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I. Introduction. The known finite projective planes are all either in one of the
following three classes or are dual to planes in one of these classes. The three
classes are: (1) the translation planes, (2) the Hughes planes, (3) a class of planes
constructed by the author. Classes (2) and (3) all come under the heading of what
we call "semi-translation planes" in the definition given below. §§ II and IV of
this paper constitute a general investigation of the properties of semi-translation
planes, their coordinate systems and collineations.

In [8], the author developed a method of constructing translation planes by
using appropriately selected sets of points in a Desarguesian plane as the lines
of a translation plane. In [9], this method was adapted to obtain a new class of
planes from dual translation planes. Hughes pointed out to the author and it was
also noted by Albert that the same method can be applied to the Hughes planes.
Thus all the known semi-translation planes not in class (1) are related to other
planes by this construction process. Moreover, we show (in §V) that the planes
obtained from the Hughes planes constitute a fourth class in addition to those
mentioned in the first paragraph.

In § III, we make a further study of this construction process, putting it into
a more general form. The question remains open as to whether this generalization
will make it possible to obtain still more new planes and just how extensive the
class of semi-translation planes really is.

The planes with which we are concerned are all of order q2, where q is a prime
power. This condition is to be understood throughout unless we indicate to the
contrary.

Definitions for the basic concepts used in projective and affine planes may be
found in [6] or [11].

II. Collineations and dualities.
Definition 1. A projective plane n of order q2 (q > 2) will be said to be a

semi-translation plane with respect to the line I if there exists a set 9JI of q + 1
points on / such that if Pe2R, then k admits a group of dations of order q with
center P and axis /.
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Definition 2. In Definition 1, if the total group of dations with axis / is exactly
of order q2 (i.e., the dations mentioned constitute all of the dations with axis /)
then % will be said to be a strict semi-translation plane with respect to I.

Definition 3. The point Q will be said to be a center for the line m and m
will be said to be an axis for Q if Q e M and n admits a group of dations of order
q with center Q, axis m.

Theorem 1. Let n be a projective plane of order n {n not necessarily a
square). If for some line I, n admits a group G of dations with axis I, where the
order of G is greater than n, then every point P on I is the center of a nontrivial
elation with axis I.

Proof. Let k* be the affine plane obtained by deleting I from n. Then G partitions
the points of n* into transitive classes of length k, where k is the order of G. If
Pel, and k > n, then at least one of the n affine lines through P must contain
at least two points R and S in the same transitive class. The translation (elation
with axis /) which carries R into S must have P as its center.

Lemma 1. Let % be a semi-translation plane with respect to I. Let G be a
group ofelations with axis I such that G is of order q2 and for each point P eSTJÎ,
the subgroup of G with center P is of order q. Let X be a transitive class under
G of points not on I. Then TU9JÎ is the set of points in a projective subplane of
order q.

Proof. Let the points of n0 be the points in Ï U W. If m is a line of n which
contains at least two points of n0, let m n n0 be a line of n0. We must show that
n0 is a projective plane.

Since % contains q2 points and 3JÍ contains q + 1 points, n0 contains
q2 + q + 1 points. Two points of n0 lie on exactly one line of n0; each line of n0
contains exactly q + 1 points of n0. It follows that each point lies on q + 1 lines
and finally that every two lines have a point in common. We are assuming q > 2;
there is at least one proper quadrangle in 7t0. It follows that n0 is a projective
subplane.

Lemma 2. // n is a strict semi-translation plane with respect to lY and also
with respect to l2 and if P = /, n l2, then P must be a center (Definition 3) for
Zx and l2.

Proof. We shall make repeated use of the fact that if n is a strict semi-trans-
lation plane with respect to I, if P is a center for / and if a is any collineation of n,
then % is a strict semi-translation plane with respect to la and Pa is a center for la.

Let G(l¿) be the group of elations with axis ly. By hypothesis, G(l{) is of order
q2. Let Q be a point on Zt which is not a center for lt. Then the q2 lines through
Q which are distinct from ^ all lie in a single transitive class under GQj).

The argument is by contradiction. If P = lt n l2 and P is not a center for lu
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then GQi) and G(/2) generate a group of collineations of n which fixes P and is
transitive on all lines through P. Thus n is a semi-translation plane (abbreviated
s.t.) with respect to every line through P and P is not a center for any line through P.

Let (£ be the set of points A such that A is a center for .4P. Since each of the
q2 + 1 lines through P has exactly q + 1 centers and P is not a center, £ contains
exactly (<j2 + 1) (q + 1) points. Moreover d must be carried into itself by all
collineations fixing P.

Let £#P be a point not in (L Under the elation group with axis EP, the q2
lines through E which are distinct from EP are all in the same transitive class.
Hence these q2 lines must each contain the same number, say f, of points in (£.
There are q + 1 points of (£ on EP; hence the total number of points in (¡[ is
q2t + q + i = (q2 + 1)0? + 1). Hence t = q + l. Thus we have: If£ is not in (£, every
line through E contains exactly q +1 points of (£. This in turn implies that if Z' is
any line of n, either every point of I' is in (£ or exactly q + 1 points of /' are in (L

Now let A belong to (L If k lines through A contain q2 + 1 points of (£ then
<j2 + 1 — k lines through A contain q + 1 points of (£. It follows that
q2k + g(<ï2 + 1 - k) + 1 = (q2 + V)(q + 1), which reduces to (4 - i)k = q.

