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SEMIALGEBRAIC SARD THEOREM FOR
GENERALIZED CRITICAL VALUES

K. KURDYKA, P. ORRO & S. SIMON

Abstract
We prove that a semialgebraic differentiable mapping has a generalized crit-
ical values set of measure zero. Moreover, if the mapping is C2 we obtain,
by a generalisation of Ehresmann’s fibration theorem due to P. J. Rabier
[20], a locally trivial fibration over the complement of this set. In the com-
plex case, we prove that the set of generalized critical values of a polynomial
mapping is a proper algebraic set.

1. Introduction

The usual Sard’s theorem says that the set K0(f) of critical val-
ues of a Cp map f : Rn → Rk has zero Lebesgue measure when
p ≥ max(1, n − k + 1). The Ehresmann’s fibration theorem asserts
that a proper submersion is a locally trivial fibration. Thus K0(f) is a
bifurcation set of a proper map and is a small set.

The fibration theorem has been generalized in different ways:

• For general non-proper functions, R. S. Palais introduced a con-
dition, known as the (C) condition of Palais. Roughly speaking it
means that the norm of the differential of f is separated from zero
uniformly fibrewise. Palais proved that a function from a Hilber-
tian manifold M to R satisfying condition (C) is still a fibration
outside of K0(f). Later he generalized this result in the case M
is a complete Finsler manifold (cf. [15]).

• For general non-proper mappings f : M → N , whereM and N are
Finsler manifolds, P. J. Rabier [20] introduced the notion of strong
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submersion which generalizes condition (C) of Palais. The norm of
the differential is replaced by ν(df) (as we explain in Section 2, the
function ν of Rabier is simply the distance to the set of singular
operators). Under the hypothesis of completeness of M and some
technical assumption (which always holds for Hilbert manifolds)
Rabier proves that every strong submersion is a fibration.

• For polynomials f : Cn → C, it is well known that f is a fibration
outside the bifurcation set B(f), which is a finite set consisting of
points in K0(f) and critical points at infinity. Many authors tried
to make precise the bifurcation set: [16], [19], [20], [22] — introduc-
ing different conditions at infinity such as quasi-tame, Malgrange
condition, M-tame, . . . .

In this paper we are interested in the case of semialgebraic mappings
from Rn to Rk (or polynomial from Cn to Ck). We prove that the set
of generalized critical values K(f) = K0(f) ∪K∞(f), where

K∞(f) := {y ∈ Kk : ∃xl ∈ Kn, |xl| → ∞
s.t. f(xl) → y and (1 + |xl|)ν(df(xl)) → 0},

is a zero-measure semialgebraic subset of Kk (constructible if K = C).
Using Rabier’s results [20], this gives a fibration theorem for f over

the connected components of Kk −K(f). The main point for the fibra-
tion result is the completeness of Kn. If we consider a map f defined on
an open set of Kn, a similar result is valid if f is without fibers adherent
to ∂U . Another way of proving a fibration result for maps defined on
open sets is to take a complete metric on U and define a new K∞-set
relative to this metric.

The set K∞(f) is called the set of asymptotic critical values (we use
the notation of [20] but we take the definition given in Remark 6.10
[20], see our Section 2). The fact that K∞(f) is finite, for semialgebraic
functions f : Rn → R, plays a crucial role in a proof of the Gradient
Conjecture of R. Thom (cf. [12], [13]). A different proof of the finiteness
of K∞(f) is given by D. d’Acunto ([1]) in a more general setting of
o-minimal structures.

The proof of the main result, i.e., that for a semialgebraic mapping
f : Rn → Rk, the set K∞(f) has zero measure (more precisely that
dimK∞(f) < k) is inspired by Y. Yomdin’s quantitative Sard theorem
for polynomials [23], see also S. K. Donaldson [4, Section 5]. We de-
compose the set on which |x|ν(df(x)) is small in a parametric family of
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L-regular cells (a L-regular cell is a subset of Rn on which the geodesic
distance is equivalent to the euclidian distance); and then, by giving
an estimate for length of the image by a component of f of each cell
(Lemma 3.6), we deduce the result. We give also an alternative proof
of Lemma 3.6 based on a result of B. Teissier [21].

The theory of generalized critical values appears as an alternative to
the stratification theory. Actually our main result (in the real case) can
be also proved using the (w) condition of Kuo and Verdier. However
our approach via L-regular sets is conceptually simpler, and moreover
gives an explicit bound for the number of points in K∞(f) in term of
the degree of f for k = 1 (cf. Remark 3.2).

For a polynomial mapping f : Kn → Kk let Jf ⊂ Kk denote the
set of points where f is not proper, we call it the Jelonek set of f .
It was proved by Z. Jelonek that Jf is K-uniruled (i.e., by each point
passes a curve with a polynomial parametrization), if n = k and f is
dominant. Moreover in the complex case Jf is a hypersurface or an
empty set. In Proposition 3.1 we prove that K∞(f) = Jf , if f is a C1

semialgebraic mapping from Rn to Rn. We also prove (Theorem 3.4)
that for polynomial dominant mappings from Rn to Rk, with compact
regular fibers, the equality K∞(f) = Jf holds as well. Moreover, by
a result of Z. Jelonek [8], the set Jf is also R-uniruled in this case. If
the generic fibers are not compact, then of course K∞(f) �= Jf . We
conjecture that for a polynomial mapping f : Kn → Kk the set K∞(f)
is K-uniruled.

In Section 2 we recall the definition of the ν function of Rabier and
we give several equivalent definitions of ν. In particular we prove that
this function is equal to the distance to the set of singular operators, at
our knowledge this fact was only known in the finite dimensional case
when the space of linear operators is endowed with the L2-norm. We
decided to write down this part in the setting of Banach spaces since
the theorem of Rabier has potentially a lot of applications in this case.
Finally we recall another way for measuring the distance to the set of
singular operators (valid for finite dimensional target), the so called
Kuo distance which was introduced by T. C. Kuo in [14]. It turns out
to be equivalent to ν and is more convenient in our construction. We
discuss also two possible definitions of the set of generalized critical
values and we recall some examples which show that these definitions
are not equivalent.

The proofs of our main results are given in Section 3 in the real case,
Theorem 3.1, and in Section 4, Theorem 4.1, in the complex case.
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2. Preliminaries and notations

2.1 Distance to the set of singular mappings

Let X,Y be Banach spaces (over K = R or C). We will denote by
L(X,Y ) the Banach space of linear continuous mappings from X to Y ,
and by Σ the singular set of L(X,Y ) that is the subset of operators
which are not onto. The distance function to Σ is defined as usual by

dist(A,Σ) = inf
B∈Σ

‖A−B‖.

