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Abstract Nearly every task a domestic robot could poten-

tially solve requires a description of the robot’s environment

which we call a world model. One problem underexposed

in the literature is the maintenance of world models. Rather

than on creating a world model, this work focuses on finding

a strategy that determines when to update which object in

the world model. The decision whether or not to update an

object is based on the expected information gain obtained

by the update, the action cost of the update and the task the

robot performs. The proposed strategy is validated during

both simulations and real world experiments. The extended

series of simulations is performed to show both the perfor-

mance gain with respect to a benchmark strategy and the

effect of the various parameters. The experiments show the

proposed approach on different set-ups and in different envi-

ronments.

Keywords Task dependency · World model verification ·

Information gain

1 Introduction

As domestic robots are moving into human-populated envi-

ronments, they are confronted with unstructured and dynami-

cally changing environments. In order to fulfill typical house-

hold tasks, such as fetching objects or human-robot interac-

tion, an accurate description of the environment is indispens-

able. In this work, we will refer to such an environmental

description as world model. A world model must (i) con-

tain object poses and (ii) deal with the data association prob-
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lem, i.e., associate measurements with false detections, newly

appeared objects or existing objects in the world model. Ide-

ally, the world model should in addition be able to (iii) pre-

dict object positions beyond the last associated measurement

and (iv) filter out sensor noise and localization inaccuracies.

The world model used throughout this work can be inter-

preted as a semantic map that tracks object positions and

attributes over time. The world model contains information

about poses of semantically labeled objects and is comple-

mentary to lower level (occupancy) maps used for localiza-

tion and navigation. For more subtle human-robot interaction

or to allow for improved data association, it is beneficial if

the world model includes or links to information about other

object attributes as well, e.g., size, color, or shape.

In human-populated environments, object positions and

attributes may change over time. Therefore, it is important to

maintain a world model once it is available, i.e., to keep it up

to date. Keeping a world model up to date involves monitor-

ing the environment for new objects and updating the object

positions currently present in the world model whenever this

is needed. This paper focuses on the latter of these subtasks.

This subtask is complicated by the limited observation region

and computational resources a robot has; verifying all object

attributes all the time often is impossible or infeasible. The

main goal of this work is to develop a strategy that can be

used to maintain a world model in an efficient way. If needed,

the strategy should pro-actively steer the robot while respect-

ing motion constraints implied by other tasks the robot has

to perform. Most robots are multi-sensor systems in which

each sensor has its own characteristics. The strategy should

be aware of the strengths of the various sensors and exploit

this knowledge during world model maintenance. Finally,

the strategy should enable using simple perception routines

by exploiting prior knowledge about where to expect which

object.
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2 Related work

Various fields of research investigate similar problems. This

section attempts to present findings of the most relevant ones.

In the field of persistent simultaneous localization and

mapping (SLAM) the aim is to allow an autonomous robot

to simultaneously localize, map and navigate despite (visual)

changes in the real world (Milford and Wyeth 2010). Rat-

SLAM (Milford and Wyeth 2010) uses an ‘experience map’

and adds experiences if the robot visits new locations or if

previously observed places have a new visual appearance.

In Churchill and Newman (2012) the map is extended if

localization in a previously visited area fails given previ-

ous experiences, e.g., due to a different visual appearance

caused by changing weather conditions, and (Konolige and

Bowman 2009) use similar ideas to create lifelong visual

maps which are maintained online at a frame rate of 30 Hz.

Because of their focus on maps used for localization and nav-

igation instead of semantic object maps (Milford and Wyeth

2010; Churchill and Newman 2012; Konolige and Bowman

2009), and the references therein, are considered to be com-

plementary to the proposed approach rather than being alter-

natives. In Ekvall et al. (2007), knowledge about object poses

is incorporated in a SLAM approach, however, due to the

computational complexity only ten objects are tracked. This

is considered insufficient for real world environments.

In Pangercic et al. (2012) a first generation semantic object

maps (SOMs) is extended. The so-called SOM+ map builds

upon earlier work (Rusu et al. 2009; Tenorth et al. 2010)

and stores information about the pose, appearance and cat-

egory of objects. However, the SOM+ map directly stores

the object poses estimated by perceptual routines. No filter-

ing of, e.g., measurement noise or localization inaccuracies,

is performed, data association is excluded and objects are

assumed to not change position after being detected. This

set of assumptions eliminates the need for a world model

maintenance strategy but is considered to be too restrictive in

most real world environments. In Mason and Marthi (2012),

a world model containing object positions is stored in a data-

base and used for change detection. Contrary to ours, their

focus is not on active coordination of world model mainte-

nance. Instead, a robot follows a given set of way points and

looks for objects all the time. The main application of Mason

et al. (2012) is detecting object disappearance. It presents an

unsupervised system which can be used for object disappear-

ance detection and does not focus on finding a world model

verification strategy that actively steers the robot and deter-

mines when to update which object position.

In active perception literature, the focus of attention of

a sensor is steered actively. The work of Unterholzner et al.

(2012) introduces active perception in an autonomous driving

setting. A utility function combines object importance with

the expected reduction of the uncertainty of a world state

estimate after detecting an object. By maximizing the utility,

the sensor orientation is determined. The work of Davison

and Murray (2002) presents the first example of a system

applying active vision to SLAM. The mutual, relative uncer-

tainty between features and robot is used to determine which

one of the currently visible features should be measured to

end up with the best use of the available resources. Refer-

ences Whaite and Ferrie (1997); Stachniss (2006); Sommer-

lade and Reid (2008) use similar ideas with the purpose of

active (scene) exploration. Continuous area sweeping liter-

ature like (Ahmadi and Stone 2005, 2006) aims at finding

strategies for repeated tasks such as ‘keep the building clean’,

whereas the security sweeping task investigated in Kalra et

al. (2004) requires a robot to sweep some area as quickly

as possible ‘while preventing adversaries from remaining in

the area undetected at the end of the sweep’. Both contin-

uous area sweeping and security sweeping require a robot

to autonomously decide where to go next. Typical solutions

to sweeping problems, like (Kalra et al. 2004; Ahmadi and

Stone 2005), calculate robot trajectories by minimizing a cost

function using expected (location dependent) rewards.