For q > 2, this equation has no solution in integers. The assumption that
P is not a center for /j thus leads to a contradiction. Since the roles of lt and l2
can be interchanged, P must be a center for both /x and i2-

Remark. We shall throughout this paper be interested in subplanes of order q.
Henceforth, when we mention a subplane, it is to be understood that we mean a
subplane of order q unless indications are given to the contrary. We shall also
find it convenient to use the expression "Z is a line of 7t0" in the case where I is
a line of n such that I n n0 is, strictly speaking, a line of 7i0.

Lemma 3.  Under the hypothesis of Lemma 2 there is a subplane n0 such that:
(1) 7i is a strict s.t. plane with respect to every line of n which belongs to n0

and goes through P.
(2) IfQe n0, Q is a center for QP.

Proof. Let R be a point which is a center for l2. By Lemma 1, the centers of lx
together with the transitive class containing R under the elation group GQi)
constitute the points of a subplane n0.

By Lemma 2, P e 7i0.
Now P is fixed by G(lt) and the lines of n0 which go through P and are distrinct

from Zt lie in a single transitive class under G(lx). Part (1) follows. Since R is a
center for RP = l2, it follows that if Q e n0, then Q is a center for QP either by
virtue of being a center for ly or by being an image of R under some collineation
in G(li). Note that we have not established the uniqueness of n0.

Lemma 4. Under the hypothesis of Lemma 2, % is s.t. with respect to exactly
q + 1 lines through P.
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Proof. Let G be the set of points including P and all points A # P such that
(1) n is s.t. with respect to AP, (2) A is a center for AP.

Suppose that n is a (strict) s.t. plane with respect to exactly k lines through P.
Then G contains kq + 1 points. Let G be the set of points B such that n is s.t. with
respect to BP, but B £G. Then the q2 lines through B distinct from BP are all in
the same transitive class under the group of elations with axis BP. Hence there
is some integer j such that each of these lines contains; points in G. Counting the
points on BP, the total number of points of G is therefore

q2j + q + 1 = kq + 1
and hence

qj + 1 = fc.
Now any line not through P which contains a point of G must contain exactly

j points of G. If 7t is s.t. with respect to l¡, i = I, ■■■ ,k, then each point on Z¡
belongs to either G or G. Hence any line not through P which contains no points
of G must contain k points of G. Thus every line not through P contains either
k or j points of G. Now let A ^ P, A e G. If each line through A different from
AP contains ; points of G (J — 1 points different from A), then we must we have
that the total number of points in G is

(j- \)q2 +q +1 =q2j + q + 1.

Since q ¥= 0, this leads to a contradiction.
We have remaining the possibility that at least one line through A contains

k points of G. Now the lines through A (distinct from AP) occur in transitive classes
of length q under the elation group with axis AP. Hence if one line contains k
points, at least q lines contain k points of G. These q lines together with AP then
account for all

kq + 1 = (k — l)q + q + 1 points of G.

But the remaining q2 — q lines through A must each contain ; points of G. We
have a contradiction unless; = 1, and k = q + 1.

Lemma 5. If n is a strict s.t. plane with respect to three nonconcurrent lines
lu l2, and l3 and if /t (~\l2 = P, l2 nl3 = Q, /3 n ^ = R, then there exists a
subplane n0 which contains P, Q, and R such that:

(1) 7t is a strict s.t. plane with respect to every line of n0 which goes through
P, Q, or R.

(2) P (QorR) is a center for every line of n0 which goes through P (QorR).
(3) // T e n0, T # P, Q, R then T is a center of TP, TQ, and TR.

Proof. Let n1, n2, n3 be the subplanes determined by ^ and l2, l2 and l3, l3
and Zt as in Lemma 3. The points P, Q, and R are centers for lt and l2, l2 and l3
and lx by Lemma 2. The subplanes n^ and n3 both contain the centers for Zx and
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the transitive class which contains Q under the elation group G^). Hence 7t! = 7t3.
Similarly, itx = 7t2. Lemma 5 is then a direct consequence of Lemma 3.

Theorem 2. // 7t is a strict semi-translation plane with respect to I and n
admits a collineation moving I, then it has a subplane n0 of order q such that:

(1) Every collineation of n carries 7t0 into itself.
(2) If it is a strict semi-translation plane with respect to any line I', then V

belongs to it0 and the centers of V are points of it0.
(3) Every point of it0 is a center for some line of it0.

Proof. Let a be a collineation displacing I. Let 7t0 be the subplane determined
by I and la as in Lemma 3. Let P = / O la. If 71 admits a collineation p which
displaces P, it follows from Lemma 5 that Pp e it0. Let Q + P belong to 7t0 and
let T be a collineation fixing P.

By Lemma 4, the line which contains P and Qx must belong to 7t0. By Lemma 3,
7i is a strict s.t. plane with respect to this line. This implies that Qxeit0 and we
have established (1).

Part (2) follows from Lemmas 4 and 5.
Part (3) is a direct consequence of Lemma 3.

Theorem 3. Under the hypothesis of Theorem 2, either (1) there is some
point Pen0 which is fixed by all collineations of it or (2) every elation of n0
extends to an elation of it; every collineation in the little projective group of it0
extends to a collineation on it.