If Y = K, it is customary to write X ′ for L(X,K). For A ∈ L(X,Y ),
A∗ stands for the algebraic adjoint operator in L(Y ′, X ′).

Definition 2.1 ([20]). Let A ∈ L(X,Y ). Set

ν(A) = inf
‖ϕ‖=1

‖A∗ϕ‖.

Notice that, since X,Y are Banach spaces, ν(A) > 0 ⇔ A is onto.
The properties in the next proposition are well known and easy to es-
tablish, see for instance [20]

Proposition 2.1. Let A ∈ L(X,Y ).

1. If Y = K then ν(A) = ‖A‖.
2. If A ∈ GL(X,Y ) then ν(A) = ‖A−1‖−1.

3. ν is 1-Lipschitz.

The two functions ν and dist(·,Σ) vanish on Σ. We prove that they
are in fact the same. We begin by a lemma.

Lemma 2.1. Let A ∈ L(X,Y ) be a surjective map and ε > 0.
Then

dist(A,Σ) ≤ ν(A) + ε.

Proof. By definition of ν(A), there exists some ϕε ∈ Y ′, ||φε|| = 1,
such that ‖ϕε ◦A‖ ≤ ν(A) + ε. Now, consider the topological sum Y =
kerϕε ⊕〈yε〉, where yε is any vector satisfying ϕε(yε) = 1. Then, denote
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by pε the canonical projection onto 〈yε〉 and define Bε = A−pε ◦A ∈ Σ.
Therefore,

‖A−Bε‖ = ‖pε ◦A‖ = sup
‖x‖=1

‖pε ◦A(x)‖ = ‖yε‖.‖ϕε ◦A‖.

So that,
dist(A,Σ)

‖yε‖ ≤ ν(A) + ε.

Now, remember that if ψ ∈ Y ′−{0} then for all y ∈ Y , dist(y, kerψ) =
|ψ(y)|
‖ψ‖ . It follows that dist(0, kerϕε + yε) = 1. Consequently, there ex-

ists a sequence un in kerϕε such that yn
ε := yε + un satisfies ϕε(yn

ε ) = 1
for all n and ‖yn

ε ‖ ↘ 1. At last, apply the preceding construction in
substituting yε by yn

ε and get the result. q.e.d.

Proposition 2.2. Let A ∈ L(X,Y ). We have

ν(A) = dist(A,Σ).

Proof. The inequality ν(A) ≤ dist(A,Σ) is a consequence of the fact
that ν is 1-Lipschitz, whereas ν(A) ≥ dist(A,Σ) follows from Lemma 2.1.

q.e.d.

Remark 2.1. Note that ν(A) is the maximum radius R such that
the open ball of center A and radius R does not intersect Σ.

Another characterization of ν is as follows:

Proposition 2.3. Let A ∈ L(X,Y ). Then

ν(A) = sup{r ≥ 0 : B(0, r) ⊂ A(B(0, 1))}.

Proof. Let R denote sup{r ≥ 0 : B(0, r) ⊂ A(B(0, 1))}.
We first prove that ν(A) ≥ R. Let r < R and ϕ ∈ Y ′ such that

‖ϕ‖ = 1. For all ε > 0, there exists y ∈ SY (0, 1) with |ϕ(y)| ≥ 1 − ε.
Then, there exists x ∈ BX(0, 1) verifying |ϕ(Ax)| ≥ r|ϕ(y)| ≥ r(1 − ε).
Hence ‖ϕ ◦A‖ ≥ r(1 − ε), so ν(A) ≥ r(1 − ε), and finally, ν(A) ≥ R.

Now, we prove that ν(A) ≤ R. Let ε > 0 and y ∈ BY (0, R + ε) \
A(BX(0, 1)). Denote H = A−1(〈y〉). Then A|H defines λ ∈ H ′ by
A(h) = λ(h)y for h ∈ H. Applying Hahn-Banach theorem, we extend λ
to X and denote this extension by λ̃ which is such that ‖λ̃‖ = ‖λ‖ < 1.
Now, By = A− λ̃y ∈ Σ and ‖A−By‖ ≤ R+ ε. Thus, ν(A) ≤ R+ ε.

q.e.d.
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Assume that X,Y are complex normed vector spaces, then we have
on them the induced structures of real normed vector spaces. Let A :
X → Y be a continuous C-linear map. We can consider ν(A) with
respect to both structures. It follows immediatly from Proposition 2.3
that ν(A) is the same in the real and complex case. In particular, by
Proposition 2.2 we have

ν(A) = dist(A,ΣC) = dist(A,ΣR),(2.1)

where ΣC (resp. ΣR ) is the set of nonsurjective C-linear (resp. R-linear)
continuous maps from X to Y .

Till the end of Subsection 2.2 we will consider only the finite dimen-
sional case.

Proposition 2.4. If the norms on Rn and Rk are semialgebraic,
then ν is semialgebraic on L(Rn,Rk).

Proof. Since Σ is a semialgebraic set in this case, the result is a
consequence of Proposition 2.2 and the classical fact (cf. [2]) that the
distance function to a semialgebraic set is semialgebraic (i.e., that its
graph is semialgebraic). q.e.d.

Let K = R or C, we will always consider Kn equipped with an her-
mitian scalar product, which will be denoted by ( . | . ).

The first and well known characterization of ν(A) is the following:

Proposition 2.5. Let A ∈ L(Kn,Kk). Then

ν(A) = min{|µ| : µ2 is an eigenvalue of AA∗}.

We shall need an expression of ν in terms of gradients of components
of a linear mapping. To this end we introduce the Kuo distance κ which
is actually equivalent to ν, as we show in Proposition 2.6.

2.2 The Kuo distance

Definition 2.2 ([14]). Let η1, . . . , ηk ∈ Kn for k ∈ N∗. The Kuo
distance between these vectors is defined by

κ(η1, . . . , ηk) = min
1≤i≤k

dist(ηi,
〈
(ηj)j �=i

〉
),

where
〈
(ηj)j �=i

〉
is the vector space generated by the vectors (ηj)j �=i.
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Proposition 2.6. Let A = (A1, . . . , Ak) ∈ L(Kn,Kk). For i ∈
{1, . . . , k}, denote by ηi the gradient of Ai, then

ν(A) ≤ κ(η1, . . . , ηk) ≤
√
k ν(A).