Rather than calculating if an update is needed for a specific

object, both the sweeping and active perception works deter-

mine which robot move is best by minimizing some cost func-

tion. A second difference is that this work demonstrates how

the multi-sensor nature of a robot can be exploited, whereas

the aforementioned works on active perception and sweep-

ing skip the problem of selecting the most appropriate sensor.

Finally, we propose a strategy that is task-dependent whereas

these works focus on one specific task.

In the work of Xu et al. (2010) an autonomous city explorer

robot is made autonomous by enabling vision-guided motion.

Their aim is steering a robot and its focus of attention based

on both bottom-up, e.g., information that stands out clearly in

the sensor data, and top-down, e.g., prior context knowledge,

attention selection mechanisms. A typical task investigated in

the work of Xu et al. (2010) is finding and approaching road

signs. A similar combined bottom-up/top-down approach can

be found in other work on attention selection literature such

as (Rasolzadeh et al. 2007; Xu et al. 2009). The survey of

Frintrop et al. (2010) provides an extensive overview of visual

attention systems. Our aim differs from the attention selec-

tion literature in that we focus on steering an autonomous

robot with the purpose of maintaining a world model, rather

than based on the current sensor data and what appears ‘inter-

esting’ within this data.

Typical tracking approaches perform well in (highly)

dynamical environments, such as robot soccer (Elfring et

al. 2011) or people tracking (Schultz et al. 2003). However,

in those works all objects are updated whenever possible.

An approach that works fine if the field of view covers the

majority of the environment and the number of objects is lim-

ited but may lead to many superfluous updates or becomes
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impossible in domestic scenes with many objects where most

objects behave less unpredictable but the field of view only

covers a small fraction of the full scene. The first ideas under-

lying the proposed approach were introduced in Elfring et al.

(2012). Contrary to this work, the approach in Elfring et al.

(2012) did not incorporate the information gain and possible

action costs. Furthermore the criterion for updating an object

had to be specified in advance for each possible object and

was independent of the task.

3 Contributions

The aim of this work is to present an approach that coordi-

nates the maintenance of a world model. Although Sect. 2

presented many works dealing with related problems, to the

best of our knowledge, none of these works investigates

world model maintenance as a problem on its own. Our main

contribution is an uncertainty-driven coordination strategy

that determines when to update which object. Part of this

strategy is a mechanism that extends a purely uncertainty-

driven strategy such that it becomes task-dependent. We will

refer to the combined strategy as semi-task-dependent for

reasons explained later. A large number of simulations is

performed to quantify the performance gain relative to a

benchmark strategy. In addition, the simulations are used

to illustrate the effect of the parameters used to configure

the proposed strategy. Finally, we demonstrate the improved

performance resulting from the semi-task-dependent strategy

during a set of experiments on different set-ups including an

environment with a fast and unpredictable moving cat and

the AMIGO robot (Fig. 1) solving the RoboCup @Home

clean up challenge. The set of experiments in addition shows

how the proposed strategy considers all available sensors and

their relevant characteristics.

The remainder of this paper is organized as follows. Sec-

tion 4 explains the world modeling algorithm and the world

state representation used throughout this work. Section 5

introduces the proposed strategy and Sect. 6 introduces the

module executing the verification tasks generated by this

strategy. Sections 7 and 8 present the result of series of simu-

lations and experiments that were performed. Finally, Sect. 9

summarizes the most important conclusions and contains an

outlook to possible directions for future work.

4 World modeling algorithm

In order to be able to maintain a world model, an algorithm

creating and maintaining a world model is required. In this

work the probabilistic multiple hypothesis anchoring algo-

rithm introduced in Elfring et al. (2013a) and implemented by

Fig. 1 Photograph (by Bart van Overbeeke) of AMIGO grabbing an

object during the RoboCup @Home final 2013

the WIRE1 stack in ROS is used. Measurements from sensors

are associated with objects in the world model using a mul-

tiple hypothesis-based data association approach and object

instances are linked to grounded symbols using anchoring.

Object positions and attributes are tracked using the Bayesian

predict–update cycle. The uncertainty in the world state esti-

mate increases during propagation and decreases after mea-

surement updates. A more detailed explanation can be found

in Elfring et al. (2013a).

The resulting world model W contains objects with esti-

mated positions and attributes. Each world model object

is associated with a unique identifier (ID) and each posi-

tion or object property is represented probabilistically e.g., a

Gaussian distribution representing the position in some ref-

erence frame or a probability mass function over possible

colors. If a robot’s world model maintenance strategy dic-

tates the verification of some object attribute, data associ-

ation between the verification measurement and the world

model objects is greatly simplified: the verification measure-

ment for example represents the refined position of cup-5

rather than the position of some random object which was

‘accidently’ observed. As explained in Sect. 3, the goal of

this work is to come up with some strategy that only per-

forms measurements of object instances present in the world

model whenever this is considered to be useful. The world

model is represented by the WIRE block in the schematic

overview given in Fig. 2.