Proof. The points of 7t0 which are not in / are all in a single transitive class
under the group of dations with axis I. If there is a collineation which carries I into
lt and I r\lL = P, then all points of 710 distinct from P lie in a single transitive class
under the full group of collineations. Thus if there is any collineation displacing P,
all points of 7t0 are in a single transitive class. But this implies [10] that all lines
of 7t0 are in a single transitive class.

The theorem then follows from the fact that 7t is an s.t. plane with respect
to every line of 7t0.

We shall now be concerned with conditions under which a semi-translation
plane may be self dual. More generally, we shall consider the case where 7t is a
semi-translation plane and also the dual of a semi-translation plane.

Definition. We shall say that 71 is a dual semi-translation plane with respect
to the point Q if there exists a set 91 of q + 1 lines through Q such that for
each line me% it admits a group of dations of orders with center Q and axis m.

Lemma 6. // 71 is s.t. with respect to I and is dual s.t. with respect to Q,
where Q$l, then it admits a collineation moving I. If it is strict s.t. with respect to
I, then Q belongs to the invariant subplane it0 of Theorem 2. Every collineation
of the little projective group of nQ extends to a collineation of it.
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Proof. Since the elations with center Q fix only the lines through Q, there is
a collineation displacing Z and an invariant subplane n0 in case n is a strict s.t.
plane with respect to Z.

It is well known (and can easily be established by a counting argument) that
if n is any projective plane of order q2 and n0 is any subplane of order q, then
every point of n lies on at least one line of n0.

Let Zj be a line through Q which belongs to n0. If Q $ n0, Q has an axis l2 which
does not belong to n0. The group of elations with center Q and axis l2 permutes
the q2 + 1 points of lr in q transitive classes of length q, Q being the sole fixed
point. Since the q + 1 points on Zx n n0 must be carried into themselves, one of
these points must be fixed. That is, Q must be a point on 2t which belongs to n0.

Note that n admits collineations (elations with axis I) which displace Q. For
each other point Tin n0, there is an elation with center Q whose axis does not go
through T. Hence no point of n0 is fixed by all collineations of n. Hence the last
part of Lemma 6 follows from Theorem 3.

Lemma 7. // n is a strict s.t. plane with respect to I and n is a strict dual
s.t. plane with respect to a point Q on Z, then Q is a center for I. There exists a
subplane n0 which contains the centers for I and the axes for Q. If there is a
collineation of n displacing either I or Q, then there is an invariant subplane.

Proof. Since all collineations fixing Z must fix 9JÏ (Definition 1) and 9JI contains
q + 1 points, elations whose order divides q must fix some point in 9JÏ. Hence Q
must belong to 9JI, i.e., Q is a center for Z.

If g is a center for Z, the lines through Q distinct from Z are split into transitive
classes of length q by the elation group G(l). Thus the q axes for Q which are
distinct from I all lie in the same transitive class under G(l).

If R is any point not on Z but on an axis of Q, the subplane determined by R
as in Lemma 1 contains the centers for Z and the axes for Q.

The remainder of Lemma 7 follows from Theorem 2 and its dual.

Theorem 4. If % is a strict semi-translation plane with respect to I and n is
self dual, then n admits a duality in which I corresponds to one of its centers Q.
Either I and Q are fixed by collineations of n or there is a subplane n0 such that
n0 is fixed by all collineations of n and every collineation in the little projective
group of n0 extends to a collineation of n.

Proof. If n admits a duality in which Z corresponds to a point R not on Z,
Theorem 4 follows from Lemma 6 and Theorems 2and 3, since the little projective
group is transitive on points, i.e., there is a collineation carrying R into any given
point on I.

If every duality of n makes Z correspond to a point on Z, Theorem 4 follows
from Lemma 7, Theorem 3 and its dual. Note that if some collineation moves Z,
there is a "dual" collineation moving Q.
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Remark. Note that if 7t is an s.t. plane with respect to I but is not a strict s.t.
plane with respect to /, the subplane of Lemma 1 is definitely not invariant—the
elation group G(l) is too large. Thus the "strictness " is essential to Theorems 2,3,
and 4, at least insofar as the invariant subplane is concerned. Most of the known
s.t. planes are "strict." Note also that 7t0 is Desarguesian if Theorem 2 applies.

III. Construction of planes. In this section we are not, at the outset, concerned
with semi-translation planes. Theorem 5 (below) holds without restrictions on
the order of the plane.

The following, pointed out to the author by D. R. Hughes, is very similar to
Theorem 20.8.1 in [6]:

Lemma 8. Let it be a system consisting of n2 > 1 points and certain specified
sets of points, called lines, such that:

(1) Each line contains n points.
(2) For each pair of distinct points P and Q, there is exactly one line which

contains P and Q. Then k is an affine plane.

Proof. Since the lines through a given point P induce a partition of the n2 — 1
remaining points into disjoint subsets each containing n— 1 points, it follows
that each point lies on exactly n + 1 lines. If P is not on the line I, n of the lines
through P will intersect / and the remaining line will be "parallel" to /.

In the rest of this paper, 7t will denote an affine plane and 7t* will denote the
projective plane obtained by adjoining a line lx to 7t. If 7t* is a semi-translation
plane with respect to lx, we shall say that 7t is a semi-translation plane. Note that
this is a reversal of our earlier notation.