Proof. For 1 ≤ i ≤ k, set Vi = {x ∈ Kn : (x|ηj) = 0, j �= i}.
Then V ⊥

i =
〈
(ηj)j �=i

〉
. So dist(ηi, V

⊥
i ) = |pVi(ηi)| = sup{|(x|ηi)| : x ∈

Vi, |x| ≤ 1} where pVi : Kn → Vi is the projection. Denote ξi = f(xi)
with xi ∈ Vi ∩ S(1) (S(r) is the sphere of radius r centered at 0) such
that |ξi| = |pVi(ηi)|. Then (ξi)1≤i≤k is an orthogonal family in Kk. We
conclude using the next Lemma 2.2. q.e.d.

Lemma 2.2. Let (ξ1, . . . , ξk) be an orthogonal basis of Kk and
u ∈ S(1), then

i) there exists i0 ∈ {1, . . . , k} such that
1√
k
‖ξi0‖ ≤ |(u|ξi0)|.

ii) let (e1, . . . , ek) be an orthonormal basis of Kk, and denote by E

the ellipsoid defined in this basis by

{
x :

k∑
i=1

∣∣∣∣xi

ai

∣∣∣∣2 = 1

}
where

0 < |a1| ≤ |a2| ≤ . . . ≤ |ak| ∈ R∗
+ for 1 ≤ i ≤ k. Suppose that

ξi ∈ E for 1 ≤ i ≤ k. Then min
1≤i≤k

‖ξi‖ ≤
√
k |a1|.

Proof. Write ‖u‖2 = 1 =
k∑

i=1

∣∣∣∣(u ∣∣∣∣ ξi
‖ξi‖

)∣∣∣∣2. Then, there necessarily

exits i0 ∈ {1, . . . , k} such that
∣∣∣∣(u ∣∣∣∣ ξi0

‖ξi0‖
)∣∣∣∣2 ≥ 1

k
, which gives i).

Using i), take i0 ∈ {1, . . . , k} such that
1√
k
‖ξi0‖ ≤ |(e1|ξi0)|. Now,

|(e1|ξi0)| ≤ |a1| because ξi0 ∈ E . q.e.d.

It is convenient to use the Kuo distance in the following way: let
A = (A1, . . . , Ak) ∈ L(Kn,Kk) and let ηi be the gradient of Ai. For
i ∈ {1, . . . , k} denote Vi =

⋂
j �=i kerAj . Observe that

dist
(
ηi,

〈
(ηj)j �=i

〉)
= ‖Ai|Vi‖,

where Ai|Vi is the restriction of Ai to Vi. Recall that
〈
(ηj)j �=i

〉
is the

vector space generated by the vectors (ηj)j �=i, hence it is the orthogonal
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complement to Vi. So

κ(η1, . . . , ηk) = min
1≤i≤k

‖Ai|Vi‖(2.2)

and we denote this number by κ(A).
From Proposition 2.6 we obtain immediately:

Corollary 2.1. Let A = (A1, . . . , Ak) ∈ L(Kn,Kk), then

ν(A) ≤ κ(A) ≤
√
k ν(A).

2.3 Asymptotic critical values and fibration theorem

Let M , N be Cp≥2 manifolds and U an open subset of M . Suppose
that M is complete and N is connected—although most definitions and
results of this section are valid in the case of Finsler manifolds we will
always suppose that M and N are Hilbert spaces. Suppose given a
Cp≥2-map f : U → N , satisfying the condition that:

There is no sequence xl in U such that(2.3)
lim
l→∞

xl ∈ ∂U and lim
l→∞

f(xl) ∈ N.

Then we will denote by K̃(f) the following set:

K̃(f) = {y ∈ N : ∃xl ∈ U f(xl) → y and ν(df(xl)) → 0}.

The set of critical values of f say

K0(f) = {y ∈ N : ∃x ∈ f−1(y) s.t. ν(df(x)) = 0}

is contained in K̃(f). In fact K̃(f) is the union of K0(f) and K̃∞(f),
an asymptotic critical set for f , which is defined by (NCS means no
converging subsequences in U)

K̃∞(f) = {y ∈ N : ∃xl ∈ U with NCS f(xl) → y and ν(df(xl)) → 0}.

Clearly K̃(f) is closed, and K̃∞(f) = ∅ if f is a proper map. Note
that K̃∞(f) is also closed if f is defined on an open subset U in a finite
dimensional space.

In [20] one can find the following generalisation of Ehresmann’s the-
orem:
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Theorem 2.1 ([20]). Let V ⊂ N be a connected component of
N − K̃(f), then either f−1(V ) = ∅ or f : f−1(V ) → V is a locally
trivial Cp-fibration.

As a particular case this gives the classical Erhesmann’s theorem for
proper mappings.

In the case of finite dimensional manifolds, the classical Sard’s the-
orem says that K0(f) is a subset of N of zero measure. In the infinite
dimensional setting, if the spaces M and N are separable, one has a
similar result for Cp-functions if p ≥ max(k, 2) assuming k is an inte-
ger such that dim ker f

′′
(x) ≤ k for all x; also for Cr-Fredholm maps

with r > max(index(f), 0) one can show that the set K0(f) has empty
interior.

Without some extra hypothesis the set K̃(f), as well as K̃∞(f), may
be quite large. Using the fact that K̃(f) is closed it is not difficult to
construct a C∞ function f : R → R such that K̃(f) = R. This may
happen also for polynomials in more than 2 variables as the example
below shows.

Example 2.1 ([17]). Consider the polynomial

f(x, y, z) = x+ x2y + x4yz.

Then K0(f) = ∅ and K̃∞(f) = R. To see this take any point a ∈ R∗

and the curve

γa(s) =
(
s,

2a
s2
,−(1 + (4a)−1s)

2s2

)
.

We have

f(γa(s)) = a+ s

(
1 +

1
4a

)
→ a

and

∇f(γa(s)) =
(

0, s2
(

1
2
− s

8a

)
, 2as2

)
→ 0

as s→ 0. Observe nevertheless that f is a fibration over each connected
component of R∗; see Remark 2.2 and Theorem 3.1 below.

Recall that a value y of the map f is called typical if f is a C∞

fibration near y and atypical otherwise. The set B(f) of atypical values,
called the bifurcation set of f , is contained in K̃(f) but in general is not
equal to it—see Example 2.1 and also the following:
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Example 2.2 ([22]). The polynomial 2x2y3 − 9xy2 + 12y has no
critical points i.e., K0(f) is empty, and 0 ∈ K̃∞(f). But f is a fibration
over R.