5 Uncertainty driven world model verification

This section explains how the uncertainty in the estimated

world state W will be transformed into a verification task V

given the set of available sensors S. First, the general con-

1 http://wiki.ros.org/wire.
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WIRE:

– world model W

Verification module:

– estimated object attributes

Sensor data:

– depth/RGB images

Appearance models:

– color, size

Coordination module:

Input: W, S, motion/meas. models
Output: V
V = ∅, T = ∅
for oi in W do

for sj in S do

calculate ˆIG using (6)
end for

end for

for all possible actions as(o) do

if ˆIG(as(o)) > ˆIGthr

A ← A ∪ {as(o)}
end if

end for

if |A| > 0
calculate a

∗ using (9) and (10)
V ← V ∪ {a

∗}
end if

Get verification triggers T from Table 1
V ← V ∪ T

Verification task V:

– 95% confidence regions

Fig. 2 Schematic overview of the proposed approach. Dashed boxes represent data, whereas the other boxes represent modules

cept of entropy in information theory is briefly explained in

Sect. 5.1. Then Sects. 5.2 and 5.3 introduce the core of the

proposed strategy. Finally, Sect. 5.4 explains how the pro-

posed strategy is made semi-task-dependent. All this is done

in the coordination module block in Fig. 2.

5.1 Entropy

In the context of information theory, the entropy is a measure

of the uncertainty in a random variable. In this work, the

world state W is estimated by a density function and the goal

is to control the uncertainty in the estimated world state. For a

probability density p(x) over a number of continuous random

variables collected in a vector x, the differential entropy H [x]

can be calculated using Bishop (2006):

H [x] = −

∫

p(x) ln p(x)dx. (1)

By taking the log instead of the ln, the entropy unit can be

changed from nats to bits.

The densities p(x) in the world state estimate are not lim-

ited to be of any type, however, in the remainder of this section

we use Gaussian distributions as a running example, since we

believe these are the most popular densities for object state

estimation in robotics. For reasons of completeness, we do

however also give an entropy estimate for particle filters,

since these have proven to be useful for estimating more

complex probability distributions.

Consider a multivariate Gaussian distribution with n-

dimensional random variable x:

N (x | µ,�) =
1

(2π)n/2 |�|1/2
·

exp

(

−
1

2
(x − µ)T �−1 (x − µ)

)

(2)

where µ is the n-dimensional mean vector and � is the n ×

n covariance matrix. The entropy for (2) can be calculated

using Bishop (2006):

Hg [x] =
n

2
+

n

2
ln (2π) +

1

2
ln |�| . (3)

For a particle filter with N particles each characterized by

a pair (qi
t , w

i
t ), where t is the discrete time step, qi is the

particle state vector, w the associated normalized weight and

i = 1, . . . , N , the particle index, the entropy of the posterior

density p(qt | Z t ) in bits can estimated by Boers et al.

(2010):

Hpf

[

p(qt | Z t )
]

≈ log

(

N
∑

i=1

p(zt | qi
t )w

i
t−1

)

−

N
∑

i=1

log

⎛

⎝p(zt | qi
t )

N
∑

j=1

p(qi
t | q

j
t−1)w

j
t−1

⎞

⎠ wi
t , (4)

where Z t = {z0, . . . , zt } is the set of measurement vectors

up to time step t .

5.2 Information gain

After updating an object in the world model, the uncertainty

reduces and, therefore, the entropy drops. We have defined

the information gain for object o, after updating it with a

measurement z of the object state xo using sensor s:
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IG(o, s, xo, z) = H [p(o)] − H [p(o | s, xo, z)] . (5)

The first term on the right hand side is the entropy before

updating, whereas the second term represents the same

entropy after an update with sensor s. The explicit time

dependence is left out for ease of notation.

Updating an object’s attribute only makes sense if the

information gain is ‘sufficiently’ high, i.e., if the informa-

tion gain is above some threshold. This threshold directly

affects the robot’s behavior. If it is set very high, minimal

effort is put into updating object attributes at the cost of an

increased overall world model uncertainty. A very low thresh-

old, on the other hand, leads to many potentially superfluous

updates but a lower overall uncertainty. Here, a threshold

IGthr is set manually. Future work includes making IGthr

both task and object dependent. The effect of IGthr will be

thoroughly investigated in Sect. 7.1.

One problem with the information gain as defined in (5) is

that it can only be calculated after updating an object, whereas

it is needed to determine if an update is useful. To overcome

this problem we propose a forward simulation which allows

for calculating an expected information gain ˆIG; objects can

be updated with a fake measurement ẑ at the location cur-

rently estimated.

ˆIG(o, s, xo, ẑ) = H [p(o)] − H
[

p(o | s, xo, ẑ)
]

. (6)

A forward simulation is considered to be representative

since at this point we are interested in the change in the state

uncertainty rather than the exact value of the state. In this

work measurements are represented by Gaussian distribu-

tions, hence the fake measurement ẑ used to update object o

has a mean corresponding to the estimated object state xo.

The covariance matrix �o associated with the measurement

equals the covariance of the last measurement used to update

object o if only a single sensor can be used for performing

measurements. In a multi-sensor setting, each sensor has its

own characteristics hence each sensor has its own measure-

ment covariance matrix for each of the objects.

Performing ‘fake’ updates might seem quite an effort at

first glance. If all objects are within the field of view of

the robot, fake updates save computation time with respect

to real measurements. Typically only a subset of the world

model objects is visible hence the decision to update one

object automatically excludes another object. In this case fake

updates are inevitable for calculating the information gains

which allow for a thought-out decision. A real update usually

requires a real measurement, which besides an object detec-

tion often requires a navigation task. Therefore, real mea-

surements would typically take orders of magnitude longer

than the milliseconds needed for the proposed strategy.

