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ABSTRACT

 

Cables, such as are used in cable-stayed bridges, suspension bridges, guy wires, transmission lines, and
flexible space structures, are prone to vibration due to their low inherent damping characteristics.  The
mitigation of cable vibration is necessary to minimize negative impact.  Transversely-attached passive
viscous dampers have been implemented on some cables to dampen vibration.  However, it can be shown
that only minimal damping can be added if the damper attachment point is close to the end of the cable.
For long cables, passive dampers may provide insufficient supplemental damping to eliminate vibration
problems.  A recent study by the authors demonstrated that “smart” semiactive damping can provide sig-
nificantly superior supplemental damping for a cable modeled as a taut string.  This paper extends the
previous work by adding sag, inclination, and axial flexibility to the cable model.  The equations of
motion are given.  A new control-oriented model is developed for cables with sag.  Passive, active, and
smart (semiactive) dampers are incorporated into the model.  Cable response is seen to be dramatically
reduced by semiactive dampers for a wide range of cable sag and damper location.
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INTRODUCTION

 

Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges and
other cable structures.  These cables are subject to environmental excitations, such as rain-wind induced
vibration, and support excitations.  Steel cables are flexible and have low inherent damping (Yamaguchi
and Fujino, 1998), resulting in high susceptibility to vibration.  Vibration can result in premature cable or
connection failure and/or breakdown of the cable corrosion protection systems, reducing the life of the
cable structure (Watson and Stafford, 1988).  Additionally, cable vibrations can have a detrimental effect
on public confidence in the safety of cable structures.  Transmission lines have also demonstrated signif-
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icant vibration problems, including those caused by vortex shedding, wake-induced oscillation, and iced
and ice-free galloping.  Fatigue of the transmission lines near clamps or masses (such as aircraft warning
spheres) is the principal effect of conductor vibration, though galloping can cause sparkover between
lines of different phase (Tunstall, 1997).

A number of methods have been proposed to mitigate cable vibrations.  For stay cables, tying cables
together, aerodynamic cable surface modification, and passive and active axial and transverse cable con-
trol have been used to dampen vibration.  Tying cables together shortens the cables and is intended to
shift the frequencies of the cable out of the range of the excitation.  This strategy deteriorates the aesthet-
ics of the cable structure.  Changing the surface of the cable to reduce susceptibility to environmental
excitations has also been explored, but is impractical for retrofit applications and may increase the drag
on the cable (Yamaguchi and Fujino, 1998).  For transmission lines, two primary methods are used for
reducing vibration.  Stockbridge dampers (Stockbridge, 1925), a variety of tuned vibration absorbers, are
the most common means today for adding supplemental damping to transmission lines (Tunstall, 1997).
An alternate solution for multiple parallel transmission lines is adding dampers to the bundle spacers
routinely used for separating conductors  (Edwards and Boyd, 1965). 

A number of researchers have proposed passive control of cables using viscous dampers attached trans-
verse to the cables.  Kovacs (1982) first identified that an optimal damper size exists and developed opti-
mal damping coefficients for the transverse passive viscous damper control strategy of a taut cable.
Sulekh (1990) and Pacheco 

 

et al.

 

 (1993) numerically developed a “universal” design curve to facilitate
the design of passive dampers for stay cables.  This nondimensionalized curve can be used to specify the
optimal viscous damping properties for a desired mode of any given cable span and fundamental fre-
quency.  Krenk (2000) obtained explicit asymptotic results for the optimal damping coefficients, devel-
oping an analytical solution for the design curve.  These studies indicate that, for a passive linear damper,
the maximum supplemental damping ratio is approximately /2

 

L

 

, where  is the distance from the
cable anchorage to the damper and 

 

L

 

 is the length of the cable.

Transverse passive viscous dampers have been applied to full-scale applications, including the cables on
the Brotonne Bridge in France (Gimsing, 1983), the Sunshine Skyway Bridge in Florida (Watson and
Stafford, 1988) and the Aratsu Bridge in Japan (Yoshimura 

 

et al.

 

, 1989).  The damper location is typi-
cally restricted to be close to the bridge deck for aesthetic and practical reasons.  For short cables, a high

/

 

L

 

 ratio is feasible and a passive damper can provide sufficient damping.  For longer bridge cables,
such as in the planned 1100 meter main-span bridge in Hong Kong (Russell, 1999) or the Normandie and
Tatara bridges with cables more than 450 meters long (Endo 

 

et al.

 

, 1991; Virloguex 

 

et al.

 

, 1994), passive
dampers cannot provide enough supplemental damping to eliminate vibration effects, such as the rain-
wind induced motion, without significant changes to the aesthetics of the structure.

Several recent papers by the authors have shown that semiactive dampers may provide levels of damping
far superior to their passive counterparts.   Johnson 

 

et al.

 

 (1999, 2000, 2002a) used a taut string model of
in-plane cable vibration and developed a control-oriented model using a static deflection shape in a series
expansion for the cable motion.   They showed that a “smart” semiactive damper can provide 50 to 80%
reduction in cable response compared to the optimal passive linear damper.  The level of reduction was
most significant when the damper is connected close to the cable anchorage.  A passive damper moved
close to the end of the cable was shown to rapidly lose any ability to add damping to the system, whereas
a semiactive damper retained most of its performance even at damper locations below 1% of the cable
length (though with larger forces).