Our main goal is to prove that the set of generalized critical values
of a semialgebraic mapping f : Kn → Kk is nowhere dense in Kk.
So we have to modify the definition of the set K̃∞(f). As noticed
in [20, Remark 6.1], Theorem 2.1 remains true if, in the definition of
K̃∞(f), we replace the condition ν(df(xl)) → 0 by the following one:
ω(|xl|)ν(df(xl)) → 0, where ω : [0,∞) → [0,∞) is a continuous function

with
∫ ∞

0

du

ω(u)
= ∞. We take ω(t) = 1 + t. Let f : Kn → Kk be C1

mapping, we define the set of generalized critical values of f as

K(f) = {y ∈ Kk : ∃xl ∈ Kn

s.t. f(xl) → y and (1 + |xl|)ν(df(xl)) → 0}.
Clearly K(f) = K0(f) ∪K∞(f), where the set

K∞(f) = {y ∈ Kk : ∃xl ∈ Kn, |xl| → ∞
s.t. f(xl) → y and (1 + |xl|)ν(df(xl)) → 0}

will be called the set of asymptotic critical values of f .
Note that for polynomial functions f : Cn → C the condition t0 /∈

K∞(f) means that t0 satisfies the Malgrange condition. Let us recall a
characterisation of this condition due to Parusiński.

Theorem 2.2 ([16],[17]). Let f : Cn → C be a polynomial with
isolated singularities at infinity and t0 a regular value (i.e., t0 /∈ K0(f)).
Then the following are equivalent:

(i) t0 �∈ B(f).

(ii) The Malgrange condition for t0 is satisfied, i.e., ∃δ > 0 : |x||∇f(x)|
≥ δ for x large and f(x) close to t0.

(iii) χ(f−1(t)) is constant near t0.

In particular, this theorem characterizes the bifurcation set for all
polynomials if n = 2, in this case we have K∞(f) = K̃∞(f) by [5].

In the remainder of this section we discuss some examples and re-
lated notions.

Remark 2.2. For the polynomial of Example 2.1 we have K̃∞(f) =
R but K∞(f) = {0}.
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To see this consider

∇f(x, y, z) = (1 + 2xy + 4x3yz, x2 + x4z, x4y) =: (A,B,C).

We already know that 0 ∈ K∞(f).
Take any t �= 0. It is easy to see that x → 0 if ∇f → 0: Since

B and C must be bounded, A cannot go to 0 if x is unbounded; and
y and z must be bounded if x goes to a limit not equal to 0. Now,
since x(1 + xy + x3yz) → t, if y is bounded then A = 1 + xy + x3yz +
xy + x3yz + 2x3yz → ∞ thus y → ∞. Put m = (x, y, z) and suppose
|m|∇f(m) → 0. The component |m|C → 0 so |x2y| = ε(m) → 0,
and since x + x2y + x4yz → t we also have x4yz = t + δ(m) with
δ(m) → 0. To finish, consider the component |m|A; we have |m|A =

|m| + |m|
|x| (4|t| + 4δ(m) + ε(m)) ≥ (5|t| + 1)|m| and so |m|A cannot go

to 0.

Remark 2.3. For the polynomial of Example 2.2 we have K(f) =
{0}.

Let us recall some classes of polynomials “without critical points at
infinity”:

Denote by M(f) = {x ∈ Cn : ∃λ ∈ C : ∇f(x) = λx}. A polynomial
f is M -tame if for any sequence xk ∈M(f) such that xk → ∞ we have
limk→∞ f(xk) = ∞

A polynomial f is called quasi-tame if for any sequence xk ∈ Cn such
that xk → ∞ and ∇f(xk) → 0 we have limk→∞ |f(xk) − (xk|∇f(xk))| =
∞.

It is well known, and easy to prove, that quasi-tame implies Mal-
grange condition and that Malgrange condition at any point (which is
the same as K(f) = ∅) implies M -tame. Finally we will give an example
showing that K(f) is in general different from B(f)

Example 2.3 ([19]). The polynomial x+ y− 2x2y3 +x3y6 + zy3 −
z2y5 + ty5 is a fibration over C that is B(f) = ∅. But it is not M -tame
at 0, and thus K∞(f) �= ∅—in fact K∞(f) = {0}.

3. Main result. Real case

From now on we will restrict attention to the finite dimensional case.
Our aim is to prove the following theorem:
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Theorem 3.1. Let f : Rn → Rk be a differentiable semialgebraic
map. Then K(f) is a closed semialgebraic set of dimension less than k.
Moreover, if f is of class C2, then f : Rn \ f−1(K(f)) → Rk \K(f) is
a fibration over each connected component of Rk \K(f). In particular
B(f) ⊂ K(f).

Here B(f) means the smallest closed subset of Rk such that f : Rn \
f−1(B(f)) → Rk \ B(f) is a fibration over each connected component
of Rk \B(f).

Remark 3.1. The theorem remains valid in the case of a mapping
defined on an open subset U of Rn. That is K(f) is still a closed semi-
algebraic set of dimension less than k and, if f satisfies Condition (2.3),
f : U − f−1(K(f)) → Rk − K(f) is a fibration over each connected
component of Rk −K(f).

The main argument of our proof is based on a fact, due to K.
Kurdyka ([10]), that any semialgebraic set A ⊂ Rn is a finite union
A = ∪iL

i, where each Li has the Whitney property with constant M :
any two points x, y ∈ Li can be joined in Li by a piecewise smooth
arc of length ≤ M |x− y|. (Actually any M > 1 will do, by [9]). It is
crucial for us that the constant M = M(n) depends only on n. In [18]
A. Parusinski obtained a similar decomposition of semialgebraic sets,
but without any estimate on M .

What we need actually is a uniform version of the above decom-
position, for families parameterized by finite dimensional spaces : if
B ⊂ Rn × Rp and t ∈ Rp, we write Bt = {x ∈ Rn : (x, t) ∈ B}. Then
from the method of [10] (see also [11], [12, Chap. 2]), we obtain the
following theorem:

Theorem 3.2. There exists M = M(n) > 0 such that any semial-
gebraic set A ⊂ Rn × Rp can be decomposed into a finite (and disjoint)
union A = ∪i∈IL

i, such that for each t ∈ Rp, every set Li
t has the Whit-

ney property with constant M . So, in particular At = ∪i∈IL
i
t for each

t ∈ Rp. (Clearly, for a fixed t ∈ Rp some of Li
t may be empty.)

In fact for our purpose we may use a weaker result due to B. Teissier
[21], we explain it after the proof of the main theorem.