Theorem 5. Let it be an affine plane of order n, let SR be a set of points
on lm in it*, and let S be a class of sets of affine points such that:

(1) Each element of Q contains exactly n points.
(2) For each pair of affine points P and Q such that PQ n Z^eSJ}, there is

exactly one element of Q which contains P and Q.
(3) // P and Q are distinct points which belong to the same element of S,

thenPQ nZ^eïR.
Then we can form a new affine plane ñ, where the points of ñ are the points

of it and the lines of ñ are (1) the lines of it whose extensions to it* contain no
points of}R; (2) the elements ofQ.

Proof. Each pair of points is contained in either one line of class (1) and no
line of class (2) or in one line of class (1) but no line of class (2). Hence the theorem
follows from Lemma 8.

In [8], the author considered the case where 7t is Desarguesian ; each set in S was
a transitive class of points under an appropriately selected subgroup of the transla-
tion group. In [9], 7t was a dual translation plane, the sets in Q were subplanes of 7t.
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We now return to our restriction that all planes are of order q2 and we consider
only subplanes of order q. However, q need not be assumed to be a prime
power.

Lemma 9. Let n* be a projective plane of order q2. Let 9ft be a set of q + 1
points on Zoo. If P and Q are two affine points such that the line PQ contains a
point o/"9ft, then there is at most one projective subplane which contains 9ft,
P, and Q.

Proof. Let G be the set of points of intersection of the lines determined by P
and 9ft with the lines determined by Q and SOI. Any subplane n0 which contains
P, Q, 9ft must contain all of the points of G. (Note that any proper subplane
which contains 9ft must be of order q since a plane of order q2 can have no sub-
planes whose order is greater than q and 9ft contains q + 1 points.) Excepting the
line PQ, we have determined q + 1 points in n0 on each of q lines through P.
That is, all of the points of n0 are determined except those on PQ. But if R is any
point of G not on PQ, R and P determine the points on PQ. Hence the points
of n0 are completely determined.

Theorem 6. Let n be an affine plane of order q2 and let 9ft be a set of q + 1
points on lx on n*. Suppose that for every pair of distinct points P and Q such
that PQ n Zœe9ft there exists a projective subplane of n* which contains P, Q,
and 9ft. Then the affine parts of the proper subplane of n* which contain 9ft
and the affine parts of the lines of n* which do not intersect 9ft form the lines
of a new affine plane ñ containing the same points as n.

Proof.   The proof is a direct consequence of Theorem 5 and Lemma 9.
Definition.   Following Albert [1], a plane satisfying the conditions of Theorem

6 will be said to be derivable and n will be said to be the derived plane.

Corollary. In Theorem 6, the lines of n which are not also lines of ñ are
affine subplanes of ñ. n can be obtained from ñ in the same way that ñ was
obtained from n.

Proof. Let Z be a line of n but not a line of ñ. Then Z contains q2 points.
For every pair of points P, Q of I there is exactly one line Ï of % which
contains P and Q; moreover Z n / contains exactly q points. Taking the set of
points in Z O I as the set of points on a line of 7r0 (whose points are the points
of I), it follows from Lemma 8 that ñ0 is an affine plane. Hence ñ0 is an affine
subplane of ft. If ñ be extended to a projective plane ñ*, q2 — q points at infinity
will correspond to the parallel classes of the lines common to n and ñ. The
remaining q + 1 points at infinity in ñ* will then be common to the extensions
of the subplanes corresponding to the remaining lines of n, i.e., they will form
the set 9ft.
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Theorem 7. Let a be a permutation of the points of it inducing a collineation
of it* which carries 9JÏ into itself. Then o induces a collineation of ñ* which
carries 93Î into itself.

Proof. Collineations of 71* which fix 9JI carry the set of subplanes containing
9JÎ into itself. Thus o induces a collineation of S. Any collineation of an affine
plane can be extended to a collineation of the corresponding projective plane.
The invariance of 9ft implies that the set of parallel classes of lines common to
7i and 7t is carried into itself. This implies that the extension of a to ñ* carries
2R into itself.

Corollary.   // a induces a translation of it, then a induces a translation of ñ.

Proof. We need only consider the effect of a on the lines which are not common
to 7t and 7t.

Let P and Q be two points such that PQ n SCR = B, where PQ denotes a line of
7t. Let A and C belong to 9ft. Let QC C\PA = S, SB C\QA = T. Then P, Q, S,
T all belong to a subplane 7t0 of 71* which contains 9ft.

A translation of 7t which carries P into Q must carry S into T. Since 7t0 is deter-
mined by P, S and also by Q, T (Lemma 9), the translation in question takes 7t0
into itself. That is, the translation which carries P into Q fixes the subplane
containing P, Q and 9)1; that is, it fixes the line of ñ which contains P and Q.

Now let /0 and ly be lines of ñ such that lx is the image of /„ under a trans-
lation t of 7t. We must show that ït is parallel to /0. If 71* and it* are the cor-
responding subplanes of n*, this amounts to saying that the affine planes 7t0 and
7t, have no points in common.

Suppose that n0 n n1 = Q and 7t0T = jr^. Then 3Pe7t03Pr = Q. Since P and
Q both belong to 7t0, this can only happen (by the argument given above) if
iti = it0. Hence either 7t0 is fixed by t or is "parallel" to its image. This completes
the proof.

Corollary. Let I be a line of it which is not a line of ñ. If it admits a group
of translations transitive on the points of I, then ñ* is a semi-translation plane
with respect to lm. Conversely, if it is a semi-translation plane, there exists such
a line I in it.