The taut string model of cable vibration neglects some cable characteristics that are known to have some
affect on passive damper performance.  Cable sag, inclination, and axial flexibility all affect the dynam-

xd xd

xd
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ics of the cable.  In particular, they combine together to modify the stiffness of the modes that are sym-
metric about the center of the cable.  Previous studies have examined the performance of transverse
passive viscous dampers on sag cables.  For example, using a sine series Galerkin approach, Sulekh
(1990) showed that the damping added to the first symmetric mode by passive dampers was reduced by
sag — by about 14% for a typical stay cable sag level — compared to that predicted by a taut string
model.  Further, the higher modes were virtually unaffected.  An alternate approach by Xu 

 

et al.

 

(1998a,b,c), using a spatial discretization, made similar observations, with a 38% decrease in first-sym-
metric-mode damping for a long (442.6 m) stay cable with slightly larger sag.

This study extends the aforementioned work by the authors to investigate the combined effects of cable
sag, inclination, and axial flexibility on the performance of semiactive cable damping.  An extension to
the control-oriented model of Johnson 

 

et al.

 

 (2002a) is developed herein to accommodate these cable
characteristics.  Cables with linear passive viscous dampers, active dampers, and semiactive dampers are
examined for various damper locations and for various levels of cable sag, inclination and axial flexibil-
ity.  Semiactive damper performance is seen to degrade some for certain regions, but far less than their
passive counterparts.  Semiactive dampers are further shown to perform significantly better than passive
dampers for sag, inclination and axial flexibility typical of bridge stay cables and for most larger levels
of sag.

 

IN-PLANE MOTION OF CABLES WITH SAG

 

Consider the uniform cable suspended between
two supports of different heights, as shown in
Figure 1.  This study investigates cables with a
flat profile (flat-sag cables); for a horizontal cable,
this requires the sag to span ratio be less than 1:8
(for inclined cables the assumption is valid but
over a smaller range of sag) (Irvine, 1981).  Fur-
ther, the effects of longitudinal flexibility are
included and flexural rigidity is ignored

 

†

 

.  The
static profile of the cable can be approximated by
a parabolic curve and the in-plane transverse
cable motion , relative to the static profile,
is given by the nondimensional equation of
motion (Irvine, 1981)

(1)

in the domain , with boundary conditions .   is the viscous damping per
unit length,  and  denote partial derivatives with respect to  and , respectively,  is the dis-
tributed load on the cable,  is a transverse in-plane damper force at location , and  is the
Dirac delta function.  The nondimensional quantities are related to their dimensional counterparts,
shown with overbars, according to the following relations

 

† Christenson (2001) showed that flexural rigidity typical of bridge stay cables has only a small effect on the per-
formance of transverse damping strategies.

Figure 1.  In-plane static 
profile z(x) and dynamic 
loading f(x,t) of inclined 
cable with sag and trans-

verse damper force.
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(2)

where 

 

L

 

 is the length of the cable,  is the fundamental natural frequency of the undamped cable with-
out sag, 

 

H

 

 is the component of cable tension in the longitudinal 

 

x

 

-direction, and  is the cable mass per
unit length.   is the nondimensional independent parameter (Irvine, 1981)

 

‡

 

(3)

where  is the inclination angle,  is the static (stretched) length of the cable

(4)

For flat-sag cables,

(5)

is the peak (dimensional) sag of the parabolic static profile

(6)

The effects of cable sag, angle-of-inclination, and axial stiffness on the nondimensional dynamic
response of the system enter only though the independent parameter 

 

λ

 

2

 

.  Increasing sag increases 

 

λ

 

2

 

 but
increased angle of inclination and axial flexibility decrease 

 

λ

 

2

 

.  While one could assume variations of 

 

λ

 

2

 

are from changes in the angle-of-inclination or axial stiffness, for simplicity and clarity, this paper will,
without loss of generality, refer to variations in 

 

λ

 

2

 

 as varying levels of sag, though 

 

λ

 

2

 

 really captures the
effects of all three of these phenomena for a flat-sag cable.

Stay cables on cable-
stayed bridges typically
have 

 

λ

 

2

 

 values on the
order of 1 or smaller
(Gimsing, 1983); some
stay cables reported in the
literature have larger 

 

λ

 

2

 

 values such as the 2.2  reported in Pacheco 

 

et al.

 

 (1993) and the 3.6 reported in
Xu 

 

et al.

 

 (1998a).  Typical transmission line characteristics (Tunstall, 1997) give a λ2 in the neighbor-
hood of 90.   is the range typical for the main cable on a suspension bridge (Gimsing,
1983).  Specific performance examples will be given below for control of cables with some λ2 values of
interest, as well as the general trends as λ2 increases from 0 to 500.  Typical static cable profiles are
shown to scale in Fig. 2 for several λ2 values*.  Even for large λ2 values such as the λ2 = 1000 shown, the

‡ Irvine’s terminology “the independent parameter λ2” (Irvine, 1981) is adopted herein; others have referred to λ2

as the “nondimensional Irvine parameter,” or the “nondimensional sag parameter.”
* The cable parameters are taken from Pacheco et al. (1993) assuming steel material properties; only tension is

adjusted to give the varying levels of λ2 and sag using equations (3), (4), and (5).
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Figure 2.  Typical static sag profiles.
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midspan sag-to-length ratio d is less than the 1/8 required for the flat-sag cable (i.e., parabolic static pro-
file) assumption for horizontal cables (Irvine, 1981).