The proof of Theorem 3.1 will be given in Section 3.3. The main
steps of the proof are as follows:
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• We observe that points in K∞(f) are associated to sequences xl

satisfying, for some N not depending on y,

(1 + |xl|)1+
1
N ν(df(xl)) → 0.

• We consider, in a sphere with large radius r, the set Di of points
where the Kuo distance κ(df(x)) is attained by ∇fi(x). We de-
compose Di ∩Wb relatively to r using Theorem 3.2, where Wb is
the level surface (f1, . . . , f̂i, . . . , fk)−1(b).

• We prove that volkK∞(f|Di
) = 0 using that

|∇fi|Wb
(x)| ≤ |x|−(1+ 1

N
).

3.1 Lemma on K∞(f)

In order to prove our Sard theorem, we shall use the fact that for a fixed
mapping f , the convergence of ν(df(xl)) in the definition of K∞(f) is
actually faster than |xl|−1. To make this precise, for a differentiable
function f : Rn → Rk and any N ∈ N∗ we define

KN
∞(f) = {y ∈ Rk : ∃xl ∈ Rn, |xl| → ∞

s.t. f(xl) → y and |xl|1+
1
N ν(df(xl)) → 0}.

We have

Lemma 3.1. Let f : Rn → Rk be a differentiable semialgebraic
function. Then, there exists N ∈ N∗ such that

K∞(f) = KN
∞(f).

Proof. Let in : Rn → Sn ⊂ Rn+1 be the inverse of the stereographic
projection. Clearly, the graph of i is semialgebraic. Denote {∞} =
Sn \ in(Rn). In the sequel, we shall consider that Rn = in(Rn) ⊂ Sn.
We compactify also Rk = ik(Rk) ⊂ Sk and R ⊂ S1 in the similar way.
Let

σ(x) = |x|ν(df(x)) for x ∈ Rn.

By Proposition 2.4, σ is a semialgebraic mapping. Finally, consider the
mapping ϕ : Rn → Rk × R ⊂ Sk × S1 defined by ϕ(x) = (f(x), σ(x)).

Recall now the classical lemma (cf. [2, Chap. 9], [3])
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Lemma 3.2 (Wing Lemma). Let Ω and B be two semialgebraic
subsets of Rm. Assume that B = B ⊂ Ω \ Ω. Then, there exists a
semialgebraic set A ⊂ Ω such that

B = A ∩ (Ω \ Ω).

We apply the Wing Lemma for Ω = graph(ϕ) ⊂ Sn×Sk×S1, and B
the closure of {∞}×K∞(f)×{0} in Sn×Sk×S1. By Proposition 2.4 and
the definition of K∞(f) it follows that B is a closed semialgebraic set.
Clearly B ⊂ Ω \ Ω. So, there exists a semialgebraic set A ⊂ graph(ϕ)
such that

A ∩ ({∞} × Sk × S1) = B.(3.1)

Let Γ = π(A), where π : Rn × Rk × R → Rn is the projection.
Equality (3.1) means that {∞}× y×{0} ∈ B if and only if there exists
a sequence xl ∈ Γ with |xl| → ∞, f(xl) → y and σ(xl) → 0. Let us
define

θ(r) = r sup
x∈Γ
|x|=r

ν(df(x)).

with the convention that θ(r) = 0 if Γ ∩ S(r) = ∅, where S(r) is the
sphere of radius r centered at 0. Clearly θ is semialgebraic. Note that for
any sequence xl ∈ Γ, |xl| → ∞ we have σ(xl) → 0, since B is compact.
This implies that θ(r) → 0 as r → ∞. So, by Puiseux, θ(r) ≤ cr−α at
∞ for some α ∈ Q∗

+ and c > 0. Let N ∈ N∗ be such that 1
N < α, then

of course
r

1
N θ(r) → 0 when r → ∞.

So K∞(f) ⊂ KN∞(f), this completes the proof of Lemma 3.1 since obvi-
ously the reverse inclusion is satisfied. q.e.d.

3.2 Semialgebraic arcs at infinity

We shall use the following version of the curve selection lemma for semi-
algebraic sets (it can be easily obtained using a semialgebraic compact-
ification of Rn and the classical curve selection lemma, see [2], [3]).

Lemma 3.3 (Curve selection at infinity). Let A ⊂ Rn and let
φ : A→ Rq be a semialgebraic map. Assume that there exists a sequence
xl ∈ A such that |xl| → ∞ and φ(xl) → y, for some y ∈ Rq. Then
there exists a semialgebraic arc γ : (α, β) → Rn such that γ(t) ∈ A,
lim
t→β

|γ(t)| = +∞ and lim
t→β

φ(γ(t)) = y.
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Now consider such a semialgebraic arc γ : (α, β) → Rn. Since
|γ′(t)| > 0 for t close to β, we may reparametrize γ in such a way
that β = +∞ and |γ(r)| = r. Under this assumption we have:

Lemma 3.4. lim
r→∞ |γ′(r)| = 1; in particular, γ′(r) is bounded for

r > 0 large enough.

Proof. Since γ is semialgebraic, lim
r→∞

γ(r)
|γ(r)| and lim

r→∞
γ′(r)
|γ′(r)| exist.

Hence, it is easily seen that these limits are equal. In other words

cosα(r) → 1, as r → ∞, where α(r) is the angle between
γ(r)
|γ(r)| =

γ(r)
|r|

and
γ′(r)
|γ′(r)| . Differentiation of |γ(r)|2 = r2 yields |γ′(r)| =

1
cosα(r)

.

This implies the lemma. q.e.d.

3.3 Proof of main Theorem 3.1

Let us fix N ∈ N such that K∞(f) = KN∞(f)—cf. Lemma 3.1. By
Proposition 2.6, we may replace the distance ν of Rabier by the distance
κ of Kuo. For each i ∈ {1, . . . , k}, we define

Di = {x ∈ Rn : κ(df(x)) = dist(∇fi(x), Vi(x))}
where Vi(x) is the vector space generated by ∇fj(x), j = 1, . . . , k and
j �= i.

Clearly each Di is semialgebraic in Rn and Rn = ∪k
i=1Di, so

K∞(f) =
k⋃

i=1

K∞(f|Di
)

where

K∞(f|Di
) = {y ∈ Rk : ∃xl ∈ Di, |xl| → ∞, f(xl) → y

and |xl|ν(df(xl)) → 0}.
We shall prove the following

Lemma 3.5. volk(K∞(f|Di
)) = 0 for each i ∈ {1, . . . , k}. In

particular dimK∞(f) < k.