Action as(o), represents the action ‘update object o using

sensor s’. The forward simulation allows for calculating

the expected information gain ˆIG [as(o)] associated with an

action as(o). This is done by first determining the required

path to the associated object and then discretizing the path in

a finite number of way points based on the expected veloc-

ity and the discrete time step. At each time step a propaga-

tion is done and the possible updates are performed. This

way, the expected execution time and the related number of

predict-update cycles is considered during the calculation of

the expected information gain ˆIG [as(o)] for an action as(o).

If and only if this expected information gain is above the

threshold IGthr , the corresponding action will be added to

the set A:

A ← A ∪ {as(o)}. (7)

5.3 Expected utility

Section 5.2 explained how potential verification actions are

omitted based on the expected information gain. This section

explains how a single action is selected from the remaining

set of actions A associated with a sufficient information gain.

The action cost for updating object o with sensor s is

defined as follows:

V [as(o)] =
do,s

Vscale

, (8)

where Vscale is a constant scaling factor and do,s is a distance

term. In this work do,s equals the distance-to-be-traveled and

Vscale is the length of the room the robot is in. An alternative

choice could be:

Vscale = max
o∈W,s∈S

do,s .

At this point, we decided to not define an action cost for

the actual measurement of an object, i.e., the cost of detect-

ing an object is considered to be equally expensive for each

of the objects and each of the sensors. Whether or not this

assumption is reasonable depends on the perception mod-

ules and sensors available for performing object detections.

The assumption should be relaxed if actions of varying com-

plexity are considered, e.g., weighting an object or opening a

box to determine whether or not it is empty is typically more

expensive than a colored blob detection, or if the available

sensors operate at different time scales, e.g., a camera which

runs at 30 Hz versus a tilting laser range finder which needs

1 s to make a full scan. Actions associated with a varying

cost can be dealt with by introducing an additive ‘cost-of-the-

measurement’ term in (8). A natural measure affecting the

magnitude of this term would be the time interval associated

with the measurement.

123



6 Auton Robot (2015) 38:1–15

An expected utility for action as(o) is defined as being:

U [as(o)] = −αV [as(o)] +
ˆIG [as(o)]

IGnorm

, (9)

where α is a weight that can be used to tune the relative

importance of the action cost and the expected information

gain and IGnorm is a normalizing term. The weight α can be

set based on the desired behavior. An extensive analysis of

the effect of α on the resulting robot behavior is presented in

Sect. 7.2.

Finally, the optimal action with respect to the expected

utility is selected:

a∗ = argmax
as (o)∈A

U [as(o)] . (10)

Note that dependent on the settings A can be empty and at

most has the size of the product of the number of objects and

sensors. The optimal action is added to the verification set V:

V ← V ∪ {a∗}, (11)

hence at this point |V| ≤ 1.

A few remarks can be made with respect to the optimality

criterion (10). First of all, the information gain is a relative

quantity that does not consider the current entropy. Equal

information gains are considered equally valuable indepen-

dent of the underlying entropies. One reason for this decision

is that the measurement accuracy typically differs per object

and sensor hence there is no guarantee that the entropies of

different objects can be brought down to the same level. A

second observation is that the strategy might favor actions

involving many objects with a small information gain over

updating a single object with a large information gain, since

the overall uncertainty is minimized rather than the worst

case uncertainty. If single objects are involved in tasks their

uncertainty reduction will be enforced by the task-dependent

component explained later. Section 7 will provide an in-depth

analysis of the consequences of the proposed strategy on both

the overall and the worst case object entropy.

So far, it was tacitly assumed that the world model mainte-

nance strategy was allowed to actuate the full robot. However,

it depends on, e.g., the robot’s task or sensor configuration

if this assumption holds. If other components require actu-

ating the robot, e.g., to check the availability of the path

while driving, the set of objects considered must be limited

to the objects within the robot’s field of view. As a result, the

length of the path do,s in (8) equals zero and the expected

utility only contains one term. In such cases the proposed

strategy remains unchanged, however, the number of possi-

ble actions reduces. Only the subset of actions respecting the

robot motion constraints implied by other modules will have

to be considered. This does not limit the freedom of other

components to set verification triggers as explained in the

next section.

5.4 Semi-task-dependent verification strategy

The strategy as proposed in Sect. 5.3 is based on the world

model uncertainty only. Ideally, this strategy depends on the

task at hand too. If a robot has to pick up a mug from a table,

the allowed position uncertainty of the mug is much smaller

than when passing this table during a navigation task. How-

ever, reasoning about which objects are and which objects are

not relevant during a task is a very complex problem which

depends on, e.g., the task specification, the success of sub-

tasks and the dynamics of the environment, and falls outside

the scope of this work.

In order to not keep this relevant problem unexplored the

coordination module that calculates the expected utilities and

decides when to update which object attributes using which

sensor also accepts verification triggers collected in the set

T . If a reasoning engine or some module executing a plan

considers it relevant to update an object attribute, the module

can send a trigger to the coordinator and the coordinator

will enforce an update, independent of the information gain.

This way the robot is guaranteed to have the most accurate

estimate possible at that specific time given its context.

By triggering this update mechanism before executing

pre-defined primitive actions, a semi-task-dependent behav-

ior can be obtained. In the experiments presented later, the

task ‘pick up object X’ adds the action ‘verify the position

of object X’ to T . This way, object X will be updated if (i)

the expected utility of object X enforces an update, or (ii) the

object must be picked up. With this mechanism, a navigation

task along a table with a mug on top of it and a pick-up task

of that same mug may lead to different verification strate-

gies. The idea is that a limited number of action/verification

trigger pairs can cover the majority of the task-dependent

updates required for typical tasks under the assumption of

normal operation. Table 1 summarizes some of the pairs

implemented in this work. Before the coordination module

sends out a verification task, T is merged into the set gen-

erated by the uncertainty driven component of the strategy:

V ← V ∪ T (12)

Verification triggers are prioritized over the verification

task which is based on the expected utility. If a robot sends out

multiple verification tasks, they are executed chronologically

in the order of arrival. Currently, no merging of verification

tasks is performed. If both the uncertainty-driven component

and the task-dependent component dictate the refinement of

the position of some object Y, its position will be verified

twice.
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Table 1 Overview of action/verification trigger pairs on primitive robot

actions.

