN [10] and JORDER [29] have better rain re-

moval effects, but rain streaks sill clearly exist in their re-

sults. Comparatively, our method could better remove the

sparse rain streaks and keep the background information.

We also design the experiments with dense rain streaks

scenario. In real world, the dense rain streaks have the ef-

fect of aggregation, blurring the image similar to fog or mist

when the rain is heavy. In Figure 5, the added rain is heavy,

with not only the long rain streaks, but also the brought blur-

ring effect damaging the image visual quality. As shown in

Figure 5, the results of DSC [26], JORDER [29] and JBO

[33] still have obvious rain streaks, while LP [24] still over-

smoothes the image. Compared with the baseline CNN

method [10], our method has better restoration results.

Since the ground truth is known for the synthetic experi-

ments, we use the most extensive performance metric Peak

Signal-to-Noise Ratio (PSNR) for a quantitative evaluation.

As is evident in Table 1, our method attains the best PSNR

in both two groups of data with different scenarios, in agree-
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Table 1: Mean PSNR comparison of two groups of data on synthesized rainy images.

Dataset Input DSC[26] LP[24] JORDER[29] CNN[10] JBO[33] DID-MDN[31] Ours

Dense 17.95 19.00 19.27 18.75 19.90 18.87 18.60 21.60

Sparse 24.14 25.05 25.67 24.22 26.88 25.24 25.66 26.98

(a) Input (b) Ground truth

(c) DSC [26] (d) LP [24]

(e) CNN [10] (f) JORDER [29]

(g) JBO [33] (h) Ours

Figure 4: Synthesized rain removal results under the sparse

rain streaks scenario.

ment with the visual effect in Figures 4 and 5.

4.3. Experiments on real images

The most direct way to evaluate a SIRR method is to see

its visual effect of restoration results on the real world rainy

images. We use the testing data selected from the Google

search. To better represent the diversity of the real rain sce-

narios, we intentionally select images with different types

of rain streaks as shown in Figure 6.

To confirm the necessity of investigating transfer learn-

ing for this task, we list the complete synthesized rain types

[9] in our supervised training data in Figure 7. The bias

of rain between Figures 6 and 7 is obvious and the transfer

ability of our model can thus be substantiated. The visual

(a) Input (b) Ground truth

(c) DSC [26] (d) LP [24]

(e) CNN [10] (f) JORDER [29]

(g) JBO [33] (h) Ours

Figure 5: Synthesized rain removal results under the dense

rain streaks scenario.

effect of derained images verify that our method can remove

more rain streaks and better keep the visual quality. Com-

pared to other competing methods, our method can remove

more amount of the rain streaks while still better keep the

structure of image undamaged.

5. Conclusion

In this paper, we have attempted to solve the SIRR

problem in a semi-supervised transfer learning manner.

We train a CNN on both synthesized supervised and

real unsupervised rainy images. In this manner, our

method especially alleviates the hard-to-collect-training-

sample and overfitting-to-training-sample issues existed in

conventional deep learning methods designed for this task.
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Figure 6: Real rain streaks removal experiments under different scenarios. From left to right are input image, results of

DSC[26], LP [24], CNN [10], DID-MDN[31] and ours. Demarcated areas in each image are amplified at a 3 time larger

scale.

Figure 7: List of fourteen synthesized rain data types in our supervised data. The left image is the original one without

rain streaks, and the right 14 ones are those superimposed with different rain types. The rain details can be more evidently

observed by zooming in the images on a computer screen.

The experiments implemented on synthesized and real im-

ages substantiate the effectiveness of the proposed method.

We admit that our model is still not almighty for all

rainy image which could be extremely complicated to han-

dle. The involvement of more elaborate priors on rain and

background layers in training the network could be the fu-

ture direction to further improve the performance for this

task. Also this semi-supervised transfer learning method-

ology could be considered into other inverse problems as

well. We wish to apply the human prior knowledge into the

learning process of neural network framework, more suffi-

ciently realizing the combination of data-based and model-

based methods. The ultimate goal is to take advantage of

both supervised data-based deep learning methods, which

could shorten the testing time to fulfill the online require-

ment, and model-based method, to put the network training

into a more explainable direction.
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