Control-Oriented Series Solution to the Nondimensional Equation of Motion

Determining an accurate and efficient control-oriented design model is the first and fundamental step in
the design of a semiactive control strategy.  A design model is sought that can capture the salient features
of the dynamic system with a relatively small number of degrees-of-freedom (DOFs).  Previous trans-
versely-controlled cable models have employed the Galerkin method, using only sine shape functions
requiring 350 DOFs (Sulekh, 1990; Pacheco et al., 1993), as well as hybrid-type finite element methods
which also require numerous DOFs to insure accurate results (Xu et al., 1998a).  Semiactive control
design, as well as the computation of performance criteria through simulation with numerous control
strategies, is impractical for systems of such size.  Thus, successful semiactive control design is depen-
dant on determining a lower order, control-oriented design model.  This is accomplished here by includ-
ing a static deflection shape in addition to the sine series in the approximation of the cable motion.

Using a Galerkin method, the motion of the cable may be computed using a finite series approximation

(7)

where the  are generalized displacements and the  are a set of shape functions that are contin-
uous with piecewise continuous slope and that satisfy the geometric boundary conditions

(8)

A sine series may be used for the shape functions, though Johnson et al. (2002a) showed that the conver-
gence of this series is slow, making it difficult to construct a control-oriented model.  However, they also
demonstrated that the introduction of a static deflection shape as an additional shape function signifi-
cantly improved the series convergence and provided an excellent control-oriented model.  This
approach is used here as well, though it must be extended to account for sag.

Consider the static deflection of a cable with sag due to a unit load at location  — the same as the
equation of motion (1) without the dynamic terms and with a unit point load on the right hand side

               (9)

For a given deflection , the integral term in (9) acts like a constant load distributed over the
entire length of the cable.  Such a load produces a parabolic deflection.  The point load, given by the
Dirac delta, adds a triangular component.  Substituting a linear combination of parabolic and triangular
deflections into (9) and solving for the unknown coefficients results in the static deflection

(10)
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where  is the Heaviside, or unit step, function.  For consistent shape function scaling, (10) is
normalized to give a maximum deflection of 1§, resulting in the static deflection shape function

(11)

Note that as the independent parameter λ2 tends to zero, (11) reverts to the triangular static deflection

(12)

used by Johnson et al. (2002a) to model a taut cable (where λ2 = 0).  The remaining shape functions are
sine functions:

,   j=1,...,m–1 (13)

Substituting the shape functions into the nondimensional equation of motion (1) and simplifying results
in the matrix equation

(14)

with mass , damping , and stiffness  matrices

(15)

(16)

§ It can be shown that the peak of wstatic(x) always occurs at x = xd.
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(17)

externally applied load vector 

(18)

vector  of generalized displacements, and damper load vector 

(19)

Note that the stiffness in (17) is comprised of stiffness due to tension, as in the taut-string model, plus
additional stiffness due to sag that only affects the modes not antisymmetric about the center of the cable.
Further, note that the mass (15), damping (16), and stiffness (17) elements reduce exactly to the corre-
sponding equations in Johnson et al. (2002a) in the absence of sag.

The resulting model captures the salient features of a cable damper system much better than with sine
terms alone.  With just 11 terms (static deflection plus 10 sine terms), the first several natural frequencies,
damping ratios, and mode shapes are more accurate than those computed with 100 sine terms alone.
Increasing to 21 terms (static deflection plus 20 sine terms) provides better accuracy than several hun-
dred sine-only terms.  Convergence tests showed this to be true in the uncontrolled case, in the case with
the optimal passive linear viscous damper, and with an active damper.  For the remainder of this study, 21
terms (static deflection plus 20 sine terms) will be employed.

For control design, the system dynamics may be equivalently written in state-space form with input/out-
put relations
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(20)

where  is the state vector,  is a vector of noisy sensor
measurements (includes the displacement and acceleration at the damper location),  is a vector of sto-
chastic sensor noise processes, and

(21)

CONTROL OF CABLE VIBRATION

Three types of dampers are considered in this study.  The damper of primary interest is a general semi-
active device, one that may exert any required dissipative force.  However, comparison with passive lin-
ear viscous dampers, similar to the oil dampers that have been installed in numerous cable-stayed
bridges, is vital to demonstrate the improvements that may be gained with semiactive damping technol-
ogy.  Additionally, comparison with active control devices is useful as they bound the achievable perfor-
mance.

Passive Viscous Damper

If the damping device is a passive linear viscous damper, then the damper force is 

  (22)

where  is a nondimensional damping constant and  is the nondimensional velocity at the
damper location

(23)

The modal damping may be determined via a straightforward eigenvalue analysis.  Note that the optimal
passive damper supplies pure damping; stiffness tends to degrade the damper performance (Sulekh,
1990; Xu et al., 1998b).