Proof. We will give the proof for i = 1, we write D = D1, f =
(f2, . . . , fk).
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Let us fix B an open ball in Rk−1 and (α, β) an open bounded
interval in R. The lemma is clearly a consequence of

volk(K∞(f|D) ∩ (α, β) ×B) = 0.(3.2)

In order to prove Equality (3.2), we construct a family of sets ∆r such
that

∆r ⊃ K∞(f|D) ∩ (α, β) ×B and volk(∆r) → 0 as r → ∞.

We first define

Σ̃r = {x ∈ D : |x| ≥ r, f1(x) ∈ (α, β), f(x) ∈ B and |x|1+ 1
N κ(df(x)) ≤ 1}

where r > 0, and put

∆r = f(Σ̃r) and finally ∆ =
⋂
r>0

∆r.

Every ∆r is semialgebraic, hence we have volk(∆r) = volk(∆r) and
consequently

volk(∆) = lim
r→∞ volk(∆r)

since the family (∆r)r>0 is decreasing with respect to r → ∞.
It is clear that

K∞(f|D) ∩ (α, β) ×B ⊂ ∆,

so it is enough to prove that volk(∆) = 0. First, using Fubini’s theorem
we write

volk(∆r) =
∫

B
mr(b)db

where db stands for the Lebesgue measure on Rk−1, and

mr(b) = vol1({y1 ∈ R : (y1, b) ∈ ∆r}).
Clearly, each mr is measurable. Moreover, for fixed b ∈ B, the

function r �→ mr(b) ≥ 0 is decreasing. Let

m(b) = lim
r→∞mr(b).

By Lebesgue’s theorem on bounded convergence, we obtain

volk(∆) =
∫

B
m(b)db.

Now the final point in the proof of Equality (3.2) is the fact that m ≡ 0,
which follows from the next lemma. q.e.d.
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Lemma 3.6. There exists a constant c > 0 such that, for r large
enough

mr(b) ≤ cr−
1
N .

Proof. To prove Lemma 3.6, we introduce the semialgebraic family

Σr,b = Σ̃r ∩ f−1(b) ∩ S(r),

where b ∈ B, r > 0, and next we write

Σ̃r,b = Σ̃r ∩ f−1(b) =
⋃
s≥r

Σs,b.

Note that

mr(b) = vol1(f1(Σ̃r,b)).

It follows from Theorem 3.2 that there exists a finite family Li ⊂ Rn ×
R × Rk−1, i ∈ I of semialgebraic sets such that

Σr,b =
⋃
i∈I

Li
r,b.

Each Li
r,b has the Whitney property with constant M (some of Li

r,b may
be empty).

Recall that the condition |x|1+ 1
N κ(df(x)) ≤ 1 for x ∈ f

−1(b) = Wb

means that

|∇f1|Wb
(x)| ≤ |x|−(1+ 1

N
).(3.3)

Hence, by the mean value theorem f1(Li
r,b) is a segment of length d(r)

where

d(r) ≤ 2Mr sup
Li

r,b

|∇f1|Wb
| ≤ 2Mr−

1
N .(3.4)

Fix b ∈ B, i ∈ I and assume that Li
r,b �= ∅ for any r large enough.

Applying the curve selection lemma at infinity, we obtain a semial-
gebraic arc γ : [r,+∞) → Rn such that γ(ζ) ∈ Li

ζ,b. In particular,

γ(ζ) ∈ f
−1(b) = Wb and |γ(ζ)| = ζ.

By Lemma 3.4, we may suppose that |γ′(ζ)| ≤ 2. So we can easily
compute length of f1 ◦ γ([r,+∞)); namely, by (3.3) we have∫ +∞

r
|(f1 ◦ γ)′(ζ)|dζ ≤ 2

∫ +∞

r
ζ−(1+ 1

N
)dζ = 2Nr−

1
N .(3.5)
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Thus, by (3.4) and (3.5), f1(
⋃

ζ≥r L
i
ζ,b) is contained in a segment of

length
(4M + 2N)r−

1
N .

Therefore f1(Σ̃r,b) is contained in #I segments of this length. Put
c = (#I)(4M + 2N); we have

mr(b) ≤ cr−
1
N

and Lemma 3.6 follows. q.e.d.

As we already seen the map ϕ = (f, σ) is semialgebraic, and so K(f)
is a semialgebraic subset of Rk.

From Lemma 3.5 and the usual semialgebraic Sard’s theorem (see
[3]) it follows that dimK(f) < k.

The fact that f is a fibration is a consequence of Theorem 2.1. This
ends the proof of Theorem 3.1.

3.4 An alternative proof of Lemma 3.6 via Teissier’s theorem

Let us recall the following result due to B. Teissier [21]. We state only
the semialgebraic version which is of our interest

Theorem 3.3 (Teissier). Let B ⊂ Rn × Rp be a semialgebraic
set. Assume that for any t ∈ Rp the set Bt = {x ∈ Rn : (x, t) ∈ B}
is contained in the unit closed ball in Rn. Then there exists a constant
M > 0, depending on B, such for any t ∈ Rp: any two points in the
same connected component of Bt can be joined in Bt by a piecewise
smooth curve of length at most M .

The original proof of Teissier (for subanalytic sets) used Hironaka’s
resolution of singularities, but now there are many simplified proofs by
R. Hardt, the first named author, Y. Yomdin [23]. S. K. Donaldson [4]
obtained an explicit estimate for M in some special cases.

We obtain the following from Theorem 3.3 as an immediate corollary:

Corollary 3.1. Let A ⊂ Rn × Rp be a semialgebraic set. Assume
that for any t ∈ Rp the set At = {x ∈ Rn : (x, t) ∈ A} is contained in the
ball {x ∈ Rn : |x| ≤ r(t)}, where r : Rp → R is some semialgebraic (not
necessarily continuous) positive function. Then there exists a constant
M > 0, depending on A, such that, for any t ∈ Rp, any two points in
the same connected component of At can be joined in At by a piecewise
smooth curve of length at most Mr(t).
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Indeed it is enough to apply Teissier’s theorem to the semialgebraic
family

Bt =
1
r(t)

At, t ∈ Rp.

Let us come back to the proof of Lemma 3.6. Recall that

Σr,b = Σ̃r ∩ f−1(b) ∩ S(r).

It follows from Hardt’s semialgebraic triviality theorem (see [2, Chap. 9])
that there exists a finite family Li ⊂ Rn×R×Rk−1, i ∈ I of semialgebraic
sets such that

Σr,b =
⋃
i∈I

Li
r,b.