IV. Coordinate systems. In this section, we shall be using a modification of
Hall's ternary ring [5; 6]. That is, each point of the affine plane will be represented
by ordered pairs (x, y) of elements of an algebraic system %. Two binary relations,
"addition" and "multiplication," are used with the same meanings that these
terms have in the ternary. Lines will be represented by equations satisfied by the
coordinates. % will be said to be linear if every line has an equation of the form
y = xm + b or x = c. In the projective plane 71* we shall denote the point at
infinity on the line y = xm by (m), the point at infinity on x = 0 by (00). A line
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whose extension to n* contains (m) will be said to have slope m. If g is some
subset of X such that every line whose slope a belongs to g has an equation of
the form y = xoc + ß, we shall say that % is linear with respect to g.

Let g be a subset of the elements of X. Suppose that, using the same operations
as in X and the same form for the equations of lines, g is the coordinate system
of a plane. Then we shall say that g is a subsystem of X. Note that g necessarily
includes the elements 0 and 1 and is closed under the operations in X.

We shall be especially concerned with cases where % is of order q2 and contains
a system g of order q. In such cases, small Greek letters are to be understood
as designating elements of g- The letters p, a, and t are exceptions and will
be reserved to denote operators.

Theorem 8. Let n* be a semi-translation plane. Let n0 be an affine subplane
of n as in Lemma 1. Then n can be coordinatised by a system X containing a
subsystem g which is a Veblen-Wedderburn system of order q. Furthermore:

(1) Points ofn0 have coordinates in g.
(2) Lines of n0 have equations of the type y = xa. + ß or x = y.
(3) Lines of % whose slopes m are not in g have equations of the form:

y = (x — a)m + ß.
(4) (x — <x)y = xy — ay for all x e X, all a, y e g.
(5) If c£% and d is any element ofX, there exist unique a and ß such that

d = ca + ß.

Proof. Since n0 is a translation plane, the coordinate system can be chosen so
that 7r0 is coordinatised by a Veblen-Wedderburn system g. It is readily verified
that the translation which carries (0,0) into (a, 0) is given by the mapping
(x, y) -*■ (x + a, y). Similarly, the translation carrying (0,0) onto (0, ß) is given by
(x, y) -> (x, y + ß) and the translations of G (Lemma l)are (x,y)-*(x +a,y +ß).

This implies that (x + a) + ß = x + (a + ß) for all x in X.
The fact that 7t0 is of order q and n is of order q2 implies that every line of n*

contains at least one point of n*. Thus if a line Z contains none of the points at
oo of 7t*, the slope m of I does not belong to g and Z contains some point (a, ß).

It follows that Z is the image of the line y = xm under the translation
(x, y) -* (x + a, y + ß). This implies that coordinates of points on Z satisfy
y = (x — a)m + ß.

The above equation still holds if meg and the line I goes through a point
(a, ß). In particular, a line of slope y, y e g through (a, 0) has the equation
y = (x — a)y. Since this line also goes through (0, ay), it also has the equation
y = xy + ay. Hence (x — ce)y = xy — ay and, since the lines in question belong
to 7t0, lines of n0 are coordinatised by equations of the type y = xy + ß.

Every point of n which is not in n0 lies on exactly one line of n0. Hence if c $ g,
the point (c, d) lies on some line y = xa + ß, i.e., d = ca + ß. Conversely, if
d = ca + ß, (c, d) is on y = xa + ß. Hence c and d uniquely determine a and ß.
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Theorem 9. Let it be an affine plane of order q2 coordinatised by a system
Z such that:

(1) Z contains a subsystem 3 of order q.
(2) Z is linear with respect to %.
(3) Addition in Z is associative and commutative.
(4) For each a # 0 in Z any two of x, ß, y (in $) uniquely determines the third

so that aot—aß = ay.
(5) Similarly, any two of a, ß, y determine the third so that (ax)ß = ay.
(6) For given a, beZ such that a + b # 0, a and ß uniquely determine each

other by the equation
(a + b)a = aß + bß.

Then, (I) for each set of fixed elements a ^ 0, c, d of Z, the set 9Î of points of
the form (at + c, an + d) (where t and r\ range over %) is the set of points in an
affine subplane. (2) 7t is derivable.

Proof. Note that the number of points in 9Î is equal to q2, since t and n may
independently take on q different values each.

Let P= (ati + c, an^ + d), Q = (at2 + c, an2 + d). If t\ = ti, P and Q are on
the line x = at t + c. Otherwise we wish to show that the slope of PQ belongs to Ç.

It will suffice to show that there exist p, b such that P and Q are both on
y = xp + b (hypothesis (1)). This will be the case if there exists p. such that
arii - an2 = (atx + c)p - (at2 + c)p.

Let t be determined so that at\ — at2 = at- Let n be determined so that
ani — an2 = an. Let y be determined so that (a£)y = an. Let p be determined
so that

(ati + c)p - (at2 + c)p = [(ati + c) - (at2 + c)]y.
Then

(aft + c)p - (at2 + c)p = (ati - a£2)y = (aÇ)y = an = ant - atj2.

Hence the slope of PQ belongs to Ç.
Now the equation of PQ may be written

y = xp + (anx + d) — (ati + c)p.