Alternate Measures of Damper Performance

Modal damping ratios provide a useful means of determining the effectiveness of linear viscous damping
strategies.  However, using a semiactive damper introduces a nonlinearity into the combined system.
Consequently, performance measures other than modal damping must be used for judging the efficacy of
nonlinear damping strategies in comparison with linear (passive or active) dampers.
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Using the root mean square (RMS) or peak response of the cable at some particular location (or several
locations) is one possible measure of damper performance.  However, it may be possible for one control
strategy to decrease the motion significantly in some regions of a structure but allow other parts to
vibrate relatively unimpeded.  Thus, the primary measure of damper performance considered herein is
the mean square cable deflection integrated along the length of the cable, defined by

(24)

where  is a square symmetric matrix such that .  The corresponding RMS cable
velocity may be computed from the generalized velocities

(25)

For stationary response to a stationary stochastic excitation, these performance measures become con-
stant and not functions of time.

Active Damper 

The optimal passive viscous damper provides one benchmark against which to judge semiactive damp-
ers.  The other end of the spectrum of control possibilities is an ideal active damper, which may exert any
desired force.  The performance of the actively controlled systems give a performance target for semi-
active control.

One family of H2/LQG control designs is considered in this study.  This family of controllers performed
well for cables without sag (Johnson et al., 2002a).  These controllers use force proportional to an esti-
mate of the state of the system, , where  is the feedback gain that mini-
mizes the cost function

(26)

where P satisfies the algebraic Riccati equation

(27)

with

(28)

By varying the control weight R, a family of controllers that use varying force levels can be designed.

A standard Kalman filter observer is used to estimate the states of the system

(29)
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where  is the estimator gain and  is computed from
the Riccati equation

(30)

where  is the magnitude of the excitation spectral density  ,  the magnitude of noise
spectral density , , , where  is the expectation operator, and excitation 
and sensor noise  are uncorrelated.

Semiactive Damper

Unlike an active device, a semiactive damper, such
as a variable-orifice viscous damper, a controllable
friction damper, or a controllable fluid damper
(Spencer and Sain, 1997; Housner et al., 1997),
can only exert dissipative forces.  Herein, a
generic semiactive device model is assumed that is
purely dissipative.  Essentially, this requirement
dictates that the force exerted by the damper and
the velocity across the damper must be of opposite
sign; i.e.,  must be less than zero.
Figure 3 shows this constraint graphically (the vertical axis is the negative of the force since positive
force and positive velocity are here assumed in the same, not opposite, directions).  A clipped optimal
strategy is used, with a primary controller based on the same family of H2/LQG designs used for the
active damper, and a secondary controller to account for the nonlinear nature of the semiactive device

(31)

Here, the secondary controller simply clips non-dissipative commands.  For implementation in experi-
ment or full-scale application, a bang-bang controller with force feedback has been shown to be effective
(Dyke, 1996).

EFFICACY OF SMART DAMPING STRATEGIES 

The phenomena that cause rain-wind induced vibration, including the aerodynamic forces, motion of
water rivulets, the nonlinear coupling with the cable motion, and so forth, are not well understood (Main
and Jones, 1999); consequently, there are no well established models of this behavior.  However, it has
been observed that the response tends to be dominated by the first several modes (Yoshimura et al., 1988;
Main and Jones, 2001).  In the absence of a suitable model, the cable/damper system is here simulated with
a stationary Gaussian white noise excitation shaped by the first mode of the cable with no sag (i.e., a half-
sine).  Without a supplemental damper, and in the absence of sag, this half-sine excitation would energize
just the first mode of the cable.  A range of damper locations and λ2 are studied herein.  The cable is
assumed to have virtually no inherent damping without the supplemental damper: c = 0.0001 which cor-
responds to 0.005% in the first mode.  A non-zero damping is used so that the RMS responses of the cable
approach a finite value, and not infinity, as control effort is decreased.  The level of damping should not
be interpreted to imply an actual level of damping in the cable, which may be a function of the level of
sag and amplitude of vibration (Yamaguchi and Adhikari, 1995), but merely an observation that generally
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Figure 3.  Semiactive damper dissipative forces.
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very low inherent damping is
present in stay cables.  RMS
responses to the excitation are
computed via a Lyapunov solu-
tion for linear (passive and active)
strategies and from simulation for
semiactive dampers.  A 1% RMS
sensor noise corrupts each sensor
measurement (modelled as Gaus-
sian pulse processes).

Damping Ratio for Linear
Control Strategies

The interest herein is primarily on
the RMS cable responses with
semiactive dampers.  However,
some insight can be gained by
looking first at the modal proper-
ties of the controlled system.
Since the semiactive system is, by
definition, nonlinear, the active
system with state feedback will be
used to compute modal properties
and will be compared with pas-
sive modal damping.  The RMS
responses of the optimal output-
feedback active and the best semi-
active damping strategies will be
seen below to be quite similar.
Thus, the modal properties of the
active system are good indicators
of “equivalent” modal properties
for the semiactive system.  Previ-
ous studies (e.g., Sulekh, 1990;
Xu et al., 1998a) have shown that
the primary effects of sag on the
efficacy of transverse passive
dampers are in the first symmetric
mode.  Here, the properties of the
first symmetric and first antisym-
metric modes are examined for
various levels of λ2.  Higher
modes tend to follow trends simi-
lar to the first antisymmetric
mode as λ2 increases.

