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Abstract

In present paper, we studied the properties of semi-symmetric metric
T−connection in almost contact metric manifolds. It has been shown
that a generalised co-symplectic manifold with semi-symmetric metric
T−connection is a generalised quasi-Sasakian manifold. Further, an
almost contact metric manifold equipped with semi-symmetric metric
T−connection is either projectively or con-circularly flat if and only if
it is locally isometric to the hyperbolic space Hn(−1).

Mathematics Subject Classification: 53D15

Keywords: Almost contact metric manifold and their different classes,
semi-symmetric metric T−connection, curvature tensors

1 Introduction

The idea of semi-symmetric metric connection on a Riemannian manifold was
initiated by Yano [1]. He proved that a Riemannian metric admits a semi-
symmetric metric connection whose curvature tensor vanishes, it is necessary
and sufficient that the Riemannian metric be conformally flat. Various prop-
erties of such connection have been studied by Sharfuddin and Husain [2],
Imai [3], Pathak and De [5], Barua and Ray [7], Ray [9], Pandey and Dubey
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[11] and many others. Ojha and Prasad [4] studied the properties of semi-
symmetric non-metric connection in almost Grayan manifold and they proved
that a generalised co-symplectic manifold is completely integrable with re-
spect to the semi-symmetric non-metric connection. Ojha [8] further studied
almost contact manifolds with specified affine connection D and obtained its
applications, especially to curvature tensors and Nijenhuis tensor. Chaubey
and Ojha [10] defined and studied semi-symmetric non-metric connections in
almost contact metric manifold and quarter-symmetric metric connection in
almost contact metric and Einstein manifolds. Mishra and Pandey [6] defined
semi-symmetric metric T−connections and studied some properties of almost
Grayan and Sasakian manifolds. In this paper we studied the properties of
semi-symmetric metric T -connection in almost contact metric manifolds. It
has been also proved that an almost contact metric manifold Mn equipped
with semi-symmetric metric T−connection is locally isometric to the hyper-
bolic space Hn(−1) if and only if it is either projectively or con-circularly
flat.

2 Preliminaries

If on an odd dimensional differentiable manifold Mn, n = 2m + 1, of differen-
tiability class Cr+1, there exist a vector valued real linear function φ, a 1−form
η, the associated vector field ξ and the Riemannian metric g satisfying

φ2X = −X + η(X)ξ, (1)

η(φX) = 0, (2)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) (3)

for arbitrary vector fields X and Y , then (Mn, g) is said to be an almost contact
metric manifold and the structure {φ, η, ξ, g} is called an almost contact metric
structure to Mn [13].

In view of (1), (2) and (3), we find

η(ξ) = 1, g(X, ξ) = η(X), φ(ξ) = 0 (4)

An almost contact metric manifold satisfying

(DX
′F )(Y, Z) + (DY

′F )(Z, X) + (DZ
′F )(X, Y ) = 0, (5)

(DX
′F )(Y, Z) = η(Y )(DXη)(φZ) − η(Z)(DXη)(φY ), (6)

(DX
′F )(Y, Z) + (DY

′F )(Z, X) + (DZ
′F )(X, Y ) + η(X)[(DY η)(φZ)

− (DZη)(φY )] + η(Y )[(DZη)(φX) − (DXη)(φZ)]

+ η(Z)[(DXη)(φY ) − (DY η)(φX)] = 0, (7)
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(DφX
′F )(Y, Z) + (DX

′F )(φY, Z) − η(Y )(DφXη)(φZ)

+ η(Z)[(DφXη)(φY ) − (DXη)(Y )] = 0, (8)

(DφX
′F )(φY, Z) + (DφY

′F )(φZ, X) + (DφZ
′F )(φX, Y )

− (DX
′F )(Y, Z) − (DY

′F )(Z, X) − (DZ
′F )(X, Y )

+ η(X)[(DZη)(φY ) − (DφY η)(Z) − (DY η)(φZ)]

+ η(Y )[(DXη)(φZ) − (DφZη)(X) − (DZη)(φX)]

+ η(Z)[(DY η)(φX) − (DφXη)(Y ) − (DXη)(φY )] = 0,(9)

(DX
′F )(Y, Z) = η(Y )(DZη)(φX) + η(Z)(DφXη)(Y ), (10)

(DφX
′F )(φY, Z) + (DφY

′F )(φZ, X) + (DφZ
′F )(φX, Y )

= (DX
′F )(Y, Z) + (DY

′F )(Z, X)

+ (DZ
′F )(X, Y ) − η(X)(DZη)(φY )

− η(Y )(DXη)(φZ) − η(Z)(DY η)(φX), (11)

(DφX
′F )(φY, Z) = (DX

′F )(Y, Z) − η(Y )(DXη)(φZ) (12)

(DφX
′F )(φY, Z) − (DX

′F )(Y, Z) + η(Y )(DXη)(φZ)