If we put x = at + c (t not necessarily the same as determined above), we get

y = (at, + c)p + (an! + d) - (ati + c)p

= [(at, + c) — (ati + c)~\l + ar¡i + d  for some A

= (at - ati)X + arii + d

= (av)X + a7/1 + d for some v

= an + d for some n.
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That is, for each £, there exists a unique n such that (ai, + c, an + d) is on the
line PQ. Thus PQ n 9Î contains exactly q points.

Consider the geometrical system whose points are the points of 9Î and whose
lines are the intersections of 9Î with the lines of n containing at least two points
of 9Î. By Lemma 8, this system is an affine plane. This establishes conclusion
(1).

We now wish to apply Theorem 6. The set 9ft consists of (oo) and (a), where
a varies over g. We must establish that if P and Q are any two points such that
the line PQ intersects Zœ in 9ft, then there exist a, c, d, £l9 nu Ç2, n2 such that
P = (a£i + c, an^ + d),   Q = (aÇ2 + c, an2 + d).

Suppose that P and Q are on the line y = x\i + b. We may write

P = (xu Xip. + b),   Q = (x2, x2ju + b),   Xj # x2.

Let 772 be determined so that

x2[i- x^p = (X2-X!>72.

Let a = x2— x1; c = xl5 £t = 0, ¿;2 = 1, d = xxp + b. Then the coordinates
of P and Q are in the desired form. We now apply Theorem 6 to complete the
proof of our theorem.

Note that, as in part (5) of Theorem 8, if t is some fixed element of X which
is not in g and a is any element of X, then the point (i, a) is on exactly one line
y = xa + ß of the subplane coordinatised by g. Hence there exist a and ß such
that a = ta + ß.

In the known planes which are derivable (or, rather, the planes known to be
derivable) g is a field and conditions (4), (5), and (6) of Theorem 9 occur in the
more restrictive form equivalent to saying that the additive group of X is a vector
space of dimension two over g. This situation will be denoted more briefly by
saying that X is a vector space over g.

The author would conjecture that systems satisfying the weaker conditions
do exist. However, he has not been able to find any such systems.

The following two theorems are modifications of an argument due to Albert [1].

Theorem 10. Let n be an affine plane coordinatised by a system X as in
Theorem 9, where X is a vector space over g. Let t be a fixed element ofX which
is not in g. Then ñ can be coordinatised by a coordinate system X such that
a point with coordinates (x, y) = (t^ + ¿2, tn1 + r\2) in X has coordinates
(x,y) = (i^i + nt, tt,2 + n2) in X.

Proof. Recall that, for fixed a, c, d, the set of points (x, y) = (ai + c,ar\ + d)
is a line of ñ. Choose the coordinate system for ñ so that the following sets of
points (x, y) are respectively the lines x = 0, y = 0 and y = x :

(!;, r,),(tÇ,tn) and ((t + m,(t + l)n).
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Let (x, y) = (0, t + 1) be the point (x, y) = (1,1).
Then the points on x = constant must be the set (x, y) = (t + c, n + d) for

some fixed (c, d).
The set of points on y = constant must be the set (x, y) = (tt + c,tn + d) for

some fixed (c, d).
Now the point (x,y) = (tti + ti,tnx + n2), where ti, ^»'/n'fa are fixed, is

the intersection of the sets for which

(x, y) = (t + tti, n + trji)      (t, n vary) (i.e., x is constant)
and

(x, y) = (tt + t2, tn + n2)       (t, n vary) (i.e., y is constant).

The respective intersections of these sets with y = x are

(tt + tti, ni + "/0 and (tt2 + t2, tn2 + n2).

Hence if we assign to the point (x, y) = (tt + t, tn + n) on y = x coordinates

(x,y) = (tt +nMi+rj),
then the set for which

(x,y) = (t + tí 1,1/ + íf/i)

becomes x = tti + Vi- Similarly,

(x, y) = (tt + ti, tn + n2)

becomes y = tt2 + n2. That is, if

(x, y) = (ttt + ti, tli + ïa)i

then (x, y) = (tti + 1i, tti + li)-

Theorem 11.    Under the hypothesis of Theorem 10:
(1) Addition in Z is isomorphic to addition in Z.
(2) 5 is a subsystem ofZ.
(3) Z is linear with respect to §■
(4) Multiplication on the right by elements offt is the same in Z and Z.
(5) If'°denotes multiplication in Z, then (tti+1i)° (t^-i + X2) = tt2+n2

is equivalent to (tti + ti)(tPi + Pi) = tr¡i+n2 where Ài(tpt + p2) = f + A2
provided Aj # 0.

Proof. The set of points (x, y) = (t\i,r\2) is the set of points on x = 0 and
hence is a subplane of 5. Hence g is a subsystem of Z.

In general if / is a line of ñ but nota line of 7t, / contains a set of points of the
form

(x,y) = ((tot + ß)t + (tyi + 50, (ia + ß)n + (ty2 + ô2))

where t and n vary. For each (x, y), the corresponding (x, y) are given by
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x = tfâ + y j) + (at¡ + y2),

y = t(ßt + <5X) + (ßr, + ô2).

Hence y - xa~xß = í(<5j — y^-1/?) + (ô2 — y2a-1/?) unless a = 0. For a = 0, x
is independent of i, n, i.e., we have the line x = iyx + y2. Thus the "new" lines
are linear in X with slopes in g. This includes all lines of ñ with slopes in g, so
we have established (3).