The modal damping that can be provided to the first two modes of the cable/damper system by passive
and active dampers is shown in Figure 4 for a damper location xd = 0.02.  (The reader may note that the
five markers, whether filled or not, denote different levels of λ2, whereas dashed lines with open markers
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denote the passive results, and solid lines with filled markers denote the active results.)  The various con-
trol strategies are based on varying the passive damper coefficient cd or the active control weight R.
(Note: extremely aggressive active controllers — i.e., those with very large forces — are not shown in
Figure 4; they underperform relative to moderately aggressive controllers, both for active controllers for
most levels of λ2 as well as when used as part of a clipped-optimal strategy for semiactive dampers.) In
the absence of sag, the maximum damping in the first symmetric mode provided by a passive damper is
1.03%, whereas the active damper provides over 36% of critical damping.  With small sag, λ2 = 1, the
passive damping is degraded slightly to 0.91% (a factor of 0.88); the active system drops to 33.6% (a fac-
tor of 0.93).  For a larger sag λ2 = 30, the passive damper is less effective, providing only 0.04% damping
(a factor of 0.039 compared to no sag).  The active device, however, still provides almost a 1.6% damp-
ing ratio (a factor of 0.044 compared to no sag).  For  λ2 = 42.5, the passive damper is ineffective for the
first symmetric mode, providing only 0.002% damping.  The active device for this particular level of sag
is also severely reduced, providing only 0.04% damping.  For yet larger sag at λ2 = 50, a passive damper
can provide 0.04% damping and the active strategy can provide 1% damping in the first symmetric
mode.  The natural frequency of the first symmetric mode for larger sag increases to over twice the value
at small sag.  The natural frequencies remain relatively constant over the range of xd.

Sag has virtually no effect on the magnitude of optimal passive damping ratio for the first antisymmetric
mode; this is consistent with previous studies (Sulekh, 1990), with the damping remaining about 1% of
critical.  Similarly, the peak modal damping in the first antisymmetric mode provided by the active con-
trol is unaffected by the inclusion of sag, achieving 30% damping.  Higher symmetric and antisymmetric
modes follow similar trends.  Figure 4 does indicate that an optimal level of control does exists for both
the passive control (as seen in previous studies with optimal damper sizes) and for the active control
strategy.  In general, the optimal passive or active damping force for the first symmetric and first anti-
symmetric modes are similar in magnitude but not identical.  However, it should be noted, the optimal
passive damping force for λ2 = 42.5 is significantly smaller for maximizing the damping of the first anti-
symmetric mode than that of the first symmetric mode.  This would indicate that, for levels of sag near
this range, one must choose between designing for optimal damping in the first symmetric or first anti-
symmetric mode.  This is not the case for active control.

The passive results computed here are comparable to those in previous studies, thus further verifying the
control-oriented model used herein.  Table 1 shows a comparison of the peak modal damping ratio that
can be achieved with a passive damper for several sag levels, comparing to the results of Sulekh (1990)
and Xu et al. (1998a) for xd = 0.02.  The former used a Galerkin approach, requiring 350 sine shape func-
tions, whereas the latter used a hybrid method they developed, requiring 400 degrees-of-freedom.  Com-
paring the results of these two previous studies to those found in this study, it is clear that the design
oriented model used here is both efficient, requiring only 21 degrees-of-freedom, and accurate, resulting
in damping values bounded by the two previous studies.

Table 1.  Comparison of peak modal damping ratios
with a linear passive viscous damper at xd = 0.02.

 λ2 mode Sulekh (1990) Xu et al. (1998a) this study

λ2 = 0 first (symmetric) 1.10% — 1.03%

λ2 = 0.245 first (symmetric) — 0.98% 1.00%

λ2 = 1 first (symmetric) 0.95% — 0.91%

λ2 = 1.20 first (symmetric) — 0.85% 0.89%

λ2 = 3.63 first (symmetric) — 0.64% 0.68%

others 1.10% 1.04% 1.03%
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The effects of sag and inclination on modal characteristics of the controlled system, in particular on the
first symmetric and first antisymmetric modes of vibration, may be better seen in Fig. 5.  Here, for each
value of λ2, the passive and active strategies used are those that give maximal damping in the first sym-
metric mode.  As λ2 approaches 40, the passive control of both first symmetric and first antisymmetric
modes is significantly reduced — indeed, it is ineffective at λ2 = 4π2 = 39.478 and at λ2 = 41.93.  The
reduced effects of passive damping on the first antisymmetric mode damping ratio results from the fact
that the “optimal” passive damper is defined with respect to the damping ratio of the first symmetric
mode and, over this range of  λ2,  the optimal passive first symmetric and first antisymmetric systems
occur at different levels of damper force.  Reasons for these regions of decreased performance for the
symmetric modes are discussed in the next section.  The symmetric mode is more greatly affected in
regions nearby λ2 = 4π2 than the first antisymmetric mode.  The active control damping is similarly
affected, although the active strategy is capable of providing significantly increased performance in gen-
eral.  Crossing of the controlled natural frequencies does occur at certain levels of λ2.  It is observed that,
for levels of sag below λ2 = 4π2,  the increase in sag results in a significant decrease in damping in the first
symmetric mode for both passive and active control strategies.  Increasing the sag beyond λ2 = 42
increases the damping in these two modes, eventually to values near that of the taut cable.  Both control
strategies result in increased natural frequencies as the sag is increased.  (Note that higher modes follow
the same trends as the first antisymmetric mode.)