= (DφY
′F )(φZ, X) − (DY

′F )(Z, X) + η(Z)(DY η)(φX) (13)

(DφX
′F )(φY, Z) − (DX

′F )(Y, Z) + η(Y )(DXη)(φZ)

− η(Z)[(DφXη)(Y ) + (DXη)(φY )]

= (DφY
′F )(φZ, X) − (DY

′F )(Z, X) + η(Z)(DY η)(φX)

− η(X)[(DφY η)(Z) + (DY η)(φZ)] (14)

for arbitrary vector fields X, Y and Z, are respectively called quasi-Sasakian
manifold, generalised co-symplectic manifold, generalised quasi-Sasakian man-
ifold, generalised almost contact normal metric manifold, generalised quasi-
normal manifold, normal quasi-Sasakian manifold, quasi-normal manifold, al-
most contact normal metric manifold, almost contact nearly normal metric
manifold and generalised almost contact nearly normal metric manifold [14].
Here D denotes the Riemannian connection with respect to the Riemannian
metric g.

3 Semi-symmetric metric T−connection

Let D be a Riemannian connection, then a linear connection ∇ defined as

∇XY = DXY + π(Y )X − g(X, Y )ρ (15)
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for arbitrary vector fields X and Y , where π is any 1−form associated with
the vector field ρ, i.e.,

π(Y )
def
=g(Y, ρ), (16)

is called a semi-symmetric metric connection [1]. The torsion tensor S of the
connection ∇ and metric tensor g are given by

S(X, Y ) = π(Y )X − π(X)Y (17)

and

∇Xg = 0. (18)

Agreement The manifold (Mn, g) is considered to be an almost contact
metric manifold. The equations (15), (16) and (17) become

∇XY = DXY + η(Y )X − g(X, Y )ξ, (19)

η(Y ) = g(Y, ξ) (20)

S(X, Y ) = η(Y )X − η(X)Y (21)

If in addition,

(a) ∇Xξ = 0 or (b) (∇Xη)(Y ) = 0 (22)

hold for arbitrary vector fields X and Y , then the connection ∇ is said to be
a semi-symmetric metric T−connection [6]. Also, from (19) and (22), we have

DXξ + X − η(X)ξ = 0 ⇐⇒ (DXη)(Y ) + g(φX, φY ) = 0. (23)

Theorem 3.1 A generalised co-symplectic manifold with semi-symmetric
metric T−connection ∇ is a generalised quasi-Sasakian manifold.

Proof In consequence of (1), (4) and (23), (6) becomes

(DX
′F )(Y, Z) = η(Y )g(φX, Z) − η(Z)g(φX, Y ) (24)

Taking cyclic sum of (24) in X, Y and Z and then using (3) and (4), we get

(DX
′F )(Y, Z) + (DY

′F )(Z, X) + (DZ
′F )(X, Y )

= 2[η(X)g(Y, φZ) + η(Y )g(Z, φX) + η(Z)g(X, φY )] (25)

In view of (7) and (23), we obtain (25) and hence the statement of the theorem.

Theorem 3.2 A normal quasi-Sasakian manifold with semi-symmetric met-
ric T−connection ∇ is a quasi-Sasakian.
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Proof Using (23) in (10) and then using (1), (3) and (4), we have

(DX
′F )(Y, Z) = η(Y )g(X, φZ) + η(Z)g(X, φY ) (26)

Taking cyclic sum of (26) in X, Y , Z and using (3) and (4), we obtain

(DX
′F )(Y, Z) + (DY

′F )(Z, X) + (DZ
′F )(X, Y ) = 0. (27)

Hence the theorem.
We also proved the following theorems by straight forward calculation as

done above.

Theorem 3.3 A generalised almost contact normal metric manifold admit-
ting a semi-symmetric metric T−connection ∇ is an almost contact normal
metric manifold.

Theorem 3.4 A generalised quasi-normal manifold equipped with semi-
symmetric metric T−connection ∇ is a quasi-normal manifold.

Theorem 3.5 A generalised almost contact nearly normal metric mani-
fold admitting a semi-symmetric metric T−connection ∇ is an almost contact
nearly normal metric manifold.

4 Curvature tensor with respect to the semi-

symmetric metric T−connection

The curvature tensor of the semi-symmetric metric T−connection ∇

R(X, Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

and that of the Riemannian connection D

K(X, Y, Z) = DXDY Z − DY DXZ − D[X,Y ]Z

are related as [6]

R(X, Y, Z) = K(X, Y, Z) + g(Y, Z)X − g(X, Z)Y (28)

Contracting above equation with respect to X, we have

R̃ic(Y, Z) = Ric(Y, Z) + (n − 1)g(Y, Z), (29)

where R̃ic and Ric are the Ricci-tensors of the connections ∇ and D respec-
tively.
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Theorem 4.1 If an almost contact metric manifold admitting a semi-symmetric
metric T−connection ∇, then the Ricci-tensor with respect to the semi-symmetric
metric T−connection ∇ is symmetric.