Action Verification trigger

Grab object X Refine position object X

Navigate to location A –

Navigate to object Y Refine position object Y

Release object Z –

<object_class name="kiwi">

<size x="0.5" y="0.6" z="0.6"/>

<color_channel channel="RGB" />

<color_range ch1_min="0" ch1_max="255"

ch2_min="0" ch2_max="255"

ch3_min="0" ch3_max="10" />

</object_class>

Fig. 3 Code snippet showing how the appearance model used during

the first experiment is defined

6 Verification module

Once the world model maintenance strategy introduced in

the previous section generated a verification task V , the task

must be executed. This section briefly explains the verifi-

cation module used throughout this work. The verification

module is independent of the proposed world model veri-

fication strategy and can be replaced based on, e.g., sensor

configuration or available data and perceptual routines.

Throughout this work, a verification task V sent from the

coordination module to the verification module only contains

the 3D region of interest (ROI) based on the 95 % confidence

interval of the predicted 3D position, a unique identifier and

a semantic label. In case object attributes like color or size

are tracked by the world model, the coordination module can

in addition add these to the verification task.

In case insufficient object appearance information is pro-

vided by the coordination module, this information is loaded

from a knowledge base. Figure 3, shows a part of the knowl-

edge used throughout this work. It describes the appearance

of a cat named Kiwi. Since the current implementation con-

tains 3D positions instead of 6D poses, the size is large in

all three directions. Together with the 3D ROI provided by

the coordination module, the size of the object determines

which part of the sensor data has to be considered. Within

this sensor data, the actual verification can be performed.

Once the position is verified, it is fed to the world model

together with the unique ID contained in the verification

task. The ID simplifies the data association within the world

model. Two special cases might appear.

1. If the object is occluded, no verification can be done,

hence no information is sent to the world model.

2. If the object cannot be found at the expected location,

the object is considered to be lost. The object position

will be represented by a uniform distribution over the

environment. Contrary to an irreversible removal of the

object from the world model, this allows for re-associating

the object once it is re-observed later. Incorporating more

advanced models such as ‘the object is somewhere outside

the current ROI’ is outside the scope of this work.

7 Simulations

This section presents simulation results. The purpose of the

set of simulations is twofold. It quantifies the relative perfor-

mance compared to a benchmark strategy and it shows the

effect of the parameters on the robot behavior. Simulations

were chosen for this purpose since they allow for a large

number of trials under the exact same conditions and there-

fore enable both a fair comparison and a statistical analysis.

The effect of the information gain threshold IGthr is inves-

tigated in Sect. 7.1 and the effect of the relative weight α is

analyzed in Sect. 7.2. Then Sect. 7.3 discusses the impact of

unexpected object movements unreliable perception.

7.1 Effect of the information gain threshold

The benchmark strategy lets a perfectly localized robot with

one sensor follow a predefined path along all objects. All

objects within the field of view are updated and the sensor,

inspired by a Kinect (Khoshelham and Elberink 2012), is

able to detect objects within a range of [0.4, 2.0] m. Obstacle

avoidance is omitted and as a result the robot always drives in

a straight line from its current position to the target position.

All simulations were performed 250 times and the simu-

lated time per simulation was 16 min and 40 s. One square

room with a length of 10 m contained ten objects that

were randomly spread. The objects did not move and mea-

surements were filtered using a Kalman filter. The motion

model uncertainty represented by the covariance matrix of

the Gaussian process noise equals σP I , where σP is ran-

domly sampled from the interval [0.0, 0.01] and I is an

identity matrix of appropriate size. The scalar σP is made

object dependent to represent the fact that the dynamics of

different objects in a room are known with different levels

of confidence. The measurement noise was represented by a

Gaussian distribution with covariance matrix σM I . Again I

is an identity matrix and σM was fixed at an arbitrary value

of 0.01, i.e., during the simulations all object positions are

assumed to be detected with the same accuracy. A brief para-

meter study showed that different values for σP and σM led to

results similar to the ones presented in this section. The object

state was equal to the object position, the relative weight
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(a) (b) (c)

Fig. 4 Maximum and total entropy of the estimated world model and the distance D driven during the simulation as a function of IGthr

α = 0.75 and IGnorm = 5 nat was used as a normalizing

constant during all simulations in this section.

During each simulation and at each time step, the entropy

in nat for the probability distribution representing an object

state estimate was calculated. The maximum entropy was

calculated using:

Hmax = max
oi ∈W

H [oi ]. (13)

Figure 4a shows the results together with the 95 % confidence

intervals for both the proposed and the benchmark strategy

and for a range of different values for the threshold on the

information gain ˆIG [as(o)]. A few conclusions can be drawn.

Compared to the benchmark strategy, the worst case object

entropy is lower when following the proposed strategy over

the full range of values set for IGthr . This is the result of

selecting the action that maximizes the information gain. The

larger the uncertainty, the larger the entropy and the larger the

expected information gain, hence updating uncertain objects

is preferred if the action costs are similar. For larger values

of IGthr , the worst case object entropy increases, since larger

uncertainties are required in order to let the estimated infor-

mation gain fall above the threshold IGthr . For low values

of IGthr , i.e., IGthr < 4 nat, A equals the set of all possible

actions and Hmax will not be affected by further lowering

IGthr .