Figures 6 and 7 show the frequency and damping ratio of the first symmetric and antisymmetric modes,
respectively, over a range of damper locations and for several levels of the independent parameter λ2.  The
symmetric mode is affected by sag, particularly for certain combinations of λ2 and damper location.  For
example, λ2 = 42.5 drops to minimal damping near xd = 0.025 for both passive and active strategies.  The
antisymmetric mode is somewhat different; active control is quite effective in adding damping to this mode
over a wide range of sag and damper location.  The passive has some areas where it does not perform well.
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RMS Cable Response

The RMS cable displacement, defined
in (24), as well as the RMS cable
velocity and RMS damper force, were
computed using a Lyapunov solution
for passive and active (output feed-
back) control strategies, but through
simulation for the semiactive system.
Due to minimal damping in less
aggressive control strategies, and the
very long simulation times required to
accurately determine RMS responses,
only several semiactive controllers in
the family of possible controllers are
simulated here.  (As a result, the
improvements shown herein for an
ideal semiactive damper compared to
optimal passive linear dampers should
be considered conservative.)  The
responses with the smart damper are
shown using large bold markers (the
same markers as the active and passive
for a given value of the independent
parameter λ2).

Figure 8 shows the RMS cable dis-
placement as a function of the RMS
damper force for a damper at xd = 0.02
at several levels of sag.  For strategies
using small forces, the passive and
active are nearly the same — this was
also seen in Johnson et al. (2002a)
where a similar observation may be
made about the semiactive strategy as
well.  However, at some point the pas-
sive damper begins to have diminished
gains in spite of larger damper forces.
This is due to the damper only “know-
ing” local information, that is, the
cable velocity at the damper location.
Effectively, the passive damper starts
to lock the cable down at that point —
certainly limiting the cable motion at
the damper location — but allowing the rest of the cable to vibrate nearly unimpeded.  The active and
semiactive strategies, however, are able to take advantage of larger force levels in such a way that they do
not lock the cable down, but rather continue to dissipate energy.  The effect is that the controllable smart
damper is able to achieve a 50 to 90 percent displacement reduction, depending on the sag, compared to
the optimal passive linear viscous damper.
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Figure 9 shows the
RMS cable displace-
ment for the passive
linear viscous damper,
the optimal active
damper, and the best
semiactive damper
versus the indepen-
dent parameter
λ2. Without sag
(λ2 = 0), the semi-
active damper can pro-
vide about a 71%
response decrease
compared to the best
passive device.  With
small sag (λ2 = 1), the
RMS displacements
decrease minutely for
all three damping
strategies.  For λ2 = 30
the control perfor-
mance for passive,
active, and semiactive
strategies begin to
degrade and around
λ2 = 40, the same
region where the
damping in the first
two modes was signif-
icantly decreased, the
RMS performance is
poor.  Increasing λ2,
the performance
improves, but there
are additional regions
where all methods are
ineffective.  This phe-
nomenon will be dis-
cussed in detail in the
next section.  Never-
theless, the semi-
active damper always
decreases response
compared to the best
passive damper, by 60
to 80 percent in most
regions.
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To observe what happens near the peaks of
reduced performance, Fig. 10 provides a closer
look.  Indeed, the region of decreased perfor-
mance around λ2 = 40 consists of two peaks of
lousy performance with a valley of mediocre
performance.  The pairing of these two peaks is
found for each of the three regions of decreased
performance in the [0,500] range of λ2 values
studied here.  The peaks of poor performance
occur at λ2 values of 4π2, 41.93, 16π2, 167.79,
36π2 and 377.59.  Similar results may be seen in
RMS cable velocity  (Johnson et al., 2002b).
Thus, it may be concluded that a “smart”
damper may provide superior damping to cables
for a large range of cable sag.  Note, however,
that the benefit comes with larger damper
forces, though these force levels (Johnson et al.,
2001,2002a) are still well within the capabilities
of current damper technology.

Performance at Various Damper Locations

Previous studies with
zero sag indicated
that, as the damper
location approached
the support end, semi-
active control strate-
gies provided
increased perfor-
mance over the opti-
mal passive strategies.
Figure 11 shows the
RMS displacement of
semiactive, active and
passive control strate-
gies for various
damper locations and
for various level of
sag.  What is again
observed here is that,
even for damper loca-
tions very near the
cable support, semi-
active control can pro-
vide increased
performance for vari-
ous levels of sag.  There are some damper location and sag levels, i.e., some combinations of (xd,λ2), that
give poor performance for all three vibration mitigation strategies, such as for λ2 = 42.5 and 50 near
xd = 0.025 and 0.075, respectively (these combinations are discussed in the next section).  Even so, the
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best semiactive damper always outperforms the passive, usually by a wide margin.  Similar trends may
also be observed for RMS velocity (Johnson et al., 2002b).  To better highlight the relative improvements
of a semiactive damper compared to the optimal passive linear viscous damper, Fig. 12 shows the RMS
displacement, relative to that of the optimal passive linear viscous damper, of the active and semiactive
strategies for several sag levels and over a range of damper locations.  For damper locations around
xd = 0.05, the response with a semiactive damper is 55% to 70% less than with the passive damper.  For
most levels of sag, the superior relative performance only gets better for a damper closer to the end of the
cable (except when it is very close to the end of the cable).