Proof Interchanging Y and Z in (29), we get

R̃ic(Z, Y ) = Ric(Z, Y ) + (n − 1)g(Y, Z), (30)

Subtracting (30) from (29) and then using Ric(Y, Z) = Ric(Z, Y ), we obtain
the statement of the theorem.

Theorem 4.2 The necessary and sufficient condition for an almost contact
metric manifold to be flat with respect to semi-symmetric metric T−connection
∇ if and only if it is locally isometric to the hyperbolic space Hn(−1).

Proof If R(X, Y, Z) = 0, then (28) becomes

K(X, Y, Z) = −[g(Y, Z)X − g(X, Z)Y ] (31)

A space form is said to be hyperbolic, elliptic or euclidean if and only if the
scalar curvature tensor is negative, positive or zero [12]. Thus, (31) gives the
necessary part of the theorem. Sufficient part is obvious from (28) and (31).

Theorem 4.3 If an almost contact metric manifold Mn admitting a semi-
symmetric metric T−connection ∇ whose scalar curvature tensor vanishes,
then the curvature tensor of ∇ coincides with the con-circular curvature tensor
of the manifold.

Proof In view of (4), (29) becomes

R̃Y = RY + (n − 1)Y (32)

and
r̃ = r + n(n − 1), (33)

where the Ricci operators R̃ and R of the connections ∇ and D are defined by

R̃ic(Y, Z)
def
=g(R̃Y, Z) ; Ric(Y, Z)

def
=g(RY, Z)

and the scalar curvature tensors r̃ and r of ∇ and D are

r̃
def
= trace(R̃) ; r

def
=trace(R)

respectively. If we take r̃ = 0, then (33) gives

r = −n(n − 1) (34)
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The con-circular curvature tensor of the Riemannian connection D [13] is

C(X, Y, Z) = K(X, Y, Z) − r

n(n − 1)
[g(Y, Z)X − g(X, Z)Y ] (35)

In consequence of (28) and (34), (35) becomes

C(X, Y, Z) = R(X, Y, Z) (36)

Corollary 4.4 If an almost contact metric manifold Mn admitting a semi-
symmetric metric T−connection ∇ whose curvature tensor vanishes, then the
manifold will be con-circularly flat.

Theorem 4.5 Let Mn be an almost contact metric manifold admitting a
semi-symmetric metric T−connection ∇, then it is locally isometric to the
hyperbolic space Hn(−1) if and only if Mn is con-circularly flat.

Proof of the theorem is obvious from theorems (4.2) and (4.3).

Theorem 4.6 An almost contact metric manifold Mn equipped with a semi-
symmetric metric T−connection ∇ whose Ricci-tensor vanishes, then the cur-
vature tensor of the connection ∇ is equal to the Weyl projective curvature
tensor of the manifold.

Proof If R̃ic(Y, Z) = 0, then (29) gives

Ric(Y, Z) = −(n − 1)g(Y, Z) (37)

The Weyl projective curvature tensor of the Riemannian connection D [13] is

W (X, Y, Z) = K(X, Y, Z) − 1

n − 1
[Ric(Y, Z)X − Ric(X,Z)Y ] (38)

Using (28) and (37) in (38), we have

W (X, Y, Z) = R(X, Y, Z). (39)

Corollary 4.7 An almost contact metric manifold Mn equipped with a semi-
symmetric metric T−connection ∇ whose curvature tensor vanishes, then the
manifold is projectively flat.

Remark- The theorem (2.2) proved by Prof. R. S. Mishra and S. N.
Pandey [6] is a particular case of the theorem (4.6).

In consequence of theorems (4.2) and (4.6), we state
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Theorem 4.8 If an almost contact metric manifold admitting a semi-symmetric
metric T−connection ∇, then the manifold is projectively flat if and only if it
is locally isometric to the hyperbolic space Hn(−1).

Theorem 4.9 Let Mn be an almost contact metric manifold admitting a
semi-symmetric metric T−connection ∇ whose Ricci-tensor vanishes, then the
curvature tensor with respect to the semi-symmetric metric T−connection is
equal to the conformal curvature tensor of the manifold.

Proof The conformal curvature tensor V of the Riemannian connection D
is [13]

V (X, Y, Z) = K(X, Y, Z) − 1

(n − 2)
[Ric(Y, Z)X

−Ric(X,Z)Y + g(Y, Z)RX − g(X, Z)RY ]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ] (40)

In consequence of (30), (34), (36), and (39), (40) gives

V (X, Y, Z) = R(X, Y, Z) (41)

Corollary If in an almost contact metric manifold Mn, the curvature tensor
of a semi-symmetric metric T−connection ∇ vanishes, then it is conformally
flat.

Theorems (4.2) and (4.9) state

Theorem 4.10 If an almost contact metric manifold admitting a semi-
symmetric metric T−connection ∇, then the manifold is conformally flat if
and only if it is locally isometric to the hyperbolic space Hn(−1).
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