The second variable that was investigated is the sum of

the entropies of all probability densities representing object

positions, which is a measure for the total uncertainty in the

world state estimate:

Hsum =

|W |
∑

i=1

H [oi ]. (14)

Figure 4b shows the results together with the 95 % confidence

intervals.

The curve associated with the proposed strategy shows a

linear increase for a IGthr > 6 nat, since a higher thresh-

old inevitably leads to fewer object updates and hence an

increased overall uncertainty. In this set of simulations, low-

ering the value below 4 nat, like in Fig. 4a, did not have

a significant effect on the overall uncertainty; objects were

updated at all the time steps already. A second observation is

that the proposed strategy keeps the overall uncertainty below

the overall uncertainty obtained by the benchmark strategy

for values up till IGthr = 10 nat.

The distance D driven by the robot during the full simula-

tion is plotted in Fig. 4c. For low values of IGthr , the distance

is more or less constant; like with the benchmark strategy

updates are performed all the time. However, for a threshold

IGthr > 5 nat, the distance driven by the robot drops rapidly.

For a threshold of IGthr = 9 nat, the distance is about half of

the distance driven when executing the benchmark strategy,

for a threshold around IGthr = 16 nat, the distance is almost

a factor ten lower. Figure 5a and b show the paths driven by

the robot for one of the simulations over a time window of

100 s for both the proposed and the benchmark strategy. For

an information gain threshold of IGthr = 15 nat, the robot is

mostly idle since the information gains are below the thresh-

old most of the time. For IGthr = 5 nat, the robot moves

much more. The benchmark strategy lets the robot follow a

fixed path over and over again. However, Fig. 4 already indi-

cated that the benchmark route is not as thought-out as the

path enforced by the proposed strategy for a low threshold.

In summary, it can be concluded that the proposed

approach is able to keep the worst case object entropy sig-

nificantly lower than the benchmark strategy for reasonable

values of the threshold on the information gain IGthr . At the

same time, the overall uncertainty is lower if IGthr is selected

with care. These results are achieved with a robot that drives

less, i.e., by cleverly selecting actions both the worst case

and the overall uncertainty are significantly lowered while

the required effort reduces too.
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(a) (b) (c)

Fig. 5 Example trajectories driven by the robot as a result of both the benchmark strategy and the proposed strategy for different settings

(a) (b) (c)

Fig. 6 Maximum and total entropy of the estimated world model and the distance D driven during the simulation as a function of the relative

weight α

7.2 Effect of the relative weight

The same analysis is performed for the relative weight α.

The expected information gain threshold was set to IGthr =

8 nat, α was varied between 0.05 and 2.0 and all other settings

were as in Sect. 7.1. Figure 6 shows the results of the analysis.

If the relative weight α increases, the action costs gain

importance. As a result, updating nearby objects is preferred

over a higher information gain at faraway objects. Therefore,

the total distance driven by the robot reduces with increasing

α, as shown in Fig. 6c. Over the full range of values to which

α was set, the distance driven is significantly less than with

the benchmark strategy. Increasing α leads to an increase in

both the total and the worst case world model object entropies

as shown in Fig. 6a and b. Again, the proposed strategy out-

performs the benchmark strategy. The worst case entropy

is lower for all values to which α was set, whereas the total

uncertainty is lower for α < 1.7. The path driven by the robot

for different values of α is shown in Fig. 5c. This figure con-

firms an increased path length for lower values of α. Paths

obtained with low α values are similar to paths obtained by

setting a low IGthr , as shown in Fig. 5a and c.

To be able to further interpret the differences, two bar

charts are given for one representative simulation during

whichα = 1. Figure 7a shows the number of times each of the

ten objects is updated during the simulation, whereas Fig. 7b

shows how many times each of the objects was approached,

i.e., the number of times each action is selected.

For the benchmark strategy, Fig. 7b is uniform over all

actions, whereas the proposed strategy shows a more com-

plex distribution in which some actions are never selected.

This can be explained by the fact that the associated objects

are sufficiently updated during other actions, e.g., because

they are close to other objects or can be updated on the

way to another object, as can be concluded from Fig. 7a.

Another thing that can be observed in these bar charts is

that the benchmark strategy performs 263 actions versus 104

when using the proposed strategy, and does more updates,

973 versus 515. These differences demonstrate the improved

efficiency resulting from the proposed strategy with respect

to the benchmark strategy; with a lower number of actions,

a lower number of updates and while driving less, a lower

level of uncertainty is achieved. In the real world, this

means that using the proposed strategy, a robot is able to
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(a)

(b)

Fig. 7 Number of times each object gets updated in (a) and number of

times each action is selected in (b) during a simulation with α = 1

make an informed decision about when to update which

object.

7.3 Impact of unpredicted object movements and unreliable

perception

It is important to notice that the results presented in this

section are simulation results. In the real world, unexpected

object movements and failure of perceptual routines or sen-

sors may lead to false negatives (not detecting an object which

is present), false positives (detecting an object which is not

present) or object loss in the world model.

A first consequence of object loss will be sub-optimality

since the expected utilities U [as(o)] in (10) do not match

the actual utilities. The proposed strategy requires a position

estimate whereas the position of a lost object is represented

by a uniform distribution over the environment, as explained

in Sect. 6. As a second consequence, lost objects are not

considered by the maintenance strategy and will never be

approached, unless they are accidently re-observed. Active

object search strategies like the ones described in Joho et

al. (2011); Elfring et al. (2013b) can increase the proba-

bility of re-detecting objects which are lost as a result of

unexpected movements. However, active object search is

time-consuming and the success of the search cannot be

guaranteed. Whether or not active object search is desirable

therefore depends on the task at hand. Investigating strate-

gies which combine active object search and world model

maintenance in a task-dependent manner is left for future

work.