To better see the superior performance of semiactive dampers for this application, Table 2 lists the RMS
cable displacements and RMS damper forces, for the optimal linear passive damper and for the best
semiactive damper, at several levels of λ2 and damper location xd.  (It should be noted that due to the
computational intensity of the simulations, only a limited number of control weights R were simulated
for the semiactive system in each key value of λ2 and xd; consequently, the semiactive results are conser-
vative in that even better performance may be available by fine-tuning the control strategy.)  The ratios
between passive and semiactive strategies are shown in Table 3.  Here, the displacement ratio is the RMS
cable displacement with the optimal passive damper divided by that of the best semiactive damper stud-
ied herein.  The force ratio is the RMS cable displacement with the best semiactive damper divided by
that of the optimal passive damper.  RMS response using a semiactive damper 2 to 3 times lower than the
optimal linear passive damper at damper location xd = 0.05 for levels of sag typical in bridge stay cables.
This superior performance increases as the damper location is moved closer to the end of the cable:  5 or
6 times lower response at xd = 0.01 and 12–14 times smaller at xd = 0.001.  These improvements over the
passive system come at the price of large force levels.  However, these larger forces are still well within
the cost-effective range of existing semiactive damping devices (Baker, 1999; Johnson et al.,
2001,2002a).  Further, less aggressive semiactive strategies may be used if the force levels are considered
too large, with some reduction in the performance improvement compared to passive strategies.

Table 2.  RMS displacements and forces with semiactive and optimal passive control strategies.† 

 † P = optimal passive,  SA = best semiactive strategy in this study

λ2 = 0 λ2 = 1 λ2 = 30 λ2 = 42.5
displ. force displ. force displ. force displ. force

xd P SA P SA P SA P SA P SA P SA P SA P SA
0.001 15.07 1.07 4.77 200.08 15.03 1.05 4.75 206.21 22.69 1.79 2.04 203.09 23.34   4.94 1.06 200.76
0.002 10.90 1.05 3.45 104.58 10.89 1.02 3.44 107.32 19.85 1.75 1.78 102.10 22.92   5.03 0.88   93.02
0.010   4.94 1.02 1.57   19.85   4.94 0.99 1.57   19.48 11.37 1.73 1.05   16.72 21.28   6.13 0.70   20.70
0.020   3.48 1.00 1.12   11.35   3.47 0.98 1.12   11.53   8.08 1.67 0.70   12.11 22.21 11.00 0.78   16.23
0.050   2.16 0.96 0.71     7.20   2.15 0.94 0.71     7.51   4.68 1.56 0.41     7.87 13.15   4.68 0.39     7.14
0.100   1.46 0.90 0.55     5.17   1.46 0.88 0.55     5.07   2.84 1.31 0.27     4.40   6.20   2.79 0.21     7.87

Table 3.  Relative displacement and forces with semiactive and optimal passive control strategies.‡ 

 ‡ Displacement ratio = ,  Force ratio = 

λ2 = 0 λ2 = 1 λ2 = 30 λ2 = 42.5
xd displ. ratio force ratio displ. ratio force ratio displ. ratio force ratio displ. ratio force ratio

0.001 14.0 42.0 14.4 43.4 12.7 100.0 4.7 190.2
0.002 10.4 30.3 10.6 31.2 11.3   57.4 4.6 105.7
0.010   4.9 12.6   5.0 12.4   6.6   15.9 3.5   29.8
0.020   3.5 10.2   3.6 10.3   4.8   17.2 2.0   20.8
0.050   2.3 10.2   2.3 10.6   3.0   19.1 2.8   18.2
0.100   1.6   9.3   1.7   9.1   2.2   16.6 2.2   37.6

σdisplacement
passive σdisplacement

semiactive⁄ σforce
semiactive σforce

passive⁄
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While there are
regions of λ2 and xd
that limit the perfor-
mance of semiactive
dampers (discussed
further in the follow-
ing section), in most
cases, they perform
significantly better
than passive linear
viscous dampers.
This is true particu-
larly for damper loca-
tions close to the end
of the cable.  The pri-
mary reason for this
significant improve-
ment is in the nature
of the “information”
available to the con-
trol strategy.  For pas-
sive dampers, the only
information the
damper “knows” —
i.e., the responses
from which damper force are determined — is the velocity of the cable at the damper attachment loca-
tion.  This local response is the only information available to the passive damper.  Active and semiactive
strategies, however, can use observers to estimate the entire state of the cable based on limited measure-
ments.  Herein, the measurements are the displacement and acceleration at the damper location.  Using
knowledge of the cable/damper system dynamics, the observer is able to estimate the displacement and
velocity profiles of the cable at any one instant in time, i.e., global response information.  This is impor-
tant because the semiactive damping system is able to use larger forces without completely locking down
the cable at the damper attachment location.