But this time Li
r,b denote a connected component of Σr,b or an empty

set. By Corollary 3.1 any two points in Li
r,b can be joined (in Li

r,b)
by a piecewise smooth curve of length at most Mr. So we can obtain
estimate (3.4) by the same argument as before. The rest of the proof of
Lemma 3.6 need not to be modified.

Remark 3.2. We have actually proved that, for generic b ∈ Rk−1,
the set ∆ ∩ {x ∈ Rk : (x2, . . . , xk) = b} has at most s points, where s
is a bound for the number of connected components of any Σr,b. This
number s can be easily estimated from above (cf. [3]) in terms of the
degrees of the polynomials describing the graph of f . In particular, if
f1, . . . , fk are polynomials of degree less than d, then, by [3, Proposition
4.4.5],

s = s(n, d, k) ≤ (2d+ 1)(4d− 3)n.

Hence, if f : Rn → R is a polynomial of degree d then

#K∞(f) ≤ (2d+ 1)(4d− 3)n.

3.5 The set Jf of Z. Jelonek

To end this section we will prove that, in some cases, our K∞(f) is
equal to the set Jf of Z. Jelonek.

Let us consider a continuous mapping f : Kn → Kn. We say (cf. [7])
that f is proper at a point y ∈ Kn if there exists an open neighborhood
U of y such that the restriction f |f−1(U) : f−1(U) → U is a proper map.
We denote by Jf the set of points at which f is not proper, we always
have the inclusion K∞(f) ⊂ Jf .

Now we prove the following:
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Proposition 3.1. Let f : Rn → Rn be a C1 semialgebraic map-
ping, then Jf = K∞(f).

Proof. Observe that y ∈ Jf implies that there exists a sequence
xl ∈ Rn such that |xl| → ∞ and f(xl) → y. Since f is semialgebraic,
using a standard curve selection (see Subsection 3.2) we can find a C1

semialgebraic arc γ : [a,∞) → Rn such that |γ(r)| = r → ∞ and
f(γ(r)) → y. Hence in particular |γ′(r)| ≥ 1. Note that a continuous
semialgebraic arc η : [α, β) → Rn has a limit (in Rn) at β, if and only if
η is of finite length.

Assume that y ∈ Jf and y /∈ K∞(f). It means that for some b, c > 0
we have

|df(γ(r))(γ′(r))| ≥ c

r

for any r ≥ b. But this implies that length of f(γ) is not less than

c

∫ ∞

b

d r

r
= ∞, since f is injective on γ for r large enough. So f(γ(r))

has no limit in Rn as r → ∞, which is a contradiction. q.e.d.

We shall use the above proposition in a discussion (in the next sec-
tion) on the dimension of K∞(f) in the complex case.

Recall that we have always K∞(f) ⊂ K̃∞(f) ⊂ Jf . Thus Proposi-
tion 3.1 yields

Corollary 3.2. Let f : Rn → Rn be a C1 semialgebraic mapping,
then K∞(f) = K̃∞(f).

This is in strong contrast with a case, discussed in Section 2, where
the dimension of the target was smaller than the dimension of the source.
Corollary 3.2 seems to be a new result also in the complex case (even
for n = 2) and may be of some interest for Jacobian Conjecture.

Proposition 3.1 holds actually in a more general case. It is enough
to assume that the generic fibers of f : Rn → Rk are compact. More
precisely we have

Theorem 3.4. Let f : Rn → Rk, k ≤ n be a C1 semialgebraic
mapping. Assume that the set of regular points of f is dense and that
f−1(y) is compact for any y ∈ Rk\K0(f). Then K∞(f) = K̃∞(f) = Jf .

Proof. Clearly, by previous remarks, it is enough to prove that
Jf ⊂ K∞(f). Assume this is not the case, it means that there exists
y /∈ K∞(f) and a sequence xl ∈ Rn such that |xl| → ∞ and f(xl) →
y. By the curve selection lemma we obtain a C1 semialgebraic arc
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γ : [a,∞) → Rn such that |γ(r)| → ∞ and f(γ(r)) → y. For a large
enough the set Γ = f(γ(a,∞)) is a smooth curve of finite length. More-
over, since y /∈ K∞(f) there exists a constant c > 0 such that

(1 + |x|)ν(df(x)) ≥ c(3.6)

for any x such that f(x) ∈ Γ and |x| ≥ R, where R > 0 is large
enough. Since the set of regular values of f is dense we can suppose
that Γ ∩ K0(f) = ∅. Recall that f−1(f(γ(a))) is compact, so we may
assume that it is contained in B(0, R).

We are going to prove that f−1(Γ) is bounded which will be a con-
tradiction.

Denote by g the map f|f−1(Γ), and by δ(g(x)) the unit tangent vector
field to Γ in the direction of y. Using the right inverse s(x) of dg(x) (see
Section 4 of [20]), we can lift δ to a C0 vector field X(x) = s(x)δ(g(x))

on f−1(Γ). In fact X =
∇g
|∇g|2 , where ∇g is the gradient of g with

respect to the induced metric on f−1(Γ).
Since ν(dg(x)) = ν(df(x)|f−1(Γ)) ≥ ν(df(x)) (use Proposition 2.3),

Condition (3.6) with f replaced by g is still true outside of B(0, R).
Take a point z ∈ (Rn \B(0, R))∩ f−1(Γ), by Peano’s theorem there

exists a local integral curve of the field −X starting at z; denote it by
φ(t) with t ∈ [α, β). Using Gronwall lemma and the bound

|X(x)| ≤ 2(1 + |x|)
c

which comes from (3.6), we easily obtain that

|φ(t)| ≤ |z| exp(β − α) + exp(
2
c
(β − α)) − 1

for t ∈ [α, β). This inequality implies that φ is Lipschitz on [α, β) and
so φ has a limit at β and can be extended.

Observe that t is the arc length on Γ, since dg(φ(t))φ′(t) = δg(φ(t)).
This implies that φ can be extended in such a way that in finite time
it goes into B(0, R), since g−1(g(γ(a))) ⊂ B(0, R). But, reversing time,
we see (again by Gronwall lemma) that φ(t) has to stay in the ball of

radius R exp(length(Γ)) + exp
(

2
c

length(Γ)
)
− 1.

