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Abstract

Recently S. K. Chaubey and R. H. Ojha [1] introduced a semi-
symmetric non-metric connection in almost contact metric manifold.
The purpose of the present paper is to study this connection in a
Sasakian manifold. We have also studied curvature tensors of a semi-
symmetric non-metric T—connection in an almost contact metric man-

ifold.
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1 Introduction

Let there exist an odd dimensional differentiable manifold M,,, n = 2m + 1, of
differentiability class C'*™°, a C'*° vector valued linear function F', a C*° vector
field T" and a C*° 1—form A satisfying

X +X =AX)T, (1)

A(X) =0, (2)

where X ' Fx , for arbitrary vector field X, then M, is called an almost
contact metric manifold and the structure (F, T, A) is called an almost contact
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structure. In view of (1) and (2), we find
(a) T=0, (b) AT)=1, (c) rank(F)=mn—1. (3)
If a non-singular metric tensor g of type (0, 2) satisfies
g(X,Y) = g(X,Y) — A(X)A(Y), (4)

for arbitrary vector fields X and Y, then an almost contact manifold M,
endowed with g is called an almost contact metric structure to M, [2]. Putting
T for X in (4) and using (3) (a) and (3) (b), we get

g(T.Y) = A(Y), (5)
Put
'PX, Y)Y g(X,Y), (6)
then we have
'"F(X,Y)+' F(Y,X) =0, (7)

An almost contact metric manifold on which
DxT =X, (8)

holds for arbitrary vector field X is called a K —contact Riemannian manifold.
For a K —contact Riemannian manifold

(DXA) (Y> = 9(77 Y): (9>
If on a K —contact Riemannian manifold
(Dx'F)(Y,Z) = A(Y)g(X, Z) — A(Z)g(X,Y) (10)

holds, then the manifold is known as a Sasakian manifold [3]. Where D denotes
the Riemannian connection.

2 Semi-symmetric non-metric connection
A linear connection B on (M, g) defined as
BxY = DxY — A(Y)X — g(X,Y)T (11)

for arbitrary vector fields X and Y/, is said to be a semi-symmetric non-metric
connection [1].The torsion tensor S of the connection B and the metric tensor
g are given by

S(X,Y) = AX)Y — A(Y)X, (12)
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and
(Bxg)(Y, Z) = 2[A(Y)g(X, Z) + A(Z)g(X.Y)] (13)
If in addition to (12) and (13)
(@) BxT =0, or (b) (BxA)(Y)=0 (14)

hold for arbitrary vector fields X and Y, then the connection B is said to be a
semi-symmetric non-metric T'—connection. Also, from (11) and (14), we have

DxT — X — AX)T =0 (DxA)(Y) + g(X,Y) + AX)A(Y) =0 (15)

Now, we put (11) as )
BxY = DyY + H(X,Y), (16)

where H(X,)Y)=-AY)X —g(X,Y)T (17)
Let us define
(a) S(X.Y.2)59(S(X.Y),2) () 'HX.Y.2) g(H(X,Y),2) (18)
then we can write
(a) S(X,Y.Z)=AX)g(Y.Z) - A(Y)g(X, Z) (19)
(b) "H(X,Y,Z) = —A(Y)g(X, Z) = A(Z)g(X,Y)

Theorem 2.1 Let B be a semi-symmetric non-metric connection in a Sasakian
manifold with a Riemannian connection D, then we have

(@) (BY'F)(Y,Z) = AY)[(Dx A)(Z) - (Dx A)(Z)] (20)
() (Bx'F)(Y,Z) = AZ)[(DxA)Y) — (Dx A)(T)]
Proof We have
X(F(Y,2)) = (Dx'F)(Y, Z2) +' F(DxY, Z) +' F(Y,Dx Z)
(BX'F)(Y, Z)+ F(BxY,Z)+ F(Y,BxZ)
With the help of (11), this equation becomes
(BX'F)(Y,2) = (Dx'F)(Y. Z) + H(X,Y,Z) ' H(X,2,Y),  (21)

Using (19) (b) in this equation, we obtain
(Bx'F)(Y. Z) = (Dx'F)(Y. Z) = A(Y)9(X,Z) + A(Z)9(X.Y),  (22)
From (9), (22) becomes
(Bx'F)(Y. Z) = (Dx'F)(Y. Z) + A(Y)(Dx A)(Z) = A(Z)(Dx A)(Y), (23)

Barring Z on both sides and using (10) in (23), we have (20) (a). Also from
(10) and (23), we find (20) (b).
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Theorem 2.2 Let B be a semi-symmetric non-metric connection in a Sasakian
manifold with a Riemannian connection D, then we have

(BYF)(Y, Z) + (By'F)(¥, 2) + (Bx'F)(Y,Z) = 0 (24)
Proof Barring X, Y, Z in (23) respectively, we get
(a) (BYF)Y,Z) = (DX'F)(Y, 2)+ A(Y)(DxA)(Z) — A(Z)(DxA)(Y) (25)
(b) (l?x'F)(Va Z) = (Dx'F)(Y, Z) — A(Z)(DxA)(Y)
() (Bx'F)(Y,Z) = (Dx'F)(Y, Z) + A(Y)(Dx A)(
Adding these equations, we obtain
(BY'F)(Y, Z) + (Bx'F)(Y. Z) + (Bx'F)(Y, Z) = (D' F)(Y. Z)
+(DX'F)(Y,2) 4+ (DX'F)(Y, Z) + A(Y)(D5A)(Z)
—A(Z)(DxA)Y) = A(Z)(Dx A)(Y) + A(Y)(DxA)(Z)
Using (9) and (10) in the above equation, we get the result.