A single false negative could have a large impact on the

system’s performance, e.g., the object might unfairly be con-

sidered lost. During the experiments, from which the results

are presented later, each verification task is associated with

a certain time interval which depends on the time needed by

the perception module used for the re-detection and is typi-

cally smaller than a second. Instead of re-detecting the object

in a single camera image, point cloud or laser scan a series of

images, point clouds or scans is considered. As a result, the

effect of temporary false negatives is limited. If false nega-

tives are persistent over the time interval of the verification

task, e.g., due to the failure of a sensor or software crashes, the

object will unfairly be considered lost. As stated before, lost

objects will cause optimal actions to be sub-optimal in retro-

spective and in the light of (9). Adding mechanisms that let

the robot observe an object from different viewpoints could

lead to an increased robustness against persisting false nega-

tives. However, false negatives did never appear problematic

during the experiments and for that reason such mechanisms

are not further investigated in this work.

The number of false positives generated by perceptual rou-

tines used for verification tasks is reduced by exploiting prior

knowledge available through the world model. ‘Refine the

position of the green cup with a given geometry and which

should appear in a known ROI within the data from sensor X’

is easier than ‘see if there is some object somewhere within

the sensor data’. If despite the prior knowledge a false posi-

tive is generated, the world model will incorrectly update the

object position. As a result, the world model will be overly

confident about incorrect information. This a direct conse-

quence of the probabilistic models used in the world model.

These models consider a false positive which matches both

the expected object’s appearance and position unlikely com-

pared to a true positive and therefore prefer an object update

over the hypothesis of a false positive object detection. The

impact of a single false negative is small compared to the

impact of a single false positive. For that reason, the percep-

tion modules used are tuned to be somewhat conservative,

i.e., in case of doubt an object detection will not be pub-

lished to the world model. As a result the perception modules

used for verification tasks did not generate any false positive

during all of our experiments.
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Fig. 8 Running cat in (a) and jumping cat in (b), the green crosses

represent the position estimates generated by the verification module,

the black rectangle represents the 3D ROI based on the 95 % confidence

interval of the predicted position projected on the 2D image

8 Experiments

8.1 Single sensor experiment

The goal of the first real world experiment is to investigate

the update rate resulting from the proposed strategy in a

highly dynamical scene. In the experiment, one Kinect is

used to keep the position of a cat accurate despite its highly

unpredictable and fast movements. Various short videos were

recorded all leading to similar results. The results presented

here are obtained on a movie in which the cat runs back and

forward and includes a jump. Figure 8 shows two representa-

tive screenshots. The Kinect has a frame rate of 30 Hz, hence

updates can be performed at most at this frequency. The cat is

tracked using a Kalman filter with a constant velocity motion

model and zero-mean Gaussian process noise with a constant

and diagonal covariance matrix. Since the expected position

of the cat is known, re-detecting the cat boils down to finding

a black blob with a specific size in a 3D region of interest

based on the 95 % confidence interval of the predicted posi-

tion, see Fig. 3. The detection takes less than 1 ms on average

and Fig. 8 shows two typical detections together with the 2D

projection of the 3D ROI on the camera image.

Fig. 9 Bar chart showing when the position of the cat named Kiwi

was verified

Fig. 10 Entropy during part of the cat tracking experiment

The main result of this experiment is shown in Fig. 9.

This figure shows when the position of the cat is updated. As

shown in this figure, the update rate is time dependent and

varies between approximately 10 and 15 Hz. The reason for

this time-dependent update rate lies in the non-constant mea-

surement variance and the resulting time dependent expected

information gain. This can be explained by the resolution of

the depth information, which drops with the distance hence

the measurement variance on the position changes when the

cat moves.

Figure 10 shows the entropy associated with the cat’s posi-

tion estimate during a part of the experiment. During peri-

ods without measurement updates the uncertainty associated

with the position estimate increases. As a result, the expected

information gain resulting from a position update increases

over time and every third frame, this expected information

gain is sufficient to enforce a measurement update. The posi-

tion uncertainty, and therefore the world model entropy,

decreases after the updates. Over the time interval of this

figure, measurements are getting more and more accurate.

More accurate measurements contain more information and

as a result the entropy after an update decreases over this time

interval.

This experiment shows how the proposed strategy com-

bines (i) the current uncertainty resulting from the unpre-
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Table 2 Time line of the

experiment. Locations are

indicated in Fig. 11

Location Event Recognized objects World model objects Verification tasks

1 Speech command – – –

2 Navigate to first pre-defined location – – –

2 Switch on object recognition Coke can, tea pack Coke can, tea pack –

2 Grab coke can – Coke can, tea pack Refine position

coke

3 Dispose coke can – Tea pack –

4 Navigate to second pre-defined location– Tea pack –

4 Switch on object recognition Coke can Tea pack, coke can –

4 Grab coke can – Tea pack, coke can Refine position

coke

3 Dispose coke can – Tea pack –

dictable nature of the object movements with (ii) the mea-

surement uncertainty of the specific sensor and then comes

to a conclusion about whether or not an update is useful.

8.2 Experiments using AMIGO

The goal of this experiment is to show the task-dependent

component of the proposed strategy on the AMIGO robot. A

photograph showing AMIGO during the final of RoboCup

2013 in Eindhoven, at which team Tech United ended up

third, was already shown in Fig. 1. The results presented

here are obtained during a ‘rehearsal’ two weeks before the

actual tournament.