Thus f−1(f(γ(b))) is uniformly bounded irrespective of b. Hence the
set f−1(Γ) is bounded, which is a contradiction. q.e.d.
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Remark 3.3. P. J. Rabier pointed out to us that the same result
is valid for general C2 mappings from Rn to Rk, if f−1(y) is compact
for y in a dense subset of Rk: By standard transversality arguments
one can construct a perturbation with compact support of f for which
y becomes a regular value. This does not change K∞(f) and Jf near y,
thus we can conclude using Rabier’s fibration theorem. Combining this
with our proof we obtain that, in fact, Theorem 3.4 is valid for any C1

mappings with generically compact fibers.

Remark 3.4. In a recent paper [8] Z. Jelonek proved that if a
polynomial mapping satysfies the assumptions of Theorem 3.4, then the
corresponding semialgebraic set K∞(f) = Jf is R-uniruled—it means
that by every point pass a curve (in Jf ) with polynomial parametriza-
tion.

4. The complex case

Suppose now that f : Cn → Ck is a complex polynomial mapping.
We know, by Theorem 3.1, thatK∞(f) is a nowhere dense semialgebraic
subset of Ck. But in this case, we prove more:

Theorem 4.1. If f : Cn → Ck is a complex polynomial mapping,
then K∞(f) is a complex algebraic set and dimCK∞(f) < k.

Proof. We shall prove that K∞(f) is a complex algebraic set. We
can assume that f is dominant, that is the generic rank of f is k, as
otherwise K∞(f) is equal to the closure of the image of f . Since the
closure is the same in the strong and in Zariski topology, we deduce that
K∞(f) is a complex algebraic set.

As before we replace Rabier’s ν invariant by the invariant κ of Kuo.
Let f = (f1, . . . , fk). For any j = 1, . . . , k we denote

f̃j = (f1, . . . , fj−1, fj+1, . . . , fk) : Cn → Ck−1.

Let Vj(z) be the kernel of df̃j(z) and let wj(z) denote the restriction of
dfj(z) to the linear subspace Vj(z). Recall that by the definition (2.2)
of κ

κ(df(z)) = min
1≤j≤k

‖wj(z)‖.(4.1)

Let z = (z1, . . . , zn) ∈ Cn. For each s = 1, . . . , n we will use the following
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change of coordinates:

τs(z) =
(
z1
zs
, . . . ,

zs−1

zs
,

1
zs
,
zs+1

zs
, . . . ,

zn
zs

)
,

which sends (zs = 0) to ∞. Denote by G = Gn−k+1(Cn × C) the
Grassmanian of (n − k + 1)-planes in Cn × C. For fixed j and s we
consider rational mappings

Aj
s : Cn \ {zs = 0} → Ck × G

given by the formula

Aj
s(z) =

(
f(τs(z)),W j

s (z)
)
.

Here W j
s (z) stands for the graph of

1
zs
wj(z). To be more precise Aj

s(z)

is well defined for those z for which Vj(z) is of dimension (n − k + 1).
Recall that we assumed that f is dominant, hence this condition holds
outside a nowhere dense algebraic set. Let Λ = Gn−k+1(Cn × 0) ⊂ G.
Note that each λ ∈ Λ can be seen as a graph of constant (equal to 0)
mapping on the (n− k + 1)-plane λ. Put

Bj
s = graph(Aj

s) ∩ {z ∈ Cn : zs = 0} × Ck × Λ.

The closure is taken in the strong topology, but it is equal to the Zariski
closure. Hence Bj

s is an algebraic set. Let π : Cn×Ck ×G → Ck denote
the projection. Finally let

Kj
s = π(Bj

s).

Clearly each Kj
s is a constructible set. Assume that we have proved:

Lemma 4.1. K∞(f) =
n,k⋃

s=1,j=1

Kj
s .

This, of course, implies that K∞(f) is constructible. On the other
hand, the set K∞(f) is closed, so it must be algebraic.

So we are left with proving Lemma 4.1. Suppose that y ∈ Kj
s , then

we can find a real Puiseux arc η = (η1, . . . , ηn) : (0, ε) → Cn, |ηs(t)| = t
such that

f ◦ τs ◦ η(t) → y, when t→ 0
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and
W j

s (τs(η(t)) →W j
s , when t→ 0

for some W j
s ∈ Λ. By (4.1) this means that y ∈ K∞(f).

The reverse inclusion is easily obtained. Take y ∈ K∞(f), then
there is an arc going to infinity, say z(t) = (z1(t), . . . , zn(t)), such that
f(z(t)) → y and

|z(t)|κ(df(z(t))) → 0.(4.2)

Choose a coordinate zs in such a way that zs(t) goes to infinity faster
than the other coordinates, then choose j such that κ(df(z(t))
= ‖wj(z(t))‖ and proceed using Aj

s. Since G is compact there exists
a limit W j

s of graphs of zs(t)wj(z(t)). It follows, by (4.2), that W j
s ∈ Λ.

So (0, y,W j
s ) ∈ Bj

s and consequently y ∈ Kj
s . q.e.d.

Recall that, by a result of Z. Jelonek [7], if f : Cn → Cn is a
polynomial dominant mapping with nonempty Jf , then Jf is a hyper-
surface (actually this is a C-uniruled hypersurface, its degree is effec-
tively bounded). So, by our Proposition 3.1, K∞(f) is also a C-uniruled
hypersurface in this case. One could conjecture that, for a general poly-
nomial dominant mapping f : Cn → Ck with k < n, K∞(f) must be a
hypersurface or an empty set. The following example (suggested by Z.
Jelonek) shows that this not the case.

Example 4.1. Consider the polynomial mapping f : C3 → C2,
given by f(x, y, z) = (xy, xz). Using Proposition 2.5 it is easily seen
that ν(df(ξ)) = |x| for ξ = (x, y, z). Let ξn = (xn, yn, zn) be a sequence
which tends to infinity and assume that

|ξn||xn| = |ξn|ν(df(ξn)) → 0.

Hence |xn| → 0 and therefore f(ξn) → 0. So 0 is the only asymptotic
critical value of f .

However we may still conjecture that K∞(f) is C-uniruled in the
sense that by each point of K∞(f) passes a curve wich has a polynomial
(possibly constant) parametrization.

Remark 4.1. After the first version of the paper was written
(november 1999) we learned that T. Gaffney [6] studied the set K∞(f)
in the complex setting. In particular he proved (without using Rabier’s
result) that the mapping is a locally trivial fibration over the comple-
ment of K∞(f). However his definition of ν is not exactly the same as
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ours. We leave to the reader to prove that in fact both definitions are
equivalent.
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[9] K. Kurdyka & P. Orro, Distance géodésique sur un sous-analytique, Revista
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