DISCUSSION OF REGIONS OF LIMITED PERFORMANCE

The (xd,λ2) regions of poor performance by all three damping strategies (passive, active, and semiactive)
are based on specific changes in the underlying dynamics of the cable alone.  These changes are explored
here to explain the performance results shown in the previous section, both in terms of modal properties
and RMS response.

In the absence of a supplemental damper, the mode shapes of the cable without sag (λ2 = 0) are sine
functions, with integer natural frequencies.  However, as the independent parameter λ2 increases, the
mode shapes that are symmetric about the center of the cable change significantly, while the antisymmet-
ric mode shapes remain the same.  These effects are discussed in depth elsewhere (e.g., Irvine, 1981), but
as these changes ultimately affect the performance of a damper, some details are given here to explain
the variations in damper performance that was seen above.
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Figure 13 shows the first six natural
frequencies of a sag cable as a func-
tion of the independent parameter λ2.
Note particularly that due to the
increased stiffness on the symmetric
modes, there are a number of fre-
quency crossover points, where two
modes have identical natural frequen-
cies.  These crossovers occur at
λ2 = 4π2, 16π2, 36π2, etc. — i.e., at
λ2 = (2iπ)2, i = 1, 2, 3, ... (Irvine,
1981).  At these points, passive,
active, and semiactive damper diffi-
culties may be expected, since the
manifold defined by the two modes
with identical frequency can have
controllable and uncontrollable sub-
spaces with respect to a single point-
located damping device.  Indeed, the
addition of any damping force will
cause the motion of the cable to shift
such that a node will occur at the damper location, with no possibility of adding damping to that mode.  

Further conditions that may give rise to poor damper performance are when a mode has a node at the
damper location.  Without sag, this will only occur for rational xd and only for mode m if an integer i
exists such that i = xdm; for small xd, this will only occur for higher frequency modes.  However, with
sag, it is possible for the first several symmetric modes to have a node at a typical damper location.  Con-
sider the shape of the first symmetric mode◊ of a flat sag cable, shown for several λ2 in Fig. 14.  At small
λ2, the first symmetric mode is sinusoidal in shape, but the slope at the ends flattens out with increasing
sag.  At λ2 = 4π2,  the end slope is zero, as may be seen in Fig. 14.  As λ2 increases beyond 4π2,  the first
symmetric mode has a node near each end of the cable.  When λ2 reaches 41.93, the node is at x = 0.02;

◊ An animation of the effects of sag on cable modeshapes is at http://rcf.usc.edu/~johnsone/animations/cable_sag/ 
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a damper placed at xd = 0.02 would be unable to control the first mode in this case.  Similarly, a damper
at xd ≈ 0.025 and 0.075 could not control the first symmetric mode of a cable with λ2 ≈ 42.5 and 50,
respectively.  Nodes will occur near the end of the cable in the second and third symmetric modes for
λ2 > 16π2 and λ2 > 36π2,  respectively, causing the second of each pair of response peaks in Fig. 9.

It may be noted that Xu et al. (1998a) identify the cause of decreased performance for inclined sag
cables, compared to horizontal sag cables, to be related to whether a frequency veering (e.g., Ginsberg
and Pham, 1995; Wei and Pierre, 1988) occurs or frequency crossover occurs; however their analysis did
not include λ2 values in the region where the veering vs. crossover has any significant effect (Triantafyl-
lou, 1984).  Nevertheless, if the flat-sag parabolic assumption used herein is relaxed to encompass a
wider range of sag and inclination, results similar to what was reported above would be expected.
Instead of a particular λ2 where a partially uncontrollable manifold exists, one of the hybrid modes
would have a node.  Based on the mode shapes given by Triantafyllou (1984), the uncontrollable twin
peaks would tend to spread somewhat, but by a small amount for damper locations close to the end of the
cable.

CONCLUSIONS

This paper extends a previous study by the authors on ideal “smart” semiactive damping of stay cables.
The previous study (Johnson et al., 2002a) showed that significant response reductions are available
using semiactive dampers compared to the passive dampers currently in use for mitigating stay cable
vibration.  Herein, the effects of cable sag, inclination, and longitudinal flexibility have been introduced
into the dynamic model of transverse in-plane cable vibration.  A new low-order control-oriented model
was developed to capture the salient dynamics of the cable/damper system.  The performance of passive,
active, and semiactive damper strategies are all found to degrade for certain combinations of damper
location and independent parameter λ2 that cause a node to occur at the damper location.  When such a
case occurs, the three damping strategies perform no better than the cable alone.  However, for the gen-
eral case where a node does not occur at the damper location, semiactive dampers provide significantly
improved damping compared to the optimal passive viscous damper.  Approximately 50 to 90 percent
reduction in RMS response can be achieved compared to the optimal passive linear damper.  The cost of
this improvement is larger force levels — approximately 5 times larger for damper locations around
xd = 0.05, and 8–10 times larger for xd = 0.02.  For the zero-sag case, Baker (1999) and Johnson et al.
(2001,2002a) found that the peak force level during rain-wind induced motion of an example stay cable
is on the order of 14 kN (3 kips) for a semiactive damper at xd = 0.01.  Thus, these larger forces are well
within the cost-effective range of semiactive damping devices such as magnetorheological dampers.
Consequently, the ideal semiactive dampers used in this study suggest that smart dampers may be an
effective replacement for passive viscous damping of cables.
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