During the RoboCup @Home clean-up challenge, the

robot is asked to clean up a room. After being told which

room, AMIGO drives towards the room and looks for objects

at some pre-defined locations, e.g., on tables, cabinets,

shelves. AMIGO stops at each of the pre-defined locations

and switches on his object recognition module, see Fig. 12.

Objects are recognized using a custom implementation of the

Linemod algorithm (Hinterstoisser et al. 2011). This algo-

rithm combines color information with 2D and 3D gradients

to recognize the class of an object. An overview of the differ-

ent stages of the experiment is given in Table 2. The numbers

in the first column refer to locations indicated in the 2D occu-

pancy map used for navigation shown in Fig. 11.

First, AMIGO enters the room (first location in Fig. 11)

and gets the command to clean up a room, in this case the

bed room. It drives to the cabinet (location 2) and switches on

object recognition. A coke can and a tea pack are observed

and added to the world model. According to the task descrip-

tion, coke cans must be disposed into trash bins, hence

AMIGO plans to pick up the coke can. In order to do so,

AMIGO repositions itself with respect to the coke can and a

verification trigger is enforced by the mechanism explained

in Sect. 5.4. This verification task asks to ‘refine the position

of the coke can that will be picked up’ and is needed since

the available position estimate is insufficiently accurate for

Fig. 11 Occupancy map used for localization with the various relevant

locations

Fig. 12 Photographs taken during the experiment. AMIGO looking

for objects

a successful grab action from AMIGO’s current location.

The new position estimate is fed to the world model and the

updated object position is used by AMIGO to grab the object,

see Fig. 13. After grabbing, AMIGO disposes the coke can

into the trash bin (location 3). The task description does not

mention a desired location for the tea pack hence AMIGO

ignores the tea pack and moves towards the next pre-defined

location (location 4).
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Fig. 13 Photograph taken during the experiment in (a). The part

depicted shows the grab action based on the verified object position.

Part of the laser data used to verify the position is shown in (b). In red

the data that falls within the region of interest. Data within a typical

ROI using the Kinect for verification is shown in (c)

At this location, AMIGO again switches on his perception

module and recognizes a coke can. The coke can must be

picked up hence AMIGO prepares a grab action and sends

a verification trigger. After refining the position of the coke

can, it is picked up and thrown into the trash bin (location 3).

Now, the cleaning of the room is finished and AMIGO drives

back towards its initial position (location 1).

AMIGO has two different sensors that can be used to solve

a verification task. It can either use the laser scanner mounted

at his torso or its Kinect. In case the torso laser is used,

first, the spindle height is adjusted such that the object gets

within the field of view of the laser. Then with the region

of interest provided by the coordination module a clustering

algorithm suffices to determine an accurate position estimate.

The laser data used for the verification measurement is shown

in Fig. 13b. The laser data within the ROI is colored red.

Apart from the laser scanner AMIGO can also decide to use

the Kinect. In this case, the object is segmented by filtering

out the horizontal plane supporting the object and clustering

the points that remain within the ROI. Typical point cloud

data within the ROI is shown in Fig. 13c.

The option using the torso laser generates a more accurate

position estimate due to the low measurement noise of the

laser scanner with respect to the Kinect. As a result, it leads to

a higher information gain. For that reason, the laser scanner

is used for re-detecting the coke at location 2. During this

experiment, the action costs were equal, since both sensors

did not require a navigation task. One could influence the

preference for the sensor used by associating different action

costs with the different sensors as explained in Sect. 5.3.

If the object that needs to be picked up stands at a height of

approximately 0.7 m or less, the object is below the minimum

height of the torso laser, as shown in Fig. 12b. In this case

only the Kinect is available for verifying the object position.

For that reason, the Kinect is used for the verification task at

location 4.

During this experiment, the objects are known to only

move as a result of robot actions. For that reason the uncer-

tainty associated with the object’s motion model is very low

and the expected information gain is never sufficient for

enforcing an object update.

9 Conclusions and future work

For successful operation in complex and dynamically chang-

ing environments robots need an up-to-date environmen-

tal description. Updating all object positions all the time is

both infeasible and impossible. This work investigated how

such descriptions can be maintained in an efficient manner.

A strategy which is semi-task-dependent and uncertainty-

driven strategy and determines when to update which object

using which sensor was presented.

Adopting this strategy that combines the expected infor-

mation gain with the action cost led to both a reduction

in the worst case object position uncertainty and the aver-

age object position uncertainty while driving less during an

extended analysis involving many long lasting simulations.

Real world experiments with a cat moving fast and unpre-

dictable showed how the strategy enforces updates whenever

this is useful. The proposed strategy leads to a non-constant

update rate based on, e.g., the measurement accuracy and the

motion model uncertainty. Furthermore, experiments with
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the AMIGO robot showed how the task-dependent compo-

nent increases the performance during the RoboCup @Home

clean up challenge.

Future work could be to further investigate the task-

dependent component of the strategy, e.g., by incorporating

state of the art reasoning techniques for triggering updates

based on the task and context. In addition, such reasoning

strategies can be used to dynamically set the threshold on the

information gain. Furthermore, optimal values for the various

parameters could be learned from data.

Finally, the relevance of a system like the one proposed

increases with the size of the environment and the number of

objects present. Collecting and sharing data in much larger

environments than the ones considered throughout this work,

e.g., a complete floor, could drive interest in the topic of

this work. Providing benchmark data on such environments

is nontrivial: the strategy steers the robot, the robot’s path

affects its sensor data and the sensor data influences the strat-

egy. Finding ways to set a benchmark nevertheless is consid-

ered to be a very interesting direction for future work.
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