NS

Theorem 2.3 Let B be a semi-symmetric non-metric connection in a Sasakian
manifold with a Riemannian connection D, then we have

(Bx'F)(Y,Z) + (By'F)(Z,X) + (B F)(X,Y) + 2'S(X,Y,Z) =0

Proof From (23), we have

(@) (BX'F)Y,Z) = (DX'F)Y,Z)+ AY)(Dx A7) (26)
Similarly,

(b) (By'F)(Z.X) = (Dy'F)(Z,X) = A(X)(DyA)(Z)

(0) (B F)(X,Y) = (DFF)(X,Y) + AX)(DzA)(Y) = A(Y)(DzA)(X)
Adding these equations, we obtain
(BY'F)(Y,Z) + (By'F)(Z, X) + (B F)(X,Y) = (Dx'F)(Y,Z)
+H(Dy'F)(Z,X) + (D7 F)(X.Y) + AY)(Dx A)(Z)

—AX)(DyA)(Z) + A(X)(DzA)(Y) = A(Y)(DZzA)(X)

Using (9), (10) and (19) (a) in the above equation, we get the result.

Theorem 2.4 In a Sasakian manifold with a semi-symmetric non-metric
connection B, we have

(BxA)(Y) = (DxA)(Y) - F(X,Y) (27)
Proof Covariant derivative of (5) with respect to B gives
(BxA)Y) = (Bxg)(Y.T) + g(Y, BxT) (28)
Using (11) and (13), (28) becomes
(BxA)(Y) = (DxA)(Y) +g(Y, Z) + A(X)A(Y) (29)

Barring Y in (29) and using (6), we get the result.
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3 Curvature tensor of a semi-symmetric non-
metric 7'—connection B

The curvature tensor of the connection B
R(X,Y,Z) = BxByZ — ByBxZ — BixyvZ
and that of the connection D
K(X,Y,Z)=DxDyZ — DyDxZ — Dixy1Z
are related as [1]
R(X,)Y,Z)=K(X,Y,Z)-0(X,2)Y + (Y, Z2)X (30)
—g(Y. Z)(DxT — A(X)T) + g(X, Z)(DyT — A(Y)T),

where
AX,Y) = (DxA)(Y) + AX)AY) +9(X,Y) (31)
is a tensor field of type (0,2). In view of (14) (b) and (29), (31) gives
B(X,Y)=0 (32)

and hence in view of (31), (30) becomes
R(X,Y,Z) = K(X,Y,Z) — g(Y, 2)X + g(X, 2)Y (33)
Contracting (33) with respect to X, we get
Ric(Y,Z) = Ric(Y, Z) — (n — 1)g(Y, Z), (34)

where

Ric(Y, Z)=(CIR)(Y, Z) and Ric(Y, Z)=(CL{K)(Y, Z)

are the Ricci-tensors with respect to the connections B and D respectively.
Again from (34), we have

RY =RY — (n—1)Y (35)

and
r=r—mn(n-—1), (36)
where the Ricci operators R and R of the connections B and D are defined by
Ric(Y,Z)Eg(RY,Z) ; Ric(Y,Z)=g(RY,Z)
and the scalar curvature tensor 7 and r of B and D are
~def - def

r=trace(R) ; r=trace(R)

respectively.
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Theorem 3.1 If an almost contact metric manifold M, equipped with a
semi-symmetric non-metric T'—connection B whose Ricci-tensor vanishes, then
the curvature tensor of B coincides with the Weyl-projective curvature tensor
of the manifold.

Proof If Ric(Y,Z) = 0, then (34) gives
Rie(Y, Z) = (n— )g(Y, Z) (37)

The Weyl projective curvature tensor of the Riemannian connection D [2] is

[Ric(Y, Z)X — Rie(X,2)Y]  (38)

n—1
Using (33) and (37) in (38), we have

W(X,Y,Z) = R(X,Y, Z).

Corollary 3.1 If an almost contact metric manifold M,, equipped with a
semi-symmetric non-metric 7'—connection B whose curvature tensor vanishes,
then the manifold is projectively flat.

Theorem 3.2 Let M, be an almost contact metric manifold admitting a
semi-symmetric non-metric I'—connection B whose Ricci-tensor vanishes, then
the curvature tensor with respect to the semi-symmetric non-metric T'— connection
coincides with the conformal curvature tensor of the manifold.

Proof The conformal curvature tensor V of the Riemannian connection D
is [2]

V(X,Y,Z)=K(X,Y,Z) —

[Ric(Y, Z)X — Ric(X, Z)Y + g(Y, Z)RX

(n=2)
X DRY] + e lo DX — (XY (39)

In consequence of (33), (34), (35) and (36), (39) gives
V(X,Y,Z)=R(X,Y,Z)
Corollary 3.2 If an almost contact metric manifold M,,, the curvature tensor

of a semi-symmetric non-metric 7'—connection B vanishes, then it is confor-
mally flat.
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