With the proper choice of 8lt y1; <52, y2 we get that y = xa-1/? is the equation
of the line of % through (0,0) and (x,y) = (1, a- */?). This establishes (4).

Furthermore, with a = ß we obtain y = x + i(<5i—yj + (<52 — y2) as the
equation of the line in ñ with slope 1 through (x,y) = (Q,t(ô1 — y1) + (<52 —y2)).
This is essentially the definition of addition in X; we have established (1).

Now let us determine multiplication in X. The line through (0,0) and
(x,y) = (l,tAt + A2) has the equation y = xo(tXí + A2). Now(x,y) = (l.r^ + A2)
is equivalent to (x, y) = (11; t + X2). For Ai ^ 0, this is also a line of 7i through
the origin. Its equation is of the form y = x(tpt + ¡i2), where A1(i^1 + p.2) = t + X2.

Conclusion (5) then follows from the general relation between (x, y) and (x, y).
Note that in Theorem 11, x = 0 is the subplane coordinatised by g in ñ and

x = 0 is the subplane coordinatised by g in n. In the more general situation, we
can choose the coordinate systems so that x = 0 is coordinatised by a subsystem
g of X and x = 0 is coordinatised by a subsystem g of X. This can be done
without reference even to Theorem 9, which has not been established as a necessary
condition for derivability.

Theorem 12. Let n be a derivable semi-translation plane, where the set 9ft
of Definition 1 coincides with the set 9ft of Theorem 6. Let ñ be coordinatised
so that x = 0 is the affine part of one of the subplanes of Lemma 1. Then X is
linear with associative and commutative addition-

Proof. ByTheorem 20.4.3 in [6],the translation groupofrcisabelian. Theorem
12 then follows by applying the corollaries to Theorem 7 and Theorem 20.4.5
in [6].

Lemma 10. Let n be derivable and let I be a line of n which is a subplane of
ñ. Let % be coordinatised so that I is coordinatised by a substem g ofX- Let a
be a collineation of n* which fixes I pointwise and carries 9ft into itself. Then
a induces an automorphism ofX which fixes each element o/g.

Proof. By Theorem 7 a induces a collineation of n. This collineation fixes
pointwise the subplane coordinatised by g. Such a collineation induces an auto-
morphism of X which fixes each element of g.

Lemma 11. Let n be an affine plane coordinatised by a system X containing
a subsystem g. Suppose that n admits all elations with axis x = 0, center (oo)
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which carry (0) into (a) for all a in $. Then Z satisfies the partial distributive
law a(b + a) = ab + aotfor all a, b in Z and all a in 5-

Proof. The proof is a trivial modification of the argument used in the proof
of part 2.3 of Theorem 20.5.2 in [6].

Theorem 13. In Theorem 12, suppose that it is a strict semi-translation plane
which admits a collineation moving lœ or is self dual. Then Z can be chosen so
that Z also admits a group of automorphisms of order q leaving the elements of
% fixed.

Proof.   The proof follows from Lemma 10, part 2 of Theorem 2, and Theorem 4.

Theorem 14. Let it be a derivable plane which is a dual translation plane
with respect to a point in the set 9ft of Theorem 6. Then ñ is a semi-translation
plane which can be coordinatised by a system Z satisfying the conditions of
Theorem 8 and admitting a group of automorphisms of order q which leaves
elements of $ fixed. If ñ is a strict semi-translation plane which is self dual,
this can be done in such a way that Z satisfies the partial distributive law

a(b + a) = ab + act.

Proof.   The proof follows from Lemmas 10 and 11, Theorems 2 and 4.
With the possible exception of some of the translation planes, the known semi-

translation planes are all derivable and satisfy the hypotheses of Theorem 10.
Those constructed by the author [9] were derived from dual translation planes.
They are strict semi-translation planes unless the dual translation plane has a
translation group whose order is greater than q2. A question of fundamental
importance, therefore, is the nature of coordinate systems satisfying at least
the partial left distributive law and admitting automorphisms as in Theorems 13
and 14.

Theorem 15. Let it be a semi-translation plane coordinatised as in Theorem
8, where Z is a vector space over $. Suppose that Z admits a one-to-one mapping
a onto itself and that

(1) Z is linear with respect to Ç.
(2) a(b + a) = ab + aa.
(3) aa = aa.
(4) cca = a.
(5) (aa + ß)a = (aa)a + ß.
(6) a(bo)e% ^ b(ao) = a(bo).
(7) aa2 = a

for all a, b, in Z and all a., ß in ft.
Then it is self dual.

Proof.   Consider the following mapping of order two between points and lines :
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(oo)<->Zœ,

(ca)<r-*x =  c,

(c, ca-ß)<-+y = (x-a)(ca) + ß,   c£g,

(a, d) <-> _v = xa — rfo\

Such a mapping between points and lines is a polarity if, for every two points
P and Q such that P is on the polar of Q, then Q is on the polar of P. (Note that,
by Theorem 8, ca-ß takes on all values in X as a, ß vary and c is fixed.)

If P is a point at infinity and Q is any other point, the verification of this pro-
perty is immediate.

The condition that (c, ca-ß) be on the polar of (y, d) is that ca—ß — cy — da,
i.e., da = c(y — a) + ß. The condition that (y, d) be on the polar of (c, ca-ß) is
that d = (y — a)(ca) + ß. Under the hypotheses, each of these implies the other.

Let f be a fixed element of X. By (5) of Theorem 8, each element of X may be
written in the form ta + ß.

The condition that (ifx + Ç2 + a, tyt + y2 + ß) be on the polar of
Olí + r¡2, (tJi + li)a-P) is that (*& + f2)D>/i + n2)a\ = tyi + y2. We are
reduced to the case already covered unless Ç 1 and ni are both different from
zero.

Now iyt + y2 + ß = (t^ + t2 + a)i;1yl-(i2^1yl + aC11y1-y2-ß)-
Hence the polar of (ífj + f2 + a, iyx + y2 + ß) is

.v = (x-írIri)[(ííi + É2 + «y] + ^I1?! + rtVii-ii-ß-
Hence we must show the equivalence of the conditions

(if   + f 2) [fai + >h)ffj = ill + 72.

(ftii + ni - Éí^OKtfi + £2 + a)*] + ^rVi + «êï1?! - y2 - z?
= f^a + n2a - ß.

The second equation reduces to

(ttli +r¡2- ÉI^i) [(«fi + M = 72 - ÜafT1?!.
By condition (6), this is equivalent to

(tfi + ¿2) [(ftfi + Va - EI^M = 72 - tl&Jl
or

(«fi + wLfai + */2>] - Wi + wír'vi = 72 - «r'ri.
i.e.,

Wi + ¿2) [(«/i + Í2)ff] = <7i + 72-

We have taken care of all cases except those in which the x coordinates of both
P and Q belong to g. The condition that (y, c) be on the polar of (a, d) is that
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c = yot—do; that (a, d) be on the polar of (y, c) is that d — ay —ca. These two
are equivalent.

V. Special cases. If 71* is a Hughes plane [7], then 71* is of order q2 and has
a subplane it* of order q. Each collineation in the projective group of ti*extends
to a collineation of 7t*; it* is invariant under all collineations of 71*. Thus 71*
is a strict semi-translation plane with respect to every line of 71 *•

The homogeneous coordinate system used by Hughes becomes, in the non-
homogeneous form, a coordinate system satisfying the conditions of Theorem 8.
Multiplication and addition in Z are the same as in a left nearfield of order
q2. Z is a vector space over g; the elements of % commute in the multiplica-
tive group of Z. It readily follows that the conditions of Theorem 15 are sa-
tisfied with a being the identity. Hence the Hughes planes are self dual.

Hughes has pointed out to the author that the Hughes planes are derivable.
Indeed, Theorems 10 and 11 apply. Let % be the plane derived from a Hughes plane.
Since the order of the translation group of the affine Hughes plane is exactly q2, it
follows from Theorem 7 and its corollaries that the translation group of n has
exactly one center; the affine points on each line through this point at infinity
constitute a single transitive class. (If we use Theorems 10 and 11 to coordinatise
Tt, these will be the lines x = constant.) Hence ft is not a semi-translation plane.
The line x = Ois fixed by collineations fixing 9ft. If it is a dual translation plane,
it must admit allelations with axis x = 0, center (00).This implies that the near field
coordinatising n has a group of automorphisms of order q. With certain possible
exceptions, nearfields of order q2 do not admit such automorphisms [14].

Hence the planes derived from the Hughes planes form another new class
of planes.

Another interesting special case is the following. Suppose that we start out with
a Desarguesian plane coordinatised by a field and apply Theorems 10 and 11.
We obtain a right Veblen-Wedderburn system. (Hughes and Albert [1] have both
pointed out that this is a Hall V. W. system.)

Interchanging left and right multiplication, we get a left V. W. system to which
Theorems 10 and 11 can again be applied to get the coordinate system of a semi-
translation plane.

Specifically, if the original field was of order q2, if g was a subfield order q and
t was an element not in the subfield such that t2 = tct0 + ß0, then multiplication
in the final system (coordinatising the semi-translation plane) is given as
follows:

(tit + ii)(tXt + A0 = t(X2tt - i2Xt - a0)

+ (Ui - «o^r1 - niï%+ XfiVßo),  Éi,¿i # o,
y(tXx + X2) = (íAt + X2)y = tXfl + X2y.
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If we define a by (tXY + /l2)cr] = — tXy + X2, Theorem 15 applies and we have
a self-dual semi-translaiion plane.

We have verified that for a0 = 0, q # 3, there are no collineations moving
lx into x = 0. The details are messy, and we omit the proof.

Finally, suppose that a0 # 0 and g is of characteristic two. We find that
(if ! + f2 + a0X\l) (»A, + X2) = ta0 + aQX~11X2 + (if, + f^O^ + X2). This imp-
lies that if (ifi + f2 + a, (ifi + f2)(^i +k2) + ß) = (c,d) is on the line
y = (x - a) (íAx + A2) + /?, then (c, ¿Z + ia0) is on the line

y = (x - a - ao/171) (ilj + A2) + 08 + a,,^1 A2).

(The cases where f t or At are zero require special treatment.)
Hence the mapping (x, y) -» (x, y + ia0) is a translation in addition to the

translations (x, y) -* (x + a, y + /?).
Together with the dual translation planes from which they were derived, these

planes form the only examples known to us of semi-translation planes which are
neither translation planes nor strict semi-translation planes. André [3] has given
examples of infinite planes with a